Aircraft-based observations of air–sea turbulent fluxes around the British Isles

Article

Published Version

Creative Commons: Attribution 3.0 (CC-BY)

Open Access

It is advisable to refer to the publisher’s version if you intend to cite from the work. Published version at: http://onlinelibrary.wiley.com/enhanced/doi/10.1002/qj.2345 To link to this article DOI: http://dx.doi.org/10.1002/qj.2345

Publisher: Royal Meteorological Society

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement.

www.reading.ac.uk/centaur

CentAUR
Aircraft-based observations of air–sea turbulent fluxes around the British Isles†

Peter A. Cook* and Ian A. Renfrew

Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich, UK

*Correspondence to: Peter A. Cook, Department of Meteorology, University of Reading, Earley Gate, PO Box 243, Reading, RG6 6BB, UK. E-mail: p.a.cook@reading.ac.uk

Observations of turbulent fluxes of momentum, heat and moisture from low-level aircraft data are presented. Fluxes are calculated using the eddy covariance technique from flight legs typically ∼40 m above the sea surface. Over 400 runs of 2 min (∼12 km) from 26 flights are evaluated. Flight legs are mainly from around the British Isles although a small number are from around Iceland and Norway. Sea-surface temperature (SST) observations from two on-board sensors (the ARIES interferometer and a Heimann radiometer) and a satellite-based analysis (OSTIA) are used to determine an improved SST estimate. Most of the observations are from moderate to strong wind speed conditions, the latter being a regime short of validation data for the bulk flux algorithms that are necessary for numerical weather prediction and climate models. Observations from both statically stable and unstable atmospheric boundary-layer conditions are presented. There is a particular focus on several flights made as part of the DIAMET (Diabatic influence on mesoscale structures in extratropical storms) project.

Observed neutral exchange coefficients are in the same range as previous studies, although higher for the momentum coefficient, and are broadly consistent with the COARE 3.0 bulk flux algorithm, as well as the surface exchange schemes used in the ECMWF and Met Office models. Examining the results as a function of aircraft heading shows higher fluxes and exchange coefficients in the across-wind direction, compared to along-wind (although this comparison is limited by the relatively small number of along-wind legs). A multi-resolution spectral decomposition technique demonstrates a lengthening of spatial scales in along-wind variances in along-wind legs, implying the boundary-layer eddies are elongated in the along-wind direction. The along-wind runs may not be able to adequately capture the full range of turbulent exchange that is occurring because elongation places the largest eddies outside of the run length.

Key Words: surface turbulent fluxes; exchange coefficients; aircraft observations; boundary-layer turbulence; DIAMET

1. Introduction

The turbulent exchange of momentum, heat and moisture across the air–sea interface is an important contributor to the development of weather systems and a key component of the climate system. Thus it must be accounted for in numerical weather prediction and climate prediction models. This exchange is primarily subgrid-scale and so is parametrized via surface exchange (bulk flux) parametrization schemes. These schemes are semi-empirical and require observations of turbulent exchange and bulk meteorological properties to allow a tuning of the algorithm, typically by estimating exchange coefficients (e.g. Fairall et al., 1996, 2003; Andreas et al., 2012). Due to the turbulent nature of the observations a large amount of random scatter is inherent in any such observational dataset, meaning that a relatively large amount of data is required in order to obtain mean (or median) values for this tuning. Over the last few decades a large amount of data has been assembled (e.g. Fairall et al., 2003; Andreas et al., 2012; Vickers et al., 2013), such that for low to moderate wind speeds there is now reasonable consensus amongst the majority of bulk flux algorithms commonly used. However as wind speeds increase this consensus breaks down – the bulk algorithms diverge – and the physical situation is complicated by the effects of sea-surface waves, swell, wave breaking, white caps,

†The copyright line in this article was amended on 1 May 2014 after original online publication.

© 2014 The Authors. Quarterly Journal of the Royal Meteorological Society published by John Wiley & Sons Ltd on behalf of the Royal Meteorological Society. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

In recent years several studies have focused on these high wind speed conditions; for example, Persson et al. (2005) present ship-based eddy covariance and inertial dissipation fluxes from the central North Atlantic; French et al. (2007), Drennan et al. (2007) and Zhang et al. (2008) present aircraft-based covariance flux observations from hurricanes; Powell et al. (2003) infer exchange coefficients from dropsonde observations of hurricanes; Donelan et al. (2004) estimate exchange coefficients from high wind speed wave-tank experiments; Petersen and Renfrew (2009) present aircraft-based covariance fluxes during barrier winds and tip jets; and Raga and Abarca (2007) present aircraft-based covariance fluxes during gap winds. These studies, along with recent reviews (Andreas et al., 2012; Vickers et al., 2013) have started to conclude that there is a ‘roll off’ in the momentum exchange coefficient for increasing ten-metre wind speed, perhaps as surface waves are flattened off, although there is still some uncertainty in the details of this effect, and indeed in the role of waves at moderate to strong winds too (e.g. Fairall et al., 2003). Recently Andreas et al. (2012) presented a new algorithm which has this roll-off feature, is well-validated by a very large dataset and also seems to correspond with wind-wave theory (Moon et al., 2007; Mueller and Veron, 2009). However, further examination of this new algorithm is required. Current understanding of the exchange coefficients for heat and moisture at higher wind speeds is also uncertain and hampered by a lack of observations (e.g. Fairall et al., 2003), although there is increasing evidence that sea spray becomes critical to the transfer of both heat and salt (e.g. Andreas, 2011).

Under high wind speed conditions the air–sea turbulent fluxes of momentum are large, as are the fluxes of heat and moisture if the sea–air temperature difference is significant. Consequently these fluxes are a significant sink of momentum and a significant source or sink of energy and moisture to developing storms such as hurricanes and extratropical cyclones. The DIAMET project (Diabatic influence on mesoscale structures in extratropical storms) is a major UK consortium that aims to improve the understanding and prediction of extratropical storms through a complex programme of observation, parametrization development, data assimilation and numerical weather prediction studies. The overarching theme is on the role that diabatic processes play in developing the meso-to-convective scale structures within storms. Particular focus for the programme have been the role of latent heating through condensation and evaporation, and the role of air–sea fluxes in providing sources/sinks of heating. Recently a number of idealized modelling studies have indicated that the atmospheric boundary layer (ABL) plays a key role in dictating mesoscale structure within developing extratropical cyclones.

Table 1. The 32 flights with significant low-level legs over the sea used in this study.

<table>
<thead>
<tr>
<th>Campaign</th>
<th>Flight</th>
<th>Date</th>
<th>No of runs</th>
<th>Altitude (m)</th>
<th>Missing data</th>
<th>U_{100} (m s$^{-1}$)</th>
<th>Stability</th>
<th>Usable runs</th>
</tr>
</thead>
<tbody>
<tr>
<td>GFDE Ex</td>
<td>B268*</td>
<td>21/02/07</td>
<td>11</td>
<td>43</td>
<td>Heim. ARIES Q</td>
<td>22–25</td>
<td>U</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>B271*</td>
<td>25/02/07</td>
<td>22</td>
<td>40</td>
<td>Heim. ARIES</td>
<td>5–16</td>
<td>U</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>B276*</td>
<td>5/03/07</td>
<td>43</td>
<td>35</td>
<td>ARIES</td>
<td>16–20</td>
<td>U</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>B277*</td>
<td>6/03/07</td>
<td>6</td>
<td>40</td>
<td>ARIES</td>
<td>18–22</td>
<td>U</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>B278*</td>
<td>9/03/07</td>
<td>30</td>
<td>35</td>
<td>ARIES</td>
<td>15–20</td>
<td>U</td>
<td>29</td>
</tr>
<tr>
<td>VOCALS</td>
<td>B411</td>
<td>30/10/08</td>
<td>20</td>
<td>30</td>
<td>ARIES</td>
<td>4–8</td>
<td>U</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>B417</td>
<td>9/11/08</td>
<td>10</td>
<td>40</td>
<td>ARIES</td>
<td>5–10</td>
<td>U</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>B419</td>
<td>12/11/08</td>
<td>15</td>
<td>40</td>
<td>ARIES</td>
<td>4–6</td>
<td>U</td>
<td>15</td>
</tr>
<tr>
<td>T-NAWDEX</td>
<td>B488*</td>
<td>24/11/09</td>
<td>7</td>
<td>35</td>
<td>ARIES</td>
<td>18–19</td>
<td>S</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>B499**</td>
<td>20/10/10</td>
<td>7</td>
<td>40</td>
<td>ARIES</td>
<td>9–11</td>
<td>U</td>
<td>4</td>
</tr>
<tr>
<td>RONOCO</td>
<td>B567*</td>
<td>18/01/11</td>
<td>4</td>
<td>38</td>
<td>Heim. ARIES Q</td>
<td>10–10</td>
<td>U</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>B568</td>
<td>19/01/11</td>
<td>4</td>
<td>31</td>
<td>ARIES</td>
<td>5–6</td>
<td>U</td>
<td>2</td>
</tr>
<tr>
<td>COALESC</td>
<td>B574+</td>
<td>24/02/11</td>
<td>15</td>
<td>33</td>
<td>Q</td>
<td>6–8</td>
<td>S</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>B578+</td>
<td>3/03/11</td>
<td>7</td>
<td>34</td>
<td>Q</td>
<td>6–8</td>
<td>U</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>B579*</td>
<td>5/03/11</td>
<td>9</td>
<td>34</td>
<td>Heim. Q</td>
<td>7–8</td>
<td>U</td>
<td>9</td>
</tr>
<tr>
<td>VACAR / CAVIAR</td>
<td>B586+</td>
<td>18/03/11</td>
<td>9</td>
<td>34</td>
<td>6–9</td>
<td>U</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>DIAMEX</td>
<td>B650*+</td>
<td>23/09/11</td>
<td>11</td>
<td>35</td>
<td>ARIES</td>
<td>8–12</td>
<td>S</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>B652*+</td>
<td>26/11/11</td>
<td>49</td>
<td>50</td>
<td>ARIES</td>
<td>13–18</td>
<td>S</td>
<td>49</td>
</tr>
<tr>
<td>EXMIX</td>
<td>B653+</td>
<td>27/11/11</td>
<td>27</td>
<td>40</td>
<td>ARIES</td>
<td>16–18</td>
<td>U</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>B656++</td>
<td>1/12/11</td>
<td>2</td>
<td>50</td>
<td>20–25</td>
<td>U</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B659+</td>
<td>10/12/11</td>
<td>7</td>
<td>30</td>
<td>4–6</td>
<td>U</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>PEC & MIX</td>
<td>B665+</td>
<td>19/01/12</td>
<td>10</td>
<td>37</td>
<td>15–23</td>
<td>U</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B667*</td>
<td>22/01/12</td>
<td>9</td>
<td>80</td>
<td>11–13</td>
<td>U</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B668*</td>
<td>23/01/12</td>
<td>4</td>
<td>80</td>
<td>Heimann</td>
<td>11–13</td>
<td>U</td>
<td>2</td>
</tr>
<tr>
<td>MEVALLI Norwegian Sea</td>
<td>B680+</td>
<td>12/03/12</td>
<td>6</td>
<td>40</td>
<td>16–17</td>
<td>U</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B681+</td>
<td>15/03/12</td>
<td>8</td>
<td>35</td>
<td>12–15</td>
<td>U</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B684+</td>
<td>16/03/12</td>
<td>10</td>
<td>40</td>
<td>9–14</td>
<td>U</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>DIAMEX</td>
<td>B695*+</td>
<td>10/05/12</td>
<td>25</td>
<td>40</td>
<td>11–13</td>
<td>U</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B721*</td>
<td>23/07/12</td>
<td>15</td>
<td>40</td>
<td>8–10</td>
<td>S</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>ClearFlo</td>
<td>B724*</td>
<td>30/07/12</td>
<td>13</td>
<td>30</td>
<td>7–10</td>
<td>U</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>NCAS-Elgin</td>
<td>B727*</td>
<td>15/08/12</td>
<td>1</td>
<td>50</td>
<td>ARIES</td>
<td>8–13</td>
<td>S</td>
<td>1</td>
</tr>
<tr>
<td>ACCACIA Norwegian Sea</td>
<td>B763*</td>
<td>26/03/13</td>
<td>8</td>
<td>35</td>
<td>12–18</td>
<td>U</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

The columns tabulate: the campaign (note the location is around the British Isles unless stated otherwise), flight number, date, number of 2 min runs, mean altitude, missing data (both the Heimann and the ARIES system measure SST – see section 3.2; Q indicates missing Lyman-alpha measurements of specific humidity), the range of U_{100} (10 m neutral reference height wind speed), the stability of the boundary layer ($S =$ Stable or $U =$ Unstable), and the number of usable runs due to the quality of the covariances ($v′ w′$, $w′ q′$). Only 26 of the flights are used for the turbulence flux estimations, marked with a *; the other 6 flights have generally low wind speed and so their data is only included in Figure 11(b). The flights marked with a + are used for the SST comparison.
Table 2. The flights with ABL legs used to estimate turbulence profiles. All flights, bar B568, also have surface-layer legs (see Table 1).

<table>
<thead>
<tr>
<th>Campaign</th>
<th>Flight</th>
<th>Date</th>
<th>No of runs</th>
<th>Altitude (m)</th>
<th>Stability</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOCALS</td>
<td>B417</td>
<td>9/11/08</td>
<td>5</td>
<td>150</td>
<td>U</td>
</tr>
<tr>
<td></td>
<td>B419</td>
<td>12/11/08</td>
<td>7</td>
<td>160</td>
<td>U</td>
</tr>
<tr>
<td></td>
<td>B561</td>
<td>17/01/11</td>
<td>4</td>
<td>315</td>
<td>U</td>
</tr>
<tr>
<td></td>
<td>B568</td>
<td>19/01/11</td>
<td>8</td>
<td>150</td>
<td>U</td>
</tr>
<tr>
<td></td>
<td>B574</td>
<td>24/02/11</td>
<td>11</td>
<td>160</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td>B578</td>
<td>03/11/11</td>
<td>18</td>
<td>150</td>
<td>U</td>
</tr>
<tr>
<td></td>
<td>B579</td>
<td>05/11/11</td>
<td>4</td>
<td>240</td>
<td>U</td>
</tr>
<tr>
<td></td>
<td>B653</td>
<td>27/11/11</td>
<td>4</td>
<td>160</td>
<td>U</td>
</tr>
<tr>
<td></td>
<td>B659</td>
<td>09/12/11</td>
<td>5</td>
<td>300</td>
<td>U</td>
</tr>
<tr>
<td></td>
<td>B684</td>
<td>16/03/12</td>
<td>13</td>
<td>150</td>
<td>U</td>
</tr>
<tr>
<td></td>
<td>B727</td>
<td>15/08/12</td>
<td>2</td>
<td>310</td>
<td>S</td>
</tr>
</tbody>
</table>

Observations of Air–Sea Fluxes

Numerical weather and climate prediction models parameterize these fluxes as a function of ‘bulk’ meteorological parameters usually using exchange coefficients to relate the bulk values to the fluxes (e.g. Fairall et al., 1996, 2003). Typically these exchange coefficients are determined for neutral stability and then stability corrections are applied using standard stability correction functions. Our treatment here follows that detailed in PR2009. In brief, the bulk flux equations are:

\[
\tau = \overline{pD_{DN}(U_{10N} - U_S)^2},
\]

\[
SH = \overline{pCP_{EN}(U_{10N} - U_S)(\theta_S - \theta_{10N})},
\]

\[
LH = \overline{pL_p C_{EN}(U_{10N} - U_S)(q_S - q_{10N})},
\]

where \(D_{DN}, C_{EN}\) and \(C_{EN}\) are the neutral exchange coefficients for drag (momentum), heat and evaporation (moisture) respectively, \(U_{10N}, \theta_{10N}\) and \(q_{10N}\) are values at the neutral ten-metre reference level and the subscript \(S\) denotes surface values. Note \(U_S\) the surface velocity, is assumed zero. In regions of strong currents this assumption may incur errors of order 10% – see Zhai et al. (2012) for a discussion of the implications here – however around the British Isles this error should be smaller. Calculating the exchange coefficients and neutral 10 m variables are achieved through the evaluation of surface roughness lengths and scaling parameters using standard equations and stability correction factors in the usual manner, as detailed in PR2009.

The vast majority of turbulence runs are at \(\sim 40\) m altitude. However there are 70 runs at \(\sim 80\) m altitude (Table 1). An examination of flights with both \(\sim 40\) and \(\sim 80\) m runs showed that when fluxes, friction velocities \((u^*_f)\), roughness lengths \(z_0\), and 10 m neutral wind speeds \((U_{10N})\) were calculated, the \(U_{10N}\) Values from the \(\sim 80\) m runs systematically underestimated \(U_{10N}\) (by 10% on average) when compared to the \(U_{10N}\) values from the \(\sim 40\) m runs (for the same meteorological conditions). This is a consequence of the actual boundary-layer profiles having little change in the wind speed between \(\sim 40\) and \(\sim 80\) m. Hence for all the runs at \(\sim 80\) m the \(U_{10N}\) values were increased by 10% while the calculated fluxes were not altered. The greater \(U_{10N}\) values then reduced the calculated bulk flux coefficients at \(\sim 80\) m \((C_{DN}, C_{EN}\) and \(C_{DN})\).

3. Methodology

3.1. The research aircraft and instrumentation

The data analysed here were all obtained from the UK’s Facility for Airborne Atmospheric Measurements’ (FAAM’s) BAE-146, jointly operated by the Met Office and the Natural Environment Research Council (NERC). This versatile four-engine jet aircraft is able to fly at a minimum safe altitude down to 100 feet (\(\sim 35\) m) above the sea surface for straight and level runs at its standard science speed of 200 knots (\(\sim 100\) m s\(^{-1}\)). The FAAM has been in operation since 2004, although many of the instruments and expertise were transferred from its predecessor in the UK, the Met Office’s Hercules C130 (e.g. Nicholls, 1978). Further details on the aircraft and its capability are described in e.g. Renfrew et al. (2008). The key instruments for this study include the five-port pressure measurement system on the nose of the aircraft which, along with static pressure ports and the inertial navigation unit (INU) system, provides wind velocity components at 32 Hz. The turbulence probe requires frequent calibration and checks, for example, carried out by specific calibration flight manoeuvres (P. R. A. Brown, personal communication). Some discussion of this can be found in PR2009, where state that overall the uncertainty in horizontal wind measurements is estimated
to be \(< \pm 0.5 \, \text{m} \, \text{s}^{-1} \) (and \(< 0.27 \, \text{m} \, \text{s}^{-1} \) in the calibration flight highlighted). A Rosemount 102BL provides temperature at 32 Hz, but due to the Rosemount housing the instrument response rate is slower than quoted. To partly alleviate this problem a filtering algorithm, following Inverarity (2000) and MacCarthy (1973), is applied which improves the response to around 7 Hz. The temperature measurement uncertainty is \(\pm 0.3 \, ^\circ\text{C} \) (at 95% confidence) for a typical clear-air measurement, with relative errors \(< 0.01 \, ^\circ\text{C} \). A Lyman-alpha hygrometer provides specific humidity with an uncertainty of \(\pm 0.15 \, \text{g} \, \text{kg}^{-1} \). The aircraft’s altitude during low-level runs is from a radar altimeter which records at 2 Hz and has an uncertainty of \(\pm 2\% \) below 760 m (2500 ft), so that at 40 m the uncertainty is \(< \pm 1 \, \text{m} \). Further details on instrument accuracy and basic quality control can be found in Renfrew et al. (2008) and specifically for turbulence measurements in PR2009.

3.2. The dataset

The data analysed in this study are from 32 flights of the BAe-146 between 2007 and 2013 (Table 1). It is a compilation of all appropriate flights from the first decade of BAe-146 use. The data come from a relatively small number of flights when significant periods of straight low-level legs were part of the mission, i.e. when air–sea flux or below cloud-base legs were a key objective of the field campaign. In total, 481 runs have been analysed over a wind speed range of \(U_{10N} \) from 5 to 24 m s\(^{-1}\) and with most data in the moderate to strong wind speed range of 8–20 m s\(^{-1}\).

A subset of six flights which have relatively low wind speeds and fluxes are not included in the main analysis – the data quality is poorer and this study focuses on moderate to high wind speeds – although they are noted in Table 1 and used for the SST comparison and later in Figure 11(b). Typically the legs were flown at 35–40 m above the sea surface, with a minority flown at 80 m. None of these turbulence data has been analysed before with the exception of the first five flights in Table 1 which are from the Greenland Flow Distortion Experiment (GFDEx) – see PR2009. Some of the flights also have higher ABL legs (Table 2) providing a further 190 runs where mean covariances and hence ABL fluxes can be calculated. However, surface fluxes and near-surface variables (e.g. \(U_{10N} \)) cannot be reliably evaluated from these legs.

3.3. Sea-surface temperature measurements

According to PR2009 the largest source of measurement uncertainty in their analysis was in estimating the sea-surface temperature (SST). They used the FAAM’s downward pointing Heimann radiometer, which measures upwelling infrared radiation in the range 8–15 \(\mu\text{m} \) at 4 Hz, to obtain an SST. Here a surface emissivity must be specified (set at 0.987) and the reflected downwelling radiation must be accounted for, in their case neglected, leading to an accuracy of \(\pm 0.7 \, \text{K} \) in SST. This is assuming the Heimann is calibrated in flight – a procedure that

Figure 1. Flight tracks (thin lines) of selected missions, with the low-level components overplotted (thick lines). All the DIAMET project flights with low-level legs are included.

Figure 2. Profiles of potential temperature from the closest descent or ascent to the low-level runs on five DIAMET flights. Mean sea-surface temperatures are also shown as filled circles.
the sampling procedure noted above, i.e. the gaps are when

does not always occur. In Renfrew et al. (2009a) the Heimann SST from GFDEx was compared against the OSTIA SST (the Operational Sea-surface Temperature and sea Ice Analysis) which is the current global analysis product from the Met Office, available at 1/20° resolution once a day. The comparison was reasonable – the correlation coefficient was 0.9, the linear regression slope was 0.78, there was a bias of 1.7 K and the root-mean-square (r.m.s.) error was 1.6 K – although worse than the aimed-for accuracy of an r.m.s. of 0.8 K (Stark et al., 2007). The high-latitude location of the GFDEx data may have contributed to the greater r.m.s. error.

Here we have made use of SST from the Heimann and OSTIA again, as well as the ARIES interferometer where available (see Table 1). The Airborne Research Interferometer Evaluation System (ARIES) instrument measures in the range 3–18 µm and can be rotated from downward to upward pointing during a flight, thus allowing for an excellent estimate of downwelling radiation and hence a more accurate retrieval of SST (Wilson et al., 1999). The retrieval of SSTs follows Newman et al. (2005) and incorporates both down and upwelling measurements, so should be accurate to ±0.3 K (S. Newman, personal communication).

Figure 3 illustrates co-located SST measurements from the Heimann and ARIES instruments and the OSTIA analysis for two flights. In both examples there is a good correspondence between the three sets of measurements – the SST gradients are captured in all the data, although with higher resolution in the Heimann (≈25 m) compared to the OSTIA (≈6000 m). The intermittent pattern of the ARIES measurements is due to the sampling procedure noted above, i.e. the gaps are when the instrument is pointing up. These gaps mean that ARIES measurements alone cannot provide a continuous time series of SST measurements for surface flux calculations. Instead the (most accurate) ARIES measurements are used here to provide validation for the Heimann and OSTIA SSTs. In Figure 3(a) all three measurements of SST agree to within error estimates; in Figure 3(b) the measurements are offset from one another, with ARIES ∼0.5 K higher than the OSTIA, which is ∼0.5 K higher than the Heimann. Other SST time series comparisons (not shown) present similar reasonably good spatial correspondences, but show a variety of small offsets between the three estimates.

Figure 4 shows scatter plots of SST from all available data (12 flights, see Table 1). Figure 4(a) shows that the ARIES and OSTIA measurements compare well overall – the r.m.s. error is 0.43 K, the linear regression slope is 0.79 and the bias (0.12 K) is small (see Table 3). Making the assumption that the ARIES instrument is accurate to within its stated ±0.3 K, this suggests that the OSTIA analysis is also reasonably accurate and reliable. There are a few outlier points, from flight B574, although most data from this flight correspond well. Figure 4(b) shows that the ARIES and Heimann measurements can compare very well

© 2014 The Authors. Quarterly Journal of the Royal Meteorological Society published by John Wiley & Sons Ltd on behalf of the Royal Meteorological Society.

Figure 3. Time series of sea-surface temperature (SST) with measurements from the Heimann infrared thermometer (grey line), the ARIES interferometer (error bars) and the OSTIA satellite analyses (black line). Vertical dashed lines indicate the start and end of low-level legs, while vertical dotted lines are plotted between each run (every 2 min). Panel (a) is from B652 (DIAMET IOP4) on 26 November 2011 and panel (b) is from B665 on 19 January 2012.

Figure 4. Comparisons of co-located SST: (a) ARIES versus OSTIA measurements and (b) ARIES versus Heimann measurements. In total over 4000 measurements (at one-second intervals) from 12 flights are shown, with four DIAMET flights highlighted via different symbols. The dashed line marks the 1:1 correspondence.
Table 3. Comparison statistics for co-located measurements of SST from the Heimann infrared thermometer (radiometer), an ARIES spectral derivation (interferometer) and the OSTIA satellite-based analysis; the columns show: mean correlation coefficient, mean slope of a linear regression, mean bias and the root-mean-square error.

<table>
<thead>
<tr>
<th>Comparison</th>
<th>Correlation coefficient</th>
<th>Slope</th>
<th>Bias (K)</th>
<th>RMS error (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heimann vs. OSTIA</td>
<td>0.58</td>
<td>0.90</td>
<td>−0.75</td>
<td>0.79</td>
</tr>
<tr>
<td>ARIES vs. Heimann</td>
<td>0.59</td>
<td>0.93</td>
<td>0.81</td>
<td>0.87</td>
</tr>
<tr>
<td>ARIES vs. OSTIA</td>
<td>0.45</td>
<td>0.79</td>
<td>0.12</td>
<td>0.43</td>
</tr>
</tbody>
</table>

(e.g. flights B650, B652 and B656), but often have a systematic offset of around −1 K. It seems likely that in some flights the Heimann did not undergo a calibration, leading to a significant bias. A linear regression slope of 0.93 (Table 3) and the high degree of clustering seen in Figure 4(b) implies this bias can be corrected for on a flight-by-flight basis by a simple offset. On flights without co-located ARIES measurements such a bias may still exist and still require a correction. Hence our approach has been to use the reasonably accurate and reliable OSTIA analysis to estimate a constant offset for each flight, which is then applied to the higher-resolution Heimann measurements. The corrected Heimann SSTs are then used in our surface flux calculations. Note in four flights the Heimann measurements are not available (Table 1), so in these OSTIA SSTs are used instead.

3.4. Flux calculation procedure

The turbulent fluxes are calculated from runs with minimal changes in heading or altitude. Each run should sample approximately homogeneous conditions and also be long enough to include several wavelengths of all turbulent eddies, so the run length is a compromise. Here we follow PR2009 in choosing runs of 2 min (≈12 km) – the last run on any leg includes the remaining time so these may be up to 4 min. Runs of ≈12 km appear reasonable in the context of previous studies (see Mahrt (1998) for a discussion), longer than the 4 km runs used by Vickers et al. (2013), but shorter than some other aircraft studies which use full leg lengths – for example, of 14–54 km in French et al. (2007). It is usually assumed that the maximum scaling of the turbulent eddies is approximately the depth of the ABL, i.e. up to 2–3 km at most, so 12 km should be sufficiently long to capture most turbulent transfer (PR2009), although we will come back to this assumption later. The turbulence calculations are carried out at 32 Hz resolution (≈3 m) with all data either resampled (q) or interpolated (SST, altitude) to this resolution. All turbulent variables are linearly detrended for each run before the fluxes are calculated using Eqs (1)–(3) this mostly removes the mesoscale structures but the majority of the turbulence is on much smaller spatial scales than the run length and so is unaffected.

3.5. Quality control

A careful quality-control procedure is followed for each flux run, e.g. French et al. (2007) and PR2009. In brief this involves checking that power spectra of all turbulent variables (u, w, θ, q, where u is the along-wind velocity component) have a well-defined decay slope (close to $k^{-5/3}$ for wave number k). Then, checking that the cumulative summation of the covariances of

![Figure 5. Quality control of the along-wind covariances $u'w'$ for two runs from flight B652. The left column shows an across-wind run, the right column shows an along-wind run. The panels show (a), (b) the cumulative summation as a function of fractional distance; (c), (d) the frequency-weighted co-spectra as a function of wave number; and (e), (f) the ogives (integrated co-spectra) as a function of wave number. The cumulative summation is normalised by the total covariance and the ogives by the total co-spectra.](image-url)
w and \(u, \theta\) or \(q\) are close to a near-constant slope; checking the co-spectra of the covariances have little power at wave numbers smaller than about \(10^{-3}\) m\(^{-1}\); and checking the cumulative summation of the co-spectra are shaped as ogives (S-shaped) with flat ends. Figure 5 provides an example of along-wind and across-wind components from ‘good’ momentum flux runs: this illustrates that most of the covariance is between \(\sim 100\) and \(1000\) m, justifying a run choice of 12 km and the resolution of the measurements. Note that across-wind covariances are \(1–3\) orders of magnitude smaller than the along-wind covariances so these are not used to discard runs. The vast majority of flux runs pass these quality-control checks, with the numbers of usable runs noted in Table 1.

4. Turbulent fluxes in the surface layer

The high-frequency wind, temperature and humidity data from the accepted low-level flux runs are used to calculate surface turbulent fluxes via Eqs (1)–(3), as described in section 2. Figure 6 shows the sensible heat (SH) flux as a function of \(U_{10N}(\theta_s - \theta_a)\), where subscripts \(s\) and \(a\) denote surface and air, and the latent heat (LH) flux as a function of \(U_{10N}(q_s - q_a)\). Presented in this manner the data should be linearly proportional if the bulk flux algorithms Eqs (5)–(6) hold, and if the coefficients are constant. Figure 6 shows that this is generally the case, although there is considerable scatter in the fluxes, especially at higher wind speeds. Figure 6(a) shows a clear linear correspondence; the air–sea temperature differences are, at most, around \(-10\) K so the SH flux is limited to \(-\sim 300\) W m\(^{-2}\). Most of the SH flux is positive – a flux of heat from the ocean into the atmosphere – but there are some runs of negative heat flux such as in B650 (DIAMET IOP3). A linear regression line is fitted to the data giving \(SH = 5\) W m\(^{-2}\) when this passes through \(U_{10N}(\theta_s - \theta_a) = 0\), so very close to the zero value the bulk algorithm predicts. This implies our measurements are of high quality and, in particular, the SST corrections used are appropriate.

Figure 6(b) shows LH flux is also mainly positive – a flux of heat out of the ocean associated with evaporation – although some runs have a negative flux. Again there is a reasonable linear relationship and the regression line has \(LH = -13\) W m\(^{-2}\) at \(U_{10N}(q_s - q_a) = 0\), further confirmation of the quality of our measurements. There is considerable scatter in flight B656 (DIAMET IOP6) in the unstable very high wind speed conditions, and here the LH fluxes are amongst the highest ever directly observed – similar values are shown by Grossman and Betts (1990) and Raga and Abarca (2007). A scatter plot of \(U_{10N}\) versus wind stress (not shown) illustrates that most of these data fall in the range \(U_{10N} \approx 8–20\) m s\(^{-1}\) with associated stress of up to \(\sim 1.5\) N m\(^{-2}\). The highest stresses (up to \(3\) N m\(^{-2}\)) are associated with two flights B268 and B656 where flight-level winds were extraordinarily high, the ABL was very turbulent and the scatter in stress is very large – as would be expected as the sampling error scales with the flux (Donelan, 1990). Flight B268 samples an easterly jet off Greenland (Renfrew et al., 2009b).

5. Bulk flux algorithms

Neutral exchange coefficients have been derived and are presented as a function of \(U_{10N}\) in Figure 7. There is considerable scatter in all of the exchange coefficients consistent with the random sampling error inherent in such observations and unaccounted-for physical effects such as surface wave interactions and sea spray. The ranges of exchange coefficients seen here are similar to previous studies (e.g. see Fig. 8 in PR2009). Some outlier values of \(C_{DN}\) in Figure 7(b) are for runs where the air–sea temperature difference is very small and the calculation is not well-posed. The observed increase in \(C_{DN}\) with \(U_{10N}\) is similar to many previous studies; for example Vickers et al. (2013) categorise their results as \(C_{DN}\) increasing linearly for the range \(U_{10N}\) from 10 to 20 m s\(^{-1}\).

Figure 7(d) plots \(w^*\) against \(U_{10N}\), as advocated by Andreas et al. (2012). The data cluster reasonably well for much of the wind speed range, becoming more scattered for the highest winds.

The inherent scatter in turbulent flux estimates means the data must be placed into bins for a comparison to bulk flux algorithms. We have used bins every 2 m s\(^{-1}\) between 6 and 24 m s\(^{-1}\), with bin means \(\pm 1\) standard deviation. Table 4 details these quantities and notes the number of data points in each bin. The bulk flux algorithms are those of (i) Smith (1988); (ii) the Coupled Ocean–Atmosphere Response Experiment (COARE) 3.0 algorithm (Fairall et al., 2003); (iii) the European Centre for Medium-range Weather Forecasts (ECMWF) algorithm (see http://www.ecmwf.int/research/ifsdocs/); (iv) the Met Office algorithm (Edwards, 2007); and (v) the Andreas et al. (2012) algorithm for momentum only. Note: the ECMWF algorithm lies underneath the Met Office algorithm for \(C_{DN}\). The ECMWF algorithm uses a Charnock constant of 0.018 in its uncoupled models, with this value provided by the wave model in its coupled models.

In general, the bulk flux algorithms correspond well with the observations. They lie within the error bars, i.e. within \(\pm 1\)
standard deviation of the bin mean, with one or two exceptions. However, for momentum all of the curves are below the bin-
means. Comparing to previous studies, the observed mean C_{DN}’s are higher than some studies (e.g. Fairall et al., 2003; Persson et al., 2005), but not that different from others (e.g. Vickers et al., 2013). The range of observations is generally greater than the spread of the flux algorithms, making it difficult to draw conclusions about their performance, although it does appear that the Smith (1988) C_{DN} relationship may be a worse fit than the others for high wind speeds. The Smith (1988) algorithm uses a modified Charnock relation: $z_0 = \alpha_c \frac{u^*}{2} + \frac{b}{2} + \frac{1}{2} g \frac{1}{\nu} \frac{u^*}{2}$ with a Charnock constant $\alpha_c = 0.011$, g the gravitation constant, b the ‘smooth flow’ constant (often $b = 0.11$) and ν the dynamic viscosity. In contrast the Met Office and ECMWF algorithms set $\alpha_c = 0.018$ and the COARE 3.0 algorithm linearly increases α_c from 0.011 to 0.018 as U_{10N} increases from 10 to 18 m s$^{-1}$. Our results suggest the latter approaches are more appropriate. One controversial feature in such algorithms has been a flattening off and decrease in C_{DN} for very high wind speeds (>20 m s$^{-1}$) as implied by the Andreas et al. (2012) curve for example. Our results indicate a downturn between the 22 and 24 m s$^{-1}$ bins, although there are relatively few data points in these bins, so this feature is not that well defined.

Figure 7(b) shows C_{HN} and suggests a very good correspon-
dence between the algorithms and the bin-mean observations. Again there is considerable spread in the observations, but all of the algorithms are close to the bin-means over the entire ranges of wind speeds. For higher U_{10N} there is some support for a slightly elevated C_{HN} consistent with the COARE 3.0, ECMWF and Met Office algorithms. The conclusions are rather similar for C_{EN}, with all the algorithms broadly consistent with the bin-mean observations and some support for an elevated C_{EN} for the highest wind speeds (>20 m s$^{-1}$). However it should be noted there are relatively few data points in these higher U_{10N} bins and our results are not inconsistent with a constant C_{HN} or C_{EN}.

Figure 7(d) shows the friction velocity (u^*) against U_{10N} and compared to the Andreas et al. (2012) algorithm. Here the cor-
respondence is very good. It is noticeable that the spread appears reduced when plotting the momentum observations in this way.

Figure 7. The 10 m neutral exchange coefficients for (a) momentum flux (C_{DN}); (b) sensible heat flux (C_{HN}); and (c) latent heat flux (C_{EN}), as a function of the 10 m neutral wind speed (U_{10N}). Panel (d) shows friction velocity (u^*) versus U_{10N}. Across-wind runs (dots) are distinguished from along-wind runs (squares). Error bars showing the mean and standard deviation for 2 m s$^{-1}$ bins are plotted (see Table 4 for details). Several bulk flux algorithm relationships are overlaid.
wind legs have been examined, for example legs 1 and 2 from Readings, 1981; Chou and Yeh, 1987; Kalogiros and Wang, 2011). Found in a few previous studies (e.g. Nicholls, 1978; Nicholls and suggest it is related to the meteorological conditions, as has been do not show such differences, so suggest that this feature is not an of mean wind and variance components in the calibration flights that is dependent on the meteorological conditions. Comparisons wind runs for the same that this may not be justified. Profiles of fluxes through the ABL will be examined in future work on particular case-studies, but are not examined in general here.

6. Across- and along-wind variability

In Figures 6 and 7, runs that are across the wind (the majority) are distinguished from those that are along the wind. Careful examination reveals that generally the across-wind runs have lower fluxes and lower exchange coefficients than the across-wind runs for the same \(U_{mN} \). Such a difference may indicate an instrumental problem, or a difference due to aircraft sampling that is dependent on the meteorological conditions. Comparisons of mean wind and variance components in the calibration flights do not show such differences, so suggest that this feature is not an instrument problem. Rather as it occurs in only some flights, we suggest it is related to the meteorological conditions, as has been found in a few previous studies (e.g. Nicholls, 1978; Nicholls and Readings, 1981; Chou and Yeh, 1987; Kalogiros and Wang, 2011).

To investigate this further, power spectra of across- and along-wind legs have been examined, for example legs 1 and 2 from flight B652 (Figure 9). Each plotted spectra is the mean of the spectra from the individual runs on that leg. This flight was in stable conditions with \(U_{mN} = 13–18 \text{ m s}^{-1} \), although similar plots in unstable conditions with similar \(U_{mN} \) were also carefully examined (e.g. flight B695, not shown) and illustrated similar features. The left-hand panel (a) shows along-wind velocity spectra, the right-hand panel (b) shows across-wind velocity spectra. All the velocity spectra show a well-defined decay in the inertial subrange (\(k \sim 5 \times 10^{-5} \text{ to } 10^{-4} \text{ m}^{-1} \)) that closely follows a \(k^{-5/3} \) power law. However at smaller wave numbers \(k \) between 1 and \(5 \times 10^{-3} \text{ m}^{-1} \), i.e. scales of \(200–1000 \text{ m} \) there is some divergence of the curves, most obviously in the along-wind velocity spectra, with significantly more power in the across-wind leg than the along-wind leg. At the very smallest wave numbers \(k < 10^{-3} \text{ m}^{-1} \), i.e. scales >1000 m) the curves cross and there is more power in the along-wind leg. The same pattern is seen in other legs in these flights and in other flights (e.g. B695 and B656, not shown). The co-spectra and ogives for these along-wind runs also show some power at the longest wavelengths, although it is arguable whether they should fail the quality-control check.

In short, the across-wind legs contain more velocity variance at scales of \(200–1000 \text{ m} \), whereas the along-wind legs contain less velocity variance at these scales and imply some power is shifted to longer scales (greater than 1 km) which may not be fully captured in our 12 km runs.

The differences in fluxes and spectra in along-wind and across-wind legs appear to be due to the sampling pattern of the aircraft under certain meteorological conditions. To characterise the observed differences we employ a multi-resolution decomposition technique that is able to attribute variance to particular scales (Howell and Mahrt, 1997; Vickers and Mahrt, 2003). Essentially an aircraft run is progressively divided into smaller and smaller sub-runs – analogous to a sequence of high-pass filters being applied – with estimates then made of the velocity variance at the scales associated with these sub-runs. Normally the runs are divided into 2, 4, 8, 16, etc., sub-runs, but in this study finer divisions are used: 2, 3, 4, 5, 6, 8, 10, 12, 15, etc. to accurately determine the spatial scales, even though this means that the points on the spectra are not independent. The result is an estimate of velocity variance at each particular time- or length-scale. Here multi-resolution decomposition is applied to the across- and along-wind legs from numerous flights. Figure 10 illustrates the results for B652 (stable conditions), the same flights and legs as Figure 9, and B695 (unstable conditions). Generally the along-wind velocity variances Figure 10(a), (c) are greater than the across-wind variances (b), (d). Focusing on the left panels (a), (c), the across-wind legs have more power at shorter time- and length-scales – the peak power is between 100 and 1000 m and

Table 4. Average neutral exchange coefficients (multiplied by \(10^3 \)) in 2 m s\(^{-1} \) bins, as well as standard deviations (stdev) for each bin, and the number of data points in each bin (see also Figure 7).

<table>
<thead>
<tr>
<th>(U_{mN})</th>
<th>(C_{DG})</th>
<th>(C_{GN})</th>
<th>(C_{D})</th>
<th>(C_{G})</th>
</tr>
</thead>
<tbody>
<tr>
<td>bins</td>
<td>Mean</td>
<td>stdev</td>
<td>Number</td>
<td>Mean</td>
</tr>
<tr>
<td>4</td>
<td>–</td>
<td>–</td>
<td>1</td>
<td>–</td>
</tr>
<tr>
<td>6</td>
<td>1.39</td>
<td>0.80</td>
<td>8</td>
<td>1.30</td>
</tr>
<tr>
<td>8</td>
<td>1.41</td>
<td>0.69</td>
<td>28</td>
<td>1.00</td>
</tr>
<tr>
<td>10</td>
<td>1.59</td>
<td>0.65</td>
<td>40</td>
<td>0.92</td>
</tr>
<tr>
<td>12</td>
<td>2.56</td>
<td>0.93</td>
<td>52</td>
<td>1.29</td>
</tr>
<tr>
<td>14</td>
<td>2.00</td>
<td>0.74</td>
<td>42</td>
<td>1.25</td>
</tr>
<tr>
<td>16</td>
<td>2.50</td>
<td>0.64</td>
<td>87</td>
<td>1.18</td>
</tr>
<tr>
<td>18</td>
<td>2.35</td>
<td>0.58</td>
<td>90</td>
<td>1.21</td>
</tr>
<tr>
<td>20</td>
<td>1.92</td>
<td>0.21</td>
<td>8</td>
<td>1.08</td>
</tr>
<tr>
<td>22</td>
<td>2.98</td>
<td>0.79</td>
<td>11</td>
<td>1.36</td>
</tr>
<tr>
<td>24</td>
<td>2.47</td>
<td>0.78</td>
<td>9</td>
<td>1.20</td>
</tr>
<tr>
<td>26</td>
<td>–</td>
<td>–</td>
<td>1</td>
<td>–</td>
</tr>
<tr>
<td>28</td>
<td>–</td>
<td>–</td>
<td>3</td>
<td>–</td>
</tr>
</tbody>
</table>
Figure 9. Normalised power spectra of horizontal wind components for flight B652. The left-hand panel (a) shows along-wind velocities, the right-hand panel (b) shows across-wind velocities. Each panel shows an across-wind leg (grey line) and an adjacent along-wind leg (black line). The spectra are averages over several runs for the legs indicated, i.e. B652 leg 1 has 11 12 km runs and leg 2 has 3 runs. A dashed line marks the $k^{-5/3}$ slope that is expected in the inertial subrange.

Figure 10. Variance of horizontal wind components as a function of scale for flights (a), (b) B652 and (c), (d) B695. The variance scales are determined via a multi-resolution decomposition technique (see text for details) and are shown on both a \log_{10} time-scale (bottom axis) and on a spatial scale (top axis). The left-hand panels (a), (c) show along-wind velocity variances, the right-hand panels (b), (d) show across-wind velocity variances. Each panel shows mean variances (for several runs) for an across-wind leg (thin line) and for an adjacent along-wind leg (thick line), with the error bars indicating the standard deviation of variances at this scale. Note the legs illustrated here are the same as those in Figure 9. Recall B652 was flown in stable conditions, while B695 was in unstable conditions.

drops off rapidly for scales longer than 1000 m in both flights. In contrast, in the along-wind legs the peak power is between 1000 and 10 000 m, suggesting organisation of the ABL turbulence in the along-wind direction at these scales. In both cases the power does drop off for the longest time-scale bin. To test this further, multi-resolution variances have been calculated for 4 min runs in the along-wind direction (not shown). In both these cases the longer scales (up to 24 km) both show a further decrease in variance which suggests ever-decreasing amounts of turbulent flux would be added for longer runs. However, the limited length of the legs means this cannot be known with confidence, and furthermore, very long runs may break the requirement for
homogenous ABL conditions. In B695 there is a notable peak in across-wind variance at around the 8000 m scale.

Mahr (1998) and Mann and Lenschow (1994) discuss the scales of flux transportation in some detail, stating that a ‘significant fraction of the flux’ may be transported on surprisingly long scales by relatively weak mesoscale motions that are strongly correlated with the variable being transported. They highlight the need for long flux-sampling runs (10’s to 100’s of km) but go on to point out this is (in practice) impossible because of inhomogeneities in the ABL and aircraft limitations. In our dataset the majority of our runs are across-wind precisely because of these sampling strategies. However, as we have along-wind runs it is worthwhile trying to make use of them both for flux estimates and also in characterising the ABL features being encountered, while accepting that they provide only a partial picture of turbulence transport.

Differences in the across- and along-wind runs are summarised in Figure 11. This shows the mean time- and length-scales of along-wind velocity variances, calculated using the multi-resolution decomposition technique, for several meteorological categories. Here velocity variances are used as a metric for the scale of flux-carrying turbulent eddies (the co-spectra $u'w'$ and $v'w'$ were also examined and these showed broadly the same patterns). Figure 11(a) shows all 40 m runs for unstable and stable conditions with moderate to strong wind speeds. For both stability conditions the variances are significantly longer in the along-wind runs than they are in the across-wind runs, reinforcing the fact that larger scales are being measured in the along-wind runs. The aspect ratio is approximately 2:1, i.e. eddies are on average twice the size when flying along-wind. So at 40 m height, eddies are (on average) 250 by 500 m for stable conditions and 400 by 800 m for unstable conditions. Clearly the eddy scales are larger for unstable conditions.

Figure 11(b) shows along-wind velocity variances for low wind speed and unstable conditions; there are not enough data from low wind speed and stable conditions to merit examination. (Note Figure 11(b) shows data from flights without a ‘*’ in Table 1, along with some higher altitude legs noted in Table 2). Here the variances in the along-wind runs are similar to those in the across-wind runs and furthermore there is no significant

\[
\text{Along Wind Variance (high wind $U_{10N} > 8 \text{ m s}^{-1}$)}
\]

\[
\text{Along Wind Variance (low wind $U_{10N} < 9 \text{ m s}^{-1}$)}
\]

\[
\text{Flight Across Wind (Stable Air)}
\]

\[
\text{Flight Along Wind (Stable Air)}
\]

\[
\text{Flight Across Wind (Unstable Air)}
\]

\[
\text{Flight Along Wind (Unstable Air)}
\]

\[
\text{Mean Log$_{10}$ Timescale (s)}
\]

\[
\text{Spatial Scale (m)}
\]

\[
\text{Altitude}
\]

\[
\text{Flights Across Wind (Stable Air)}
\]

\[
\text{Flights Along Wind (Stable Air)}
\]

\[
\text{Figure 11. Summary of along-wind variance scales for selected meteorological conditions. The mean and standard deviation are shown. Panel (a) is for moderate to strong winds ($U_{10N} > 8 \text{ m s}^{-1}$) and shows across- and along-wind runs in stable conditions, plus across- and along-wind runs in unstable conditions, with all runs at 40 m. Panel (b) is for weak winds ($U_{10N} < 9 \text{ m s}^{-1}$) and shows across- and along-wind runs in unstable conditions versus height. Panel (c) is for $U_{10N} > 8 \text{ m s}^{-1}$ and across-wind runs in unstable conditions, while panel (d) is for $U_{10N} > 8 \text{ m s}^{-1}$ and across-wind runs in stable conditions, both showing eddy scale vs. height. The number of data points in each category is noted at the top of the plot.}
\]
P. A. Cook and I. A. Renfrew

Figure 12. The 10 m neutral exchange coefficients for (a) momentum flux (C_{DN}); (b) sensible heat flux (C_{HN}); and (c) latent heat flux (C_{EN}) as a function of the difference angle between the aircraft heading and the mean wind direction. All observations are plotted as dots. Error bars showing the mean and standard deviation in 30° bins are overlaid.

change in scale with height. In other words, for low wind speeds the turbulent eddies are approximately isotropic and so there is no difference in the velocity variance due to sampling direction.

Figure 11(c) and (d) show along-wind velocity variances as a function of height for unstable and stable conditions (respectively) and moderate-to-strong winds. The flights used for the ABL data are indicated in Table 2; note these data are not used to estimate turbulent fluxes at the surface, as the sampling error associated with turbulent flux estimations scales with $z^{3/2}$ (e.g. Drennan et al., 2007). However, profiles of turbulent quantities are of interest in their own right, for example, (i) to confirm assumptions used to extrapolate fluxes down to the surface; (ii) to examine the morphology of ABL eddies; (iii) to quantify ABL sources or sinks of heating; and (iv) to validate models and the PV-budget approach being used in DIAMET case-studies.

In regards to (i) we have examined profiles of stress with and without the Donelan (1990) correction and find that in most cases with suitable observations the correction makes the stress more constant with height (as intended). Points (iii) and (iv) will be expanded upon in subsequent papers.

In unstable conditions there is a clear increase in mean eddy scale (with height) from around 400 to 1100 m on average. The increase is well-defined and monotonic between heights of 40 and 150 m, while the increase from 150 to 300 m is small and makes use of fewer data points. In stable conditions there is also a clear increase in mean eddy scale (with height) from around 250 to 600 m, although this result is based on relatively few data points, especially at heights of 80 and 150 m. Comparing the two cases, mean eddy sizes for statically unstable conditions are approximately double those of statically stable conditions at all heights.

The spectral and velocity variance scale analysis suggests an elongation of turbulent eddies in the along-wind direction when wind speeds are moderate to strong. This may be, for example, in the form of ABL roll vortices leading to cloud streets (e.g. Chou and Yeh, 1987; Renfrew and Moore, 1999). A check of relevant satellite imagery confirms this explanation in some cases (e.g. B268, Renfrew et al., 2009b), but in other cases mid-level cloud shields the ABL and it is not possible to see cloud streets. So while the turbulence remains homogeneous, our results suggest it is not exactly isotropic, but is directionally organised by the wind.
In the previous section it was established that the morphology of ABL eddies (i.e. elongation in the along-wind direction) was affecting the turbulent flux estimates; that for along-wind runs, the fluxes were underestimated due to the shift of the spectra to longer length-scales. Figure 7 shows the observations as across- or along-wind and it appears there is a difference in exchange coefficient too, although it is not that clear due to the inherent scatter in the data. To examine this further, Figure 12 shows the exchange coefficients as a function of the difference angle between the aircraft and the mean wind for each run. Also shown are bin averages (and standard deviations) in 30° bins. Broadly speaking all three of the exchange coefficients are higher when the difference angle is nearer 90° and 270° (across the wind). This is clearest for C_{DN} and C_{EN} and is less apparent for C_{NN}. However, this result is influenced by the distribution of the difference angle – most of the runs are across-wind and there are some bins with relatively few data in (e.g. near 180°). In short, this corroborates our earlier discussion that the across-wind runs are capturing the full turbulent fluxes, while the along-wind runs can underestimate this turbulent exchange.

7. Conclusions

Eddy covariance observations of turbulent air–sea fluxes from low-level aircraft legs have been presented and analysed. A comparison of a number of bulk flux algorithms demonstrates these are generally consistent with the observations. It is not possible to distinguish which of the COARE 3.0 algorithm or those used by the ECMWF or Met Office numerical weather and climate predictions models are a better fit to the observations. However, there is some evidence that the algorithm of Smith (1988), which uses a lower Charnock constant, corresponds less well to the observations.

The new algorithm of Andreas et al. (2012) for momentum corresponds well to the observations and, when plotted as u^* versus U_{100}, the scatter in the observations appears reduced.

There is a difference in velocity variances and turbulent fluxes between legs flown across-wind and those flown along-wind. The along-wind legs do not capture all of the variance or flux; the ends of the spectra are shifted to surprisingly long scales (>12 km). Even lengthening the runs to 4 min (24 km) still does not capture all of the variance. A multi-resolution spectral technique is used to show that the turbulent eddies tend to be elongated in the downwind direction – with an aspect ratio of approximately 2:1 – for both unstable and stable conditions and moderate to strong wind speeds. Mean eddies are typically twice the size for unstable conditions, compared to stable conditions, and increase in scale with height more rapidly too.

One consequence of this heading-dependent result should be a re-evaluation of turbulent flux observations, especially for moderate-to-strong winds. Using aircraft to make observations, the run lengths are limited by logistics and the requirement of homogeneous conditions. The majority of our runs are across-wind, as has been common practice. However, some along-wind runs are inevitable if other objectives are part of the research flight, and care is needed in the interpretation of these runs.

The purpose of calibrating bulk flux algorithms has been for their use in numerical weather and climate prediction models where the grid boxes are assumed to be larger than the turbulence-carrying scales. In short-range operational forecasting, this assumption is now starting to break down. The Met Office operational forecast over the British Isles has a grid resolution of 1.5 km at present and so is able to resolve features down to several km in scale. Consequently these models may be resolving that part of the air–sea flux carried by motion on these scales. Here we have shown that in the along-wind direction there is a flux on scales of 5 km plus, in other words, the traditional mesoscale gap (between around 1 and 10 km) is not always there. This also raises the possibility of incorrectly augmenting turbulence flux transfer in models, as these are accounted for by the subgrid-scale parametrization and then enhanced by any resolved flux transfer. The possibility of such ‘double counting’ needs further investigation.

Acknowledgements

The authors would like to acknowledge all at the Facility for Airborne Atmospheric Measurements, DirectFlight and Avalon for their critical role in obtaining these observations. We would also like to thank the following for their helpful comments and mission scientist contributions to this work: Phil Brown, Stuart Newman and John Edwards at the Met Office, Axel Wellpott and Alan Woolley at FAAM, Doug Parker, John Methven, Geraint Vaughan, Sue Gray, Keith Bower and Phil Rosenberg from the DIAMET project. Further thanks for the comments from two reviewers which have improved this manuscript. This study has been funded by the DIAMET project (NE/I005293/1), part of NERC’s Storm Risk Mitigation programme.

References

