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Synopsis 

A direct comparative study on the creep-recovery behavior of conventional MR 

fluids is carried out using magnetorheometry and particle-level simulations. Two 

particle concentrations are investigated (       and     ) at two different magnetic 

field strengths (53 kA·m
-1

 and 173 kA·m
-1

) in order to match the yield stresses 

developed in both systems for easier comparison. Simulations are mostly started with 

random initial structures with some additional tests of using preassembled single chains 

in the low concentration case. Experimental and simulation data are in good qualitative 

agreement. The results demonstrate three regions in the creep curves: i) In the initial 

viscoelastic region, the chain-like (at       ) or percolated three-dimensional 

network (at         structures fill up the gap and the average cluster size remains 

constant; ii) Above a critical strain of 10 %, in the retardation region, these structures 

begin to break and rearrange under shear. At large enough imposed stress values, they 

transform into thin sheet-like or thick lamellar structures, depending on the particle 

concentration; iii) Finally in the case of larger strain values either the viscosity diverges 

(at low stress values) or reaches a constant low value (at high stress values), showing a 

clear bifurcation behavior. For stresses below the bifurcation point the MR fluid is 

capable to recover the strain by a certain fraction. However, no recovery is observed for 

large stress values. 
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1. Introduction 

Magnetorheological (MR) fluids are field-responsive colloidal suspensions that 

exhibit dramatic changes in their rheological response when magnetized. From a 

fundamental point of view, they can be used as model systems to explore non-

equilibrium transitions from the liquid-state to the solid-state by externally tuning the 

magnetic field strength. From a practical point of view, there exist currently many 

commercial applications that involve the use of MR fluids [Ginder (1998); Carlson 

(2003); de Vicente et al. (2011); Wereley (2013)]. 

There is nowadays great interest in getting a better understanding of the yielding 

behavior of MR fluids. In most cases, the yield stress is determined by measuring steady 

shear properties of MR fluids subjected to a finite range of shear stresses. In principle, 

by simply extrapolating the steady data at low shear, it is possible to obtain the yield 

stress. In practice, the situation is more complex as the result may depend on the amount 

of time we spend measuring every point in the rheogram (if we are not in steady state), 

and also on whether we are increasing or decreasing the stress (thixotropy and other 

time-related effects such as sedimentation). 

Similar to what occurs for other complex fluids, the study of the creep flow of MR 

fluids is of valuable help in understanding the yielding behavior of these materials. A 

total of four regimes have been distinguished when performing creep-recovery tests on 

MR fluids depending on the stress level applied [Otsubo and Edamura (1994); Li et al. 

(2002); See et al. (2004); de Vicente and Berli (2013)]. These regimes can be viewed 

under the frame of the creep-recovery behavior of non-linear viscoelastic materials (see 

Figure 1). Initially, at very low stresses, MR fluids exhibit a linear viscoelastic response 

that is characterized by an instantaneous elastic strain   , a retarded elastic strain    and 

a viscous strain   . Here, the creep compliance      ⁄  remains constant 

independently of the stress value   . Also, both the instantaneous creep strain     

(      , with    the plastic contribution) and the instantaneous recovery strain     

are equal to the elastic contribution     i. e.,            and      (Figure 2a). 

Upon increasing the stress, the MR fluid behaves as a non-linear viscoelastic material 
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and the retarded elastic and viscous strain decrease (see Figure 2b). At this stage, the 

plastic contribution to the instantaneous strain grows (        as     ). For even 

larger stresses the MR fluid behaves as a viscoelastic solid (Figure 2c). Here, the strain 

is instantaneous and fully plastic, and both retarded and viscous strains are negligible. In 

this regime,          and       . Finally, for stresses larger than the so-called 

"yield stress", the MR fluid behaves as a plastic fluid with a negligible instantaneous 

creep compliance (    ) and a low viscosity level (small   ) (see Figure 2d). This 

stage is characterized by the fact that the recovery is negligible and          . 

In this work we aim to investigate the creep-recovery behavior of MR fluids using 

rheometry and particle level dynamic simulations. Previous experimental work by de 

Vicente and Berli (2013) focused on dilute MR fluids and suggested a complex yielding 

mechanism where field-induced aggregates are formed and broken dynamically under 

shearing. In this manuscript we will present results for highly concentrated MR fluids as 

well, in an attempt to compare the yielding behavior between dilute and more 

concentrated suspensions that are closer to commercial applications. Also, the effect of 

carrier fluid viscosity and waiting times will be investigated. 

Finally, it is important to remark that chain-like micromechanical models that are 

typically and successfully employed under steady shearing flows, fail when trying to 

explain the creep-recovery behavior of MR fluids [de Vicente and Berli (2013)]. 

Because of this, in this manuscript we aim to apply dynamic simulations. It is worth to 

note that in spite of the fact that particle level dynamic simulations have been 

extensively used in the literature to predict steady shear properties such as viscosity and 

unsteady small-amplitude oscillatory shear properties such as viscoelastic moduli, the 

use of particle level simulations in creep flows has not been done yet in the literature. In 

this manuscript we will show particle level simulation results on creep-recovery tests to 

better understand the yielding behavior of MR fluids. 

 

2. Materials and experimental measurement methods 

MR fluids were formulated by dispersing carbonyl iron microparticles in a 

silicone oil without additives. Carbonyl iron particles were a gift from BASF SE (grade 

HQ) and silicone oils were purchased from Sigma-Aldrich (20 ± 3 mPa·s, 98 ± 3 mPa·s, 

340 ± 5 mPa·s and 487 ± 2 mPa·s). MR fluids were prepared at two different particle 

concentrations: 5 vol% (      ) and 30 vol% (      ). 
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Rheology experiments were conducted in a stress-controlled MCR 501 

magnetorheometer (Anton Paar) to explore the yielding behavior of MR fluids in the 

presence of magnetic fields. A plate-plate geometry (diameter 20 mm) was used unless 

otherwise stated. The gap thickness was 300 microns and the magnetic field was 

perpendicular to the plates. The temperature of the sample was stabilized at 25 ºC using 

a circulating fluid bath.  

Steady shear flow tests were carried out as described in Segovia-Gutiérrez et al. 

(2012). Briefly, the experimental procedure is summarized as follows: (a) initially the 

sample was preconditioned at a constant shear rate 200 s
−1

 for 30 s, (b) next the 

suspension was left to equilibrate for 1 min in the presence of a magnetic field, (c) 

finally the shear stress was logarithmically increased from 0.1 Pa at a rate of 10 points 

per decade. Experiments were repeated at least three times with fresh new samples.  

Step stress and recovery tests were also performed under shear. The experimental 

protocol used is summarized as follows: (a) a preshear was first applied to eliminate 

shear history effects during 30 s (shear rate 100 s
-1

); (b) an equilibration step followed at 

rest in a quiescent state (stress equal to zero), again during 30 s; (c) the magnetic field 

was suddenly applied for a “waiting time” of 120 s –unless otherwise stated– to 

promote the field-induced structuration; (d) finally, step stress and recovery tests 

followed still in the presence of the magnetic field. In a typical assay, a constant shear 

stress    was applied for a time of 300 s while the resulting strain was measured. The 

stress was then removed and the recovered strain was measured for another 300 s. In all 

cases investigated, the strain was reset to zero at the beginning of the creep test. Again, 

experiments were repeated at least three times with fresh new samples. 

 

3. Brownian dynamics (BD) simulation methods 

General algorithm. Upon application of a magnetic field, the particles (diameter 

 ) dispersed in a MR fluid become magnetized. The field-induced magnetic dipole 

moment on particle   is given as 

 

 ⃗⃗            ⃗⃗           (1) 
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where      is the local magnetic field acting on the particle and the value of the contrast 

factor   
     

      
 depends on the relative permeabilities of the particles,   , and the 

suspension,   . For the carbonyl iron particles employed in this work, we can find 

several expressions in the literature for their relative magnetic susceptibility. For 

example, experiments by Gorodkin et al. (2009) suggested that the specific magnetic 

susceptibility of iron particles    is a linear function of the median particle size     

(measured in micrometers) with the empirical form of                  . Hence, 

for a typical particle size of 1m, using Maxwell-Garnett equation,              , 

we get that     3.56  4 and      . Another popular expression that properly fits 

the experimental magnetic properties of carbonyl iron particles is the Frölich-Kennely 

equation [Bozorth (1993)], which gives  

 

     
  

  
  
  

 
      (2) 

 

with        and     1990 kA·m
-1

 [de Vicente et al. (2005)]. Using this equation 

the iron particles are expected to possess a much larger permeability and therefore form 

stronger microstructures than that predicted by Gorodkin et al. (2009). For instance, 

when simulating MR fluids at        under a magnetic field strength of 173 kA·m
-1

, 

the use of the Gorodkin equation in estimating the particle permeability resulted in a 

yield stress in between 100 Pa and 250 Pa, while a much larger stress in between 400 Pa 

and 1000 Pa was obtained by using the Frölich-Kennely equation. In this work we will 

stay with the Frölich-Kennely approach [eq.(2)] because it seems to be more widely 

used in the literature and also generates yield stress values closer to experimental data as 

will be seen in the following sections.  

 The dimensionless equation of motion of particle   can be written in the 

overdamped situation as [Wang (2000)] 

 

    
 

   
 ∑      

    
        

         
     

     ⃗⃗⃗ 
 
             (3) 
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where       ̃   ,          and       ̃ with the time scaling factor  ̃  
     

 

 ̃   
 

          
   

 . The magnetic interaction force     
   

 between two particles is scaled 

by  ̃    
 

  
      

     
 . Accordingly the shear stress scales as  ̃  

 ̃   

   

 

  
      

   
 .   ⃗⃗  ⃗    ⃗⃗   is the flow velocity at the particle position   ⃗⃗ . The stochastic 

force   
⃗⃗⃗⃗     follows a standard Gaussian noise distribution and the coefficient B 

( √
    

 ̃       
 ) measures the ratio between the Brownian and magnetic interaction 

forces.     is the dimensionless time step. In the current work, we took a variable step 

size scheme in which the value of     at each BD step was determined to be the time 

that took the particle under the largest force in the system to move a distance of      . 

In addition,     was subject to an upper bound that was either    
          or 

      , depending on the volume fraction of particles and the external field strength. 

When    =      , the coefficient B takes a value of about 0.241 at       kA·m
-1

 

and 0.086 at        kA·m
-1

. 

BD simulations were performed in a confined geometry as sketched in Figure 3 

where the MR fluids were confined in between two parallel planar hard walls. The 

bottom wall was fixed, while the upper one was allowed to move in the x-direction, 

either under constant stress or constant shear rate. The simulation box took a cubic 

shape with periodic boundary conditions in the two unconfined directions. Since for the 

sample formulation and magnetic field strengths studied in the current work wall slip 

was not observed in experiments by running measurements at different gaps in plate-

plate geometries [de Vicente and Berli (2013)], the non-slipping boundary conditions 

were applied in simulations. If the center of a particle was at a distance less than       

from the surface of a wall, it was assumed to be stuck on the wall laterally, but allowed 

to move back to the cell in the normal direction. A detailed study on the impact of 

different boundary conditions will be left for future work. 

The short-range interactions between the particles have been argued to play an 

important role in determining the rheological behavior of MR fluids [Segovia-Gutierrez 

et al. (2012); Fernández-Toledano et al. (2014)]. Simulation results in the current work 

were obtained by using an exponential form of the short-range repulsive forces both in 

between the particles and between the particles and the walls: 
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    (    

 )  

{
 

    [ 
(   

   )

  
 ]                     

   [ 
(  

     )

  
 ]  ⃗             

    (4) 

 

where   
  is the distance from the center of particle   to the wall surface and  ⃗  is the unit 

vector in the normal direction of the wall. The cut-off distance of the particle-particle 

repulsion was          , while that with the wall was      . The steepness of the 

repulsive forces in eq. (4) is controlled by the dimensionless length scale   
  whose 

value was taken to be   
      . The resulted sharp repulsive potential closely mimics 

that of hard spheres and so favors the formation of thick column structures. 

[Klingenberg (1991); Wang et al. (1997)]. The influence of different types of short-

range interaction forces on the simulation results will be left for a further study.  

The magnetic interaction forces between the particles were calculated using the 

dipole-dipole approximation. We employed the coupled-dipole-moment model to take 

into account the many-body magnetization effect [Wang et al. (1996)]. In this model the 

instantaneous dipole moment on each particle is evaluated using the local magnetic field 

at its center: 

 

 ⃗⃗    = ⃗⃗   ∑  ⃗⃗                    (5) 

 

where  ⃗⃗   is the dipolar magnetic field generated by particle   at the center position of  . 

The magnitude of the mutual magnetization effect can be quantified by the mean-square 

strength of the dipole moments:  

 

      
 

 
∑   

       
                    (6) 

 

where   is the total number of magnetic particles in the simulation box and    

                 .       is a time-dependent function that can be used to 

characterize the change of microscopic structures in the system. Its value also tells to 

what extent that the coupled-dipole-moment model can improve the quantitative 
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description of the magnetic interaction forces over the generally used fixed dipole 

moment approach where    1 due to the approximation of        .  

In addition to the mean-square dipole moment strength   [eq. (6)], we introduce 

two more sets of physical quantities to characterize the structural changes in the system. 

One is the weight-average size of the field-induced clusters of particles, 

 

     
∑    

 

∑    
       (7) 

 

where    is the number of clusters consisting of    particles and ∑       is the total 

number of particles in the system. Two particles are considered to be in the same cluster 

if their center-to-center distance is not larger than      . In another measurement, we 

classify the   particles in the system into three groups. The fraction of the particles that 

belong to clusters which are in contact with both confining walls is termed as        . 

Similarly the fractions of those in clusters contacting with only one wall or no wall are 

termed as        and       , respectively. These fraction values sum up to unity at each 

time step. In this work, a cluster is considered to be in contact with a confining wall if 

the center of any particle in this cluster is at a distance         from the surface of 

the wall. This criterion is consistent with that used for the non-slipping boundary 

conditions. 

 

Creep-recovery simulation. In creep experiments a constant step stress    is 

applied to the upper wall of the confined system at time zero. The creep strain of the 

system is determined by the balance between the applied stress and the internal stress 

resulted from the viscous friction of the carrier liquid and the interactions among the 

magnetic particles. The viscous contribution to the internal stress can be estimated by 

 

           ̇           (8) 

 

where    is the dynamic viscosity of the carrier liquid. Here we have neglected the 

contributions from the viscous dissipation produced by the flow around the particles and 

the hydrodynamic interactions among particles, which are predicted to give rise to the 

Newtonian viscosity of a hard sphere suspension      [  
 

 
           ] at 
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low particle concentrations. [Larson (1999); Verberg and de Schepper (1997)] For 

      ,       1.67, while this ratio is estimated to be around 2.5~3.5 at  =0.30 by 

using high-concentration expressions for       [Verberg and de Schepper (1997)]. In 

the MR systems we studied, the value of   can also be affected by other experimental 

conditions such as the particle shape and the residual interparticle aggregations. As will 

be described in Sec. 4.2, we take an effective value of the carrier liquid viscosity, 

  
   

      with    a constant larger than unity, for mapping the experimental and 

simulation shear stresses at high shear rates. This approach will to a certain extent 

compensate the approximation made in Eq. (8). The non-hydrodynamic contribution 

from the interacting particles can be evaluated by a simple approach 

 

       
 

 
∑ 〈   

                 〉                   (9) 

 

where    
  refers to the projection of the magnetic and short-range interaction forces 

between particles   and   along the shear direction and       are their position 

coordinates in the magnetic field direction.  

Using the stress balance in the system [Doi and Edwards (1986); See and Doi 

(1992)]  

 

                ,       (10) 

 

the instantaneous strain rate is estimated to be  

 

 ̇                
 
      (11) 

 

which in dimensionless units takes the form of 

 

 ̇           
    

     .     (12)  

 

The instantaneous viscosity of the MR fluid can then be estimated as 

 

           ̇   ,              (13) 
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and the creep strain is  

 

     ∫  ̇   
 

 
  .             (14) 

 

The shear creep compliance      can also be obtained from             . In BD 

simulations the strain increment is updated by  

 

    ̇                  (15) 

 

using the instantaneous strain rate  ̇      calculated in eq. (12) at every time step. 

The creep-recovery simulation of an MR system was performed in three steps 

with a constant magnetic field    applied throughout: a) quiescent state: starting from a 

configuration with randomly distributed particles, the system was equilibrated for a 

dimensionless time of         
  to allow the formation of field-induced structures; b) 

creep process: a constant step stress    was applied to the upper wall of the system at 

time      and held for a time duration of       
 ; c) recovery process: the external 

stress was suddenly removed and the system was relaxed for another time period of 

2        
 .  

In this work, the total number of magnetic particles was fixed to        and a 

cubic simulation box was used. The side length of the box and also the gap between the 

two walls were          for the system with particle volume fraction        and 

         for       , respectively. For convenience of comparing with 

experiments, the dimensionless simulation time has been mapped to real time by 

multiplying the time scaling factor  ̃ calculated from experimental parameters with the 

only exception of using the effective carrier liquid viscosity   
   

 obtained in Sec.4.2 

rather than the experimental value of   . For a MR system with   
   

     Pa·s and 

       kA·m
-1

,  ̃ is approximately          s. It means that a typical BD run time 

of          
  with    

       is mapped to a real time of     s. This is 

apparently much shorter than that studied in experiments. We will thus keep the 

comparison between simulation and experimental results at the qualitative level. 

Nevertheless, as will be seen below, the simulation time window is large enough to 
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capture all the interesting creep-recovery behavior of MR fluids. More importantly 

analyses of simulation results are able to provide microscopic understanding of such 

behavior that is not directly accessible in experiments, particularly at small time scales 

(e.g.,        s). 

Since the single-particle-width chain model has been widely used as the simplest 

approach to interpret the rheological behavior of MR fluids, we have performed an extra 

set of creep-recovery simulations using preassembled single-width chains. The system 

setup is the same as that sketched in Figure 3. In the initial configurations linear chains 

each consisting of 22 particles were aligned straightly along the magnetic field ( -) 

direction so as to bridge the two walls with a gap width of      . In the x-y plane, 

these chains were arranged into a triangular lattice with the lattice vector lengths 

determined by the particle volume fraction       . Periodic boundary conditions 

were applied in the x- and y-directions. A number of step stress values were chosen for 

comparison with simulations using same set of system parameters but random initial 

configurations.  

One remark to be made is that the viscosity   , or more precisely   
   

, of the 

carrier liquid does not enter the dimensionless equation of motion [eq.(3)] or particle 

interaction forces. It only affects the time scaling factor  ̃. If a different carrier liquid 

viscosity is used in experiment, the simulation time can be simply rescaled by the ratio 

between the two  s values.  

 

4. Results and discussion 

First, creep-recovery experiments were performed using carrier fluids of different 

viscosities (98 mPa·s, 340 mPa·s and 487 mPa·s) at a given particle concentration 

(      ) under an external magnetic field strength of     53 kA·m
-1

. Results 

demonstrated that the viscosity does only affect the time scale for structuration as 

demonstrated by the fact that creep curves do actually collapse when plotted as a 

function of the ratio between time and shear viscosity. This finding is important in order 

to later compare experimental results and simulation data essentially because the time 

scale used in simulations does also predict that viscosity does not affect the final 

structure under shear. We note that the shear stress of the MR system will be affected by 

the viscosity of the carrier liquid. In our simplified theoretical treatment, this effect is 

taken into account by including the viscous contribution [eq. (8)] in the calculation of 



12 

 

the total stress [eq. (10)]. However, the neglect of the hydrodynamic contributions, 

which also rely on  s, may lead to an underestimation of the shear stress, together with 

other approximations made in the theoretical framework. Such effects have been partly 

taken into account by using an effective carrier liquid viscosity for mapping the 

simulation results to experimental data. Next we carried out experiments in parallel-

plate (20 mm diameter, 300 m gap) and cone-plate (20 mm diameter, 2º) geometries in 

order to check the impact of a non-homogeneous shear rate acting on the sheared MR 

fluids. Experiments were done in a concentrated MR fluid (      ) formulated in a 

silicone oil of 487 mPa·s at 53 kA·m
-1

. Experimental results demonstrate that both 

geometries provide very similar results except in the vicinity of the yielding point. This 

finding also allows a comparison with simulation data where homogeneous shearing 

flow is assumed (see Figure 3). 

Finally, we also explored the effect of waiting time. The waiting time is defined 

here as the time elapsed in interval c) (see Sec. 2) when the magnetic field is applied, 

just after the equilibration step. This is an important point because depending on the 

material under study, some samples significantly age during the rest period. Three 

different waiting times were investigated (10 s, 60 s and 120 s). Experiments were done 

again in a        MR fluid formulated in a silicone oil of 487 mPa·s at 53 kA·m
-1

. 

Experimental results demonstrate that structuration occurs very quickly, in less than 10 

s, and therefore the effect of the waiting times investigated is negligible except at the 

yielding point where reproducibility is worse. Again, this permits a comparison with 

simulation data where structures are annealed prior to the creep test. 

Following these tests (summarized in Supplementary Information), we performed 

experimental and simulation studies on the rheological behavior of two MR systems. In 

one system the volume fraction of particles and the external field strength are taken to 

be        and     173 kA·m
-1

, respectively. In the other case, the particle loading 

and magnetic field strength were        and     53 kA·m
-1

, respectively. Field 

strengths were changed in order for the MR fluids to exhibit a similar “yield stress” 

value of the order of 400 Pa and for more easy comparison [Segovia-Gutiérrez et al. 

(2012)]. All simulation data have been mapped to real time and length scales by using 

the experimental parameters. But as mentioned above the comparison should still be 

considered as qualitative rather than quantitative due to many assumptions made in the 

simulation model, including the simplified theoretical treatment of the magnetic and 
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short-range interactions between particles, the neglect of hydrodynamic interactions, the 

assumption of non-slipping boundary conditions, as well as the limited time window 

and simulation box sizes. From now on we denote the simulation time as tsim to 

distinguish from the true experimental time scales. 

 

4.1 Creep-recovery process 

4.1.1 Low particle volume fraction ( = 0.05)    

Figures 4(a, b) present the experimental and simulation results on the creep-

recovery curves of the low concentration MR system for a wide range of step stresses. 

The yield stress of such a system was estimated to be     400 Pa in a previous 

publication by de Vicente and Berli  (2013). The classical Bingham plastic model 

predicts a purely elastic solid behavior for step stresses below the yield stress   . 

However, curves depicted in Figures 4(a, b) clearly demonstrate three distinctive 

regimes. At short times (below      s in experiments and      s in simulations) there 

is an instantaneous increase in the strain    . For longer times the retarded strain    

increases and finally at long times a state of constant strain rate is achieved. Also 

important to remark is that the recovered strain is only a small fraction of the 

instantaneous creep strain in contrast to the behavior of linear viscoelastic materials 

whose behavior is schematized in Figure 2(a). The incomplete recovery of the strain 

indicates that the MR fluid behaves as a plastic material [de Vicente and Berli (2013)]. 

For large stresses the MR fluid is not capable to recover the initial strain.  

The creep curves obtained in BD simulations also demonstrate three regimes in 

response to the applied stress, namely an initial response regime, an intermediate 

retardation regime and a long-time steady state whose feature is determined by the step 

stress value. The creep curves obtained at stresses below a critical value around 400 Pa 

gradually level off at large times, while those achieved at much higher stresses show a 

typical viscous flow behavior with a constant strain rate. A noticeable difference 

between the simulation and experimental creep curves is that the former ones possess an 

inflection point at intermediate time, especially at high stress values. These creep-

recovery behavior are analyzed in detail below in relation to the structural changes in 

the system.  
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Initial response regime. Upon the application of the step stress, both experimental 

and simulation creep curves show a nearly instantaneous jump in strain which is beyond 

the resolution of the measurement. After that, all these curves grow in parallel with 

time, regardless of stress values. We have calculated the instantaneous shear strain rate, 

 ̇   , by taking the time derivatives of each creep curve contained in Figures 4(a, b). 

This in turn gives the instantaneous viscosity,          ̇   , and the rate of the creep 

compliance,   ̇    ̇             . The simulation data on      are presented in 

Figure 5(b). In consistence with the parallel feature of the creep curves, all the      data 

collapse onto a universal curve up to a time scale             . The same universal 

behavior was found for the creep compliances     , which means that the MR fluid 

behaves as a viscoelastic material at early time. The response is in the linear viscoelastic 

region if      and so   ̇   are constant. This region however lasts only for a very short 

period of time (             . Beyond that, the viscoelastic behavior is nonlinear with 

time-variant       and   ̇   values. Experiments reported in Figure 5(a) also 

demonstrate a linear viscoelastic region for real times lower than      s. 

Figure 6(a) presents the simulation data on the instantaneous stress        

calculated using eq. (9) for four stress values, namely     100, 250, 1000 and 1500 Pa, 

respectively. Note that the total internal stress in the system is given by          

        
   

 ̇   . The results show that the time taken for       to reach its plateau 

value and so for         to match    is roughly the same for all the applied stress values. 

The good agreement between the simulation data obtained from random and 

preassembled initial configurations also indicates that the stress building-up time is 

independent of the detailed structures of the system at the beginning of the creep 

process. It is in this period of time (             ) that the MR fluid behaves as a 

viscoelastic material.  

The stress component    is determined by the microstructures formed by 

magnetic particles. We plot in Figures 7(a) and (b) the average cluster size,     , and 

the three wall-contact fraction values,        ,        and       , as a function of time 

for the MR systems under a step stress of     250 Pa. The vertical dashed line located 

in between           s and      s is introduced as a rough guideline marking the 

end of the initial response regime. Inside the initial regime, the average cluster size 

remains constant, indicating that the increase of the stress    is solely due to the 
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deformation of the chains or columns formed in the quiescent state. It is interesting to 

look at the changes of the quantities         and        in Figure 7(b) where all the 

preassembled single chains were initially in touch with both walls, giving          1  

at time    0 s (not shown in the plot due to the use of logarithmic time scale). This 

fraction value drops to zero almost instantaneously upon the application of the stress. In 

the meantime, the value of        jumps from 0 to 1 and remains at 1 for the entire 

initial regime as well as part of the following retardation regime. The breaking of chain 

end connection with the walls, rather than in the middle of the chain, is qualitatively 

different from that observed in electrorheological (ER) fluids. In the latter case, the 

image dipole moments provide strong bonding energy between the polarized particles 

and the electrodes, and so the chain breakage tends to occur in the middle part of the 

chain.  

The weak linking between the particle clusters and the walls can also be found in 

Figure 7(a) from the systems with random initial configurations. There the average 

cluster size at time zero is       33.6 much larger than the single-width chain length of 

22. The polydispersity in the cluster sizes can be visualized in the snapshot on the left 

panel of Figure 9(a). In this case the initial values of        and        are about 0.4 

and 0.6, respectively. Compared with single-width chains, the thicker columns can 

tolerate larger strain deformation by adjusting the relative positions of the particles 

without losing the internal connectivity or the contact with the walls. The values of 

        and        thus stay constant for a short period of time, but further shear leads 

to the drop in         and increase in        and       . There is however no chain 

breakage, as reflected in the constant value of       in this regime.  

In Figure 6(a) the       data of the systems with random initial configurations 

show relative large fluctuations in comparison with that from the systems with 

preassembled single chains. At longer times the sensitivity of this stress component to 

the detailed microstructure can result in a quantitative, but not qualitative, diversity in 

the creep curves obtained from the MR fluids with the same set of system parameters 

but different initial configurations. Figure 7(b) shows such an example by comparing 

the creep curves obtained using random and preassembled initial configurations at a 

stress value of     250 Pa. Similar results have been observed in other stress values 

studied in our simulations. Therefore larger scale ensemble average and bigger 
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simulation box are always desired to get more quantitative results comparable to 

experiments.  

The creep curves in Figure 7 imply that the initial viscoelastic regime ends at a 

strain value around 10%. To check the generality of this observation, we present in 

Figure 8(a) the simulation results on     ,   and         as a function of the shear strain 

for various stress values. The mean-square dipole moment   characterizes the overall 

structure changes in the system by combining the contributions from the cluster size 

distribution, partly measured by     , and the deformation of these clusters under shear, 

partly reflected in        . Apart from the smallest stresses (     100 Pa) where the 

maximum strain is only of a few percentages over the entire creep process, the 

simulation data on   at all other stress values initially collapse onto the same constant 

value, which is determined by the structures formed in the quiescent state, up to a 

critical shear strain of    = 10 %. Below   ,      remains stable except for the cases with 

smallest stress values. On the other hand, the value of         starts to decrease at 

smaller   values under larger step stresses. This is reasonable because the chain or 

column structures need to tilt or deform more strongly under larger stress in order to 

generate internal stress comparable to the applied one. These observations reveal that 

independent of the system parameters, the shear-induced structure changes in MR fluids 

before a critical strain value of 10 % only involve the deformation or reorientation of 

the chains or columns formed in the quiescent state, in absence of structural coarsening. 

We note that the critical strain value revealed in the creep simulations is in good 

agreement with the crossover yield strain reported by Segovia-Gutierrez et al. (2012), 

which is defined as the strain corresponding to the equality of the storage and loss 

moduli G’=G”.  BD simulations [Wang et al. (1997)] and theoretical calculations 

[Gulley and Tao (1993)] of ER fluids in confined geometry also found a chain breaking 

behavior at the shear strain of 10 %.   

The   data obtained under different step stresses deviate from each other right 

after   . For small stress values such as    = 250 and 400 Pa, both the      and         

values begin to increase with the creep strain, which consequently results in the increase 

of  . When referring to schematics in Figure 1, it is reasonable to take the instantaneous 

strains in these cases as        . At larger stresses the clusters in the system keep 

roughly the same average size, but experience larger scale tilting or deforming, as 
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implied by the continuous decrease of        , up to the ending time (             ) 

of the initial response regime. The nonlinear viscoelastic behavior of the system thus 

lasts beyond the creep strain of 10 %, even though the value of   starts to decrease 

after    . In this work, we will determine the initial response regime using the universal 

ending time as estimated in Figures 5(a) and 6(a), rather than the critical strain value, 

because the former gives a better specification of the region of viscoelastic behavior.  

The creep data in Figure 4(a) seem to suggest that the initial response regime 

found in simulations (            s, as a qualitative measurement) corresponds to 

the region of time        s in the experimental curves. In this region the experimental 

data on the instantaneous viscosity collapse onto a universal curve, which shows a 

decaying trend at early times [see Figure 5(a)]. But in simulations the      data increase 

with time in the initial response regime. The latter is understood as the result of the 

decreasing strain rate when the field-induced stress    is approaching to the applied 

stress value   . In experiments, inertial effects are clearly affecting such a short time 

measurements as the initial strain response is quadratic in time [Ewoltd and McKinley 

(2007)]. 

 

Retardation regime. After the initial viscoelastic regime, the dynamics of the MR 

system is controlled by the balance between the applied step stress and the stress 

contributions from the particle interactions and viscous flow. When the step stress value 

is very low, e. g.           , the stress contribution    generated by the deformed 

chain or column structures is comparable to or slightly lower than   . The strain rate 

 ̇    as determined by eq. (12) becomes small, which corresponds to a fast growth in the 

instantaneous viscosity      in these cases. The structural changes of the system in this 

regime can be seen in Figure 7(a) for the case of     250 Pa with random initial 

configuration. The increase of the average cluster size,     , in this regime indicates the 

slow aggregation of the smaller clusters into larger ones under shear. This increase 

shows a stepwise manner owing to the discrete merging events in the simulation box. 

The system with preassembled single chains behaves somewhat differently. Figure 7(b) 

shows that the chain size remains constant for most of the retardation regime before a 

quick rise at the very end. This is because these chains are well separated in the initial 

state. It takes them much longer migration time than the smaller clusters to aggregate 

with others, because the friction coefficients of the clusters are proportional to their 
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hydrodynamic sizes. The larger creep strain observed in the preassembled chain system 

can be directly attributed to the thinner chains in comparison with the system starting 

from random initial configurations. 

The mechanical strengths of the column structures get enhanced with the increase 

in their thickness. As a consequence they become less tilted to sustain the same 

magnitude of applied stress. This is reflected in the variation of the value of         

which shows an upturn at an intermediate time in this regime, while the values of        

and        show inversed trend. When the stress    produced by the thickened 

structures is large enough to balance   , the creep curve levels off and all the structural 

parameters reach their plateau values, as can be seen in Figures 4, 7 and 8. The system 

enters the next relaxation regime. During the period of retardation, the average cluster 

size in the system with random initial configuration at     250 Pa has increased by a 

factor of 3 from       33.6 to 99.7. The growth in the cluster thickness can be 

visualized in the snapshots in Figure 9(a). For the system with preassembled single 

chains, there is no chain breaking observed. A fraction of the single chains have merged 

to form double-strand chains. All the chains in the system have at least one of their ends 

in contact with the walls again, as indicated by the value of        ~ 0 at the end of this 

regime. 

 Under the action of higher step stresses (    500 Pa), the chain or column 

structures are highly deformed and become very unstable under shear. In the cases of 

     1500 Pa, some of the clusters are found to be broken by shear flow, which is 

quantified by the decrease in the      value in Figure 8(a). More generally, the shear 

flow forces the columns to change their shapes into thin sheet-like structures oriented in 

the planes defined by the shear and magnetic field directions. These structures bear less 

mechanical strength and lower flow resistance in comparison with the thick columns. 

There is consequently a reduction in the instantaneous stress      , which is most 

evident in Figure 6(a) for the case of      1500 Pa. The enlarged difference between    

and    leads to the increase in the strain rate  ̇   , as implied by eq. (12). The inflection 

points in the creep curves and so the peaks in the      [ ̇       data at these high 

stress values thus correspond to the sign change of the derivatives of  ̇    at the 

crossover of the initial and retardation regimes. Such inflection points are not clearly 

visible in the experimental creep curves in Figure 4. The reason may lie in that in the 



19 

 

low concentration system these points are located at very short time scales (below 10
-2

s) 

which are not accessible by experimental measurements. Figure 5(b) shows that after 

the peak value      obtained at high    decreases with time until reaching a constant 

value. This is in contrast to the continuous growth of the      data at lower stress 

values, and so results in a viscosity bifurcation behavior. This observation is in good 

agreement with experimental results in Figure 5(a). The viscosity bifurcation 

phenomena have been reported traditionally in pasty materials [see de Vicente and Berli 

(2012) and references therein].  

         Figure 7(c) presents the time dependence of the creep strain and various structural 

parameters for the case of     1000 Pa. The increase in the average cluster size implies 

that the small pieces of sheet structures gradually merge into large layer structures. This 

process can be partly visualized in the snapshots in Figure 9(b). The number and 

thickness of the layers will depend on the volume fraction of the particles. At        

only two single layers are formed at the end of the retardation regime, giving the value 

of       500. But considering the periodic boundary conditions applied, these layers 

actually extend infinitely in the shear ( -) direction. The formation of layer or lamellar 

structures have also been reported in ER and MR fluids under oscillatory shear [Wang 

et al. (1997); von Pfeil et al. (2002); Carletto and Bossis (2003)] and in ER and MR 

fluids under steady shear [Cao et al. (2006); Fernández-Toledano et al. (2014)]. One 

driving force for the formation of such structures is to lower the flow resistance.  

It is clear from our experimental and simulation results that the MR system 

behaves qualitatively differently below and above a critical step stress value. The 

viscosity bifurcation shown in Figures 5(a) and (b) provides a potential pathway to 

identify the location of this value, or at least narrow down its possible range. In this 

dilute MR system, the critical stress, which we will notate as       , is apparently sitting 

in between 600 and 1000 Pa in experiments and between 400 and 500 Pa in simulations. 

It is believed that this stress value is closely related to the yield stress estimated from 

steady shear experiments. We will discuss this relationship in more detail below. 

 

Long-time steady state. In simulations the onset of the steady state is marked by 

the time scale at which the structural parameters, such as      and  , reach their plateau 

values. At step stresses below the critical bifurcation value (    400 Pa), the increment 

of the shear strains is basically invisible in the creep curves. The instantaneous viscosity 
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grows continuously by several orders of magnitude. This means that the motion of the 

upper wall is still not fully stopped, although the strain rate is getting extremely small. 

There is thus an aging effect in the system under low step stress.  

At large stress values (     500 Pa), the system enters a constant strain rate 

regime. The value of the constant rate increases with the increase of the applied stress. 

From the simulation data in Figures 5(b), 6(a) and 8(a), we see that this regime begins at 

earlier time, but larger creep strain, for higher    values. The reason is that under higher 

stress the particles on average have to travel a longer distance before joining the final 

stable layer structures. The left panel in Figure 9(c) provides a typical side view of the 

layer structure. Domains that consist of single chains closely packed into triangular 

lattices are formed, but there is lack of long-range order in the shear direction. In this 

regime the upper and lower edges of the two single layers take turns to touch the 

confining walls. Thus the parameters       ,        and         can only take three 

discrete values 0, 0.5 and 1.0, see Figure 7(c). For example, when         0,        

 0.5 and          0.5, one of the layers is only in contact with one wall, while the other 

is bridging the two walls.   

 

Recovery process. The recovery behavior of the MR system has strong 

dependence on the step stress values. As shown in Figure 4(b), there is no strain 

recovery at stresses above the critical value       . After the removal of the stress, the 

shear-induced deformation of the layer structures can be released locally by re-

orientation of the individual domains and adjustment of the positions of surrounding 

particles. So no global elastic force is generated to restore some of the strain. The 

snapshot on the right panel in Figure 9(c) shows that the domain structures can further 

develop into larger areas in the absence of the external stress.   

The situation is qualitatively different at small stress values. The restoration of the 

deformed chain or column structures causes an instantaneous recovery of the strain,    . 

It is followed by a further recovery of magnitude    before reaching the final stable 

state. The second recovery process is associated with the slow rearrangement of the 

column structures. In Figure 10 we present experimental and simulation results on the 

instantaneously recovered strain,    , and the total recovered strain,       , as a 

function of the stress value   . Together with them are the relative fractions of the 

recovered strains that are calculated as the ratios between the recovered strains and the 
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creep strains achieved right before the removal of the stress. Experiments and 

simulations are in good agreement. The absolute values of the recovered strains first 

increase with increasing step stress values, and gradually saturate as    getting close to 

the critical value       . The saturation value of     is about 5  1%, while that of 

       is around 12  1%. It is interesting to note that the total recovered strain is 

close to the instantaneous creep strain of     10% as observed in the initial response 

regime for these low stress values (     400Pa). The recovered strains can thus be 

directly attributed to the viscoelastic property of the system consisting of field-induced 

chain or column structures. 

On the other hand, the fractions of the recovered strains decay with the increase of 

the applied stress. In the case of     50 Pa, 31 % of the creep strain is recovered 

instantaneously and a total of 72 % has been recovered. At      400 Pa, these fractions 

are only 1.1 % and 8.7 %, respectively. The relative magnitude of recovered strain 

becomes negligible as the stress value approaches       . These results are again in 

good agreement with experiments. 

 

4.1.2 High particle volume fraction ( = 0.30)  

The experimental and simulation results on the creep-recovery behavior of the 

system with        and     53 kA·m
-1

 are presented in Figures 4-6, 8 and 10-11 

for various step stress values. The creep curves in Figure 4 imply that the creep process 

of the system can still be divided into three regimes, analogous to that observed in the 

low concentration system. This is further supported by the instantaneous viscosity data 

in Figure 5 and the structural parameters in Figure 8(b). In the high particle 

concentration case, both experimental and simulation creep curves obtained at high 

stress values show the existence of inflection points, which in experiments locate at 

time scales above 10
-2

s.  

Figure 8(b) shows that the average cluster size at the onset of creep process is 

      1000, which is equal to the total number of particles in the simulation box. 

Taking into account the periodic boundary conditions, this means that all the chains or 

columns in the system are interlinked to form a three-dimensional (3D) percolated gel-

like structure. At low stress values (     150 Pa), the percolated network survives the 

entire creep-recovery simulation time. The snapshot of such a gel-like structure taken at 
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the end of the creep process at     150 Pa is given in Figure 11(a). In our simulation 

model the short-range interactions between particles are purely repulsive. Thus the 

network formation is solely due to the magnetic interaction forces. In studying the 

yielding behavior of MR fluids under steady shear, de Vicente and co-workers (2012) 

proposed a weak-link mechanism for the systems with particle volume fractions above 

10%, in which the interlinks between different clusters are weaker and so broken earlier 

under shear than the bonds inside the clusters. The particle concentration of         

clearly falls into that regime. To understand the microscopic picture of the weak-link 

mechanism, a key issue is to find the correct short-range interaction potential between  

particles in the experimental systems. This will be left for later study. 

Similar to the system with       , the general structural properties of the high 

concentration system remain unchanged up to a creep strain around 10 %, see Figure 

8(b). The process of stress building-up in this system is demonstrated in Figure 6(b), 

where the instantaneous stress curves are much smoother than that in the dilute system 

in Figure 6(a). The reason is that in the initial response regime there are less structural 

fluctuations in the gel-like network than in the polydispersed chain or column 

structures. In the retardation regime, the network structure is relatively stable and the 

average cluster size stays at the constant value of       1000 at step stresses      150 

Pa. But at higher stresses the value of      starts to decrease due to the splitting of the 

3D network into lamellar structures with various thicknesses, see Figure 11(b) for an 

example. This structure transition leads to a reduction in the overall mechanical strength 

of the system, as reflected in the decrease of the instantaneous stress    in the top set of 

data points in Figure 6(b) where     600 Pa. As a result, a constant rate flow is 

eventually developed in the system. In this constant rate regime, the lamellar structures 

still undergo splitting and recombining by exchanging layers over time. The value of 

     thus jumps in between several discrete values, especially at the highest stresses 

studied. The right panel of Figure 11(b) presents the side view of a single layer taken 

from a thicker lamellar structure formed at     1000 Pa. Different from the domain 

formation found in Figure 9(c), the particles here arrange into linear arrays aligning 

along the shear direction. This difference can be understood from the relatively low 

magnetic field strength (    53 kA·m
-1

) in this case. The destruction of the chain or 

column-like structures along the field direction also weakens the mutual magnetization 
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effect among the particles. The plateau values of   in this regime are lower than their 

initial values at the onset of the creep process. 

The experimental and simulation data on the instantaneous viscosity in Figures 

5(c) and (d) also demonstrate a bifurcation behavior at a critical stress. Experiments 

locate this value in between 400 Pa and 1000 Pa. On the other hand, simulations suggest 

that the value is located in between      150 Pa and 400 Pa. Only when the step stress 

is below this critical value, there is a partial recovery of the strain. The absolute values 

of the instantaneous and total recovered strains are close to that obtained in the low 

density system with       , see Figure 10. The saturation value of the total recovered 

strain is again around 10%. The fractions of the recovered strains are relatively high in 

this case, but still decays towards zero as the stress approaches to the critical value. 

Experiments and simulation data are again in good agreement.    

 

4.2. Steady shear   

The critical stress value at which the viscosity bifurcation is observed in creep 

experiments is considered to be related to the yield stress estimated from steady shear 

measurements. Therefore we have performed two sets of steady shear experiments and 

simulations using the same system parameters as studied in the creep-recovery 

simulations. The time-averaged simulation results on the field-induced stress,    

[Eq.(9)], and the total shear stress,      
   

 ̇ as used in Eq.(10), are plotted in Figure 

12 as a function of the shear rate  ̇. For comparison, we have also included the creep 

simulation data at high step stresses where the strain rates were obtained by linear 

fitting to the constant rate regime of the creep curves. The creep data are related to the 

total shear stresses measured in steady shear. As expected, the results obtained from 

these two different types of simulations collapse onto a universal curve and so can be 

used together for data analysis. 

The shear stress data of MR fluids are generally fitted to the Bingham plastic 

model,    ̇        ̇, to give the yield stress   . But as discussed in the 

Introduction, the results heavily rely on how the experimental measures are carried out. 

This is one of the main reasons for studying the creep-recovery behavior. Instead of 

trying to find the exact value of    from the steady shear experiments, we use the 

concept of Bingham model for estimating the time scaling factor to map the simulation 

data to real time units. According to this model, the shear stress grows linearly with the 
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shear rate, at least in the high  ̇ region. The slope of the    ̇  line is the so-called plastic 

viscosity    which is determined by the viscosity of the carrier liquid and the particle 

loading. As shown in Figures 12(a) and (b) by the dashed lines, we fit the experimental 

data points at high shear rates to the Bingham formula to get the values of   , which are 

found to be 2.0 ± 0.2Pa·s in both systems. Since the plastic viscosity can also be 

affected by the residual interparticle aggregation, the similar    values found at 

different particle concentrations may indicate that the particle clusters are not 

completely disaggregated even at high shear rates. Experimental evidences on this effect 

are presented in Figure 12(c) and discussed below. For the purpose of making 

convenient but not fully quantitative comparison between simulation and experimental 

data, we consider that all the hydrodynamic and particle aggregation effects have been 

implicitly included in the    values and so set the effective carrier liquid viscosity 

  
   

    (2.0Pa·s) in both systems. By replacing    with   
   

in Eq.(8) and mapping 

the dimensionless simulation time to real time units by multiplying  ̃      
   

 

     
   

 , a reasonably good match between the experimental and simulation shear 

stresses is achieved in the high  ̇ region, see Figure 12. The corresponding time scaling 

factors are  ̃     ms at        and     173 kA·m
-1

 and 11ms at        and 

    53 kA·m
-1

. These  ̃ values have been used to scale all  simulation times presented 

in the current work. We note that this time mapping approach involves some crude 

approximations. First of all the viscous friction experienced by the particles, as used in 

the particle equation of motion [eq.(3)], is mainly determined by the carrier liquid 

viscosity   , rather than the effective value   
   

  Secondly the exact value of    

depends on the shear rate range used for the fitting. Therefore the horizontal shift of the 

simulation time scales could not be taken as quantitatively well defined. All 

comparisons between experimental and simulation results should remain at the 

qualitative level.   

We have performed the Bingham model fitting to the simulation results in Figures 

12(a) and (b), which include both the steady-shear and creep simulation data points. The 

yield stress values are found to be    47     Pa for the system with        and 

    173 kA·m
-1

 and 317     Pa for the system with        and     53 kA·m
-1

. 

These values are marked by vertical arrows on the abscissa axis in Figure 10. They fall 

well into the range of the critical stress as estimated from the viscosity bifurcation data 
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in Figure 5. This observation thus supports the intrinsic correlation between the yield 

stress and the critical stress in creep experiments.  

It is evident in Figure 12 that although the    ̇  curves obtained in simulations 

and experiments show qualitatively consistent behavior, the simulation data are 

significantly lower than the experimental values, particularly in the high concentration 

case. As mentioned before, this discrepancy can be partially attributed to the simplified 

simulation model. For the system with         and      173 kA·m
-1

, the mean-

square dipole moment of the particles is found to be    3.0  0.2. It means that the 

consideration of the local field correction in eq. (5) has already improved the simulation 

data by at least a factor of 3 in comparison with the point dipole approximation with 

fixed field strength   . The mutual magnetization effect is relatively weak in the dense 

system with         and     53 kA·m
-1

. The value of   calculated from the gel-like 

networks in the quiescent state is 1.7  0.1, which is apparently smaller than that found 

in the dilute system consisting of separated chain or column structures. As shown in 

Figure 11(b), the particles in the shear-induced lamellar structures are arranged into 

arrays aligning along the shear direction, rather than along the magnetic field direction. 

As a consequence, the data in Figure 12(b) show that the stress    generated by the 

magnetic interactions between particles reaches a plateau value around 370 Pa, and then 

slowly increases at higher shear rates. The total shear stresses in these cases are thus 

dominated by the viscous contribution   
   

 ̇. This explains why the Newtonian 

viscosity obtained from the linear fitting to the Bingham model in this case is basically 

equal to the effective viscosity of the carrier liquid.  

The relatively large difference between the experimental and simulation steady 

shear data in Figure 12(b) can also be correlated to the facts that particles at this 

concentration are very close to each other and the field strength is very small. These two 

circumstances make the short-range interparticle interactions, such as remnant 

magnetization and/or colloidal forces, to play a key role here. One consequence is that 

some residual interparticle aggregation may exist even at rest (before shearing the 

sample), which would necessarily result in an extra-contribution to the shear stress as 

actually observed. The residual interparticle aggregation is present in most of MR fluid 

formulations and manifests more clearly at large particle loadings or smaller 

interparticle distances. Figure 12(c) shows the experimental steady shear stress data 

obtained from MR fluid with a different formulation where a fraction of         
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magnetic particles are dispersed in polyalphaolefin oil (PAO) with and without 1-

octanol additive. The additive is introduced to help reducing the short-range attractions 

and consequently the residual aggregations among the particles. The shear stresses 

obtained from the MR system with additives are clearly lower than that of its 

counterpart without additives, which can in part explain the discrepancy between the 

experimental and simulation data in Figure 12(b). Creep experiments on these systems 

(not presented) have also shown that at a given applied stress the MR fluid with 

additives achieves larger steady-state strain values or smaller viscosities due to the 

suppression of residual interparticle aggregation. 

 

Conclusions 

Independently of the particle loading, three regimes are observed in the creep 

curves: i) Initial response regime where the systems behave in the viscoelastic region 

and the average cluster size remains constant. In this region field-induced structures 

deform and reorientate under shear and the material functions collapse onto a universal 

curve whatever the stress value; ii) Retardation regime where the system behavior 

results from the balance between the applied stress and the stress contributions from the 

particle interactions and viscous flow. In this regime, small clusters begin to aggregate 

forming larger ones but less tilted with respect to the magnetic field direction. For large 

enough stresses, structures become unstable under shear and eventually assemble into 

sheet-like or lamellar structures oriented in the planes defined by shear and magnetic 

field directions; iii) Long time steady state where structural parameters reach plateau 

values. In the case of large enough stress values the system enters a constant strain rate 

regime and viscosity bifurcation occurs. 

The recovery behavior strongly depends on the stress level. For low stress levels 

below the bifurcation value, the MR fluid is capable to recover part of the strain. In this 

case strain increases with increasing stress and gradually saturate. Instantaneous and 

total recovered strains are in good agreement between experiments and simulations. For 

stresses larger than the bifurcation value, the recovery is negligible as a result of 

irreversible structure rearrangements. 

As expected, long time creep simulation data are consistent with steady shear 

flow. In the case of        MR fluids, the comparison between experiments and 

simulations is good. However, for        MR fluids the agreement is not so good 
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because this system is more sensitive to interparticle (remnant and colloidal) forces as 

the concentration is large and the field strength is low. In general, a good qualitative 

agreement is found between experiments and simulations.  
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FIGURES 

Figure 1.- Schematics of the creep-recovery behavior of a non-linear viscoplastic 

material.     is the instantaneous (creep) strain,    is the elastic contribution to the 

instantaneous strain,    is the plastic contribution to the instantaneous strain,    is the 

retardation strain,    is the viscous (unrecoverable) strain and      is the instantaneous 

recovery strain. 
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Figure 2.- Schematics of the creep-recovery behavior of a MR fluid. The stress 

increases from top to bottom. a) Linear viscoelastic response; b) Non-linear viscoelastic 

response; c) Viscoplastic solid; d) Plastic fluid. 
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Figure 3.- Sketch of the dynamics simulation system. 
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Figure 4.- Creep-recovery curvesobtained at various step stresses as indicated in the 

graphs for the MR systemswith a)       ;     173 kA·m
-1

;      20 mPa·s; b) 

      ;      53 kA·m
-1

;     487 mPa·s. The simulation time scales are calculated 

using an effective carrier liquid viscosity   
   

=2.0Pa.s. 
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Figure 5.- Instantaneous viscosity as a function of time for the MR systems with a) 

      ;     173 kA·m
-1

;     20 mPa·s; b)       ;      53 kA·m
-1

;     487 

mPa·s. The results were obtained by taking the time derivatives of the creep strain 

curves shown in Figure 4. The simulation time scales and instantaneous viscosities are 

calculated using an effective carrier liquid viscosity   
   

=2.0Pa.s. 
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Figure 6.- Building-up of the internal stress    [eq.(9)] in response to the applied 

external stress    (horizontal lines). The system parameters are: a)       ;     173 

kA·m
-1

;     20 mPa·s; b)       ;      53 kA·m
-1

;     487 mPa·s. Simulation 

results obtained from random initial configurations are given by symbols, while those 

from preassembled single-width chains are presented as dashed curves [only in a)]. The 

simulation time scales are calculated using an effective carrier liquid viscosity   
   

=2.0 

Pa·s. 
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Figure 7.- Shear strain  , average cluster size     , and wall-contact fractions 

parameters                    (see definitions in main text) as a function of time 

obtained from simulations starting with random initial configurations (a and c) and 

preassembled array of single-width linear chains (b). In all plots        and    173 

kA·m
-1

. The applied stress is     250 Pa for (a) and (b), and 1000 Pa for (c). The strain 

curve obtained in (a) is also plotted in (b) as the dotted-dashed line for comparison. The 

vertical dashed lines in the plots are qualitative guidelines for dividing the creep process 

into three dynamic regimes. The simulation time scales are calculated using an effective 

carrier liquid viscosity   
   

=2.0Pa·s. 
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b)     250 Pa; Preassembled chain-like structures 
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Figure 8.-  Average cluster size     , mean-square strength of the dipole moments  , 

and fraction of particles that belong to the clusters attaching to both walls        , as a 

function of the shear strain. The system parameters are: a)       ;     173 kA·m
-1

; 

    20 mPa·s; b)       ;      53 kA·m
-1

;     487 mPa·s. 
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Figure 9.- Snapshots of the MR system with        and     173 kA·m
-1

 under 

applied stresses     250 Pa (a) and 1000 Pa (b and c), respectively. In a) the frames are 

taken at the beginning (      0, left) and end (      14 s, right) of the creep process, 

while in b) the frames are at       124.6 ms (left) and      = 14 s (right), respectively. 

The configuration at       0 for the case of     1000 Pa (not shown) is very similar 

to that in the left panel of a). The snapshots in c) are the side views of one of the layers 

formed at     1000 Pa, taken at time       14 s (left) that is just before the removal 

of the stress and 16 s (right) that is in the recovery process. The simulation time scales 

are calculated using an effective carrier liquid viscosity   
   

= 2.0Pa.s. 
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Figure 10.- Instantaneous (   ) and total (      ) recovery strains and their ratios to 

the strain at the onset of the recovery process as a function of applied stress. Vertical 

arrows correspond to the static yield stress obtained from the extrapolation to zero shear 

rate of the flow curves in log-log representation, see Figure 12.  

 

a) Experiments 

10
-2

10
-1

10
0

10
1

10
2

10
1

10
2

10
3

0,0

0,2

0,4

0,6

0,8

1,0

10
1

10
2

10
3

 

 

 Instant

 Total

R
ec

o
v

er
d

 s
tr

ai
n

 (
%

)

 = 0.05; H
0
=173kA·m

-1  

 

 = 0.30; H
0
=53kA·m

-1

 
 

F
ra

ct
io

n
 o

f 

re
co

v
er

ed
 s

tr
ai

n

Shear stress (Pa)

 

 

Shear stress (Pa)

 

 

  



43 

 

b) Simulations 
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Figure 11.- Snapshots of the MR system with        and     53kA·m
-1

 under 

applied stresses     150 Pa (a) and 1000 Pa (b), all taken at the end of the creep 

process. The snapshots in the left panels are the top views along the magnetic field 

direction, while those on the right are the side views in the x-z (shear–field) plane. In (b) 

only one layer is shown where the particles form arrays aligning along the shear 

(horizontal) direction.  
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Figure 12.- Shear stress as a function of shear rate obtained from the steady-shear and 

creep simulations. In the steady-shear case, the contributions from the particle 

interactions alone,   , are also given for reference. The steady-shear experimental data 

are also included for comparison. The system parameters are a)       ,     173 

kA·m
-1

 and silicon oil with     20 mPa·s; b)       ,     53 kA·m
-1

 and silicone 

oil with     487 mPa·s; c)       ,     53 kA·m
-1

 and polyalphaolefin oil with 

    6 mPa·s without and with (5 wt%) 1-octanol additive. The simulation shear rates 

are calculated using an effective carrier liquid viscosity   
   

= 2.0Pa·s. The dashed lines 

are Bingham model fittings to the experimental data points at high shear rates. 
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SUPPLEMENTARY INFORMATION / ANNEX 

 

A direct comparative study between experimental and simulation results is only valid 

under specific circumstances. The simulation model considered in this work implies that 

the effect of the shear viscosity of the carrier fluid displaces the curves in the horizontal 

direction, strain values remaining the same whatever the viscosity value. In other words, 

the viscosity only appears in the time scale. Figure S1 contains experimental data for 

MR fluids formulated in different viscosity silicone oils employed as carriers. As 

observed, the trends of the curves are not affected much by the viscosity. 

 

On the other hand, simulations are carried out at a constant shear rate. However, 

experimental data reported here correspond to plate-plate geometries. The choice of this 

particular geometry implies that the shear rate is not constant along the plate radius 

increasing towards the rim of the plate. In an attempt to evaluate the influence of this 

non-homogeneous shear profile we did run experiments on cone-plate geometries as 

well. Experimental results are contained in Figure S2 and demonstrate that the effect of 

a non-shearing flow field is not remarkable at least far from the bifurcation stress. 

 

Finally, simulations are carried out over equilibrated structures in quiescent state. 

Experimentally, we include a step (c) within the protocol where the magnetic field is 

applied for a given (waiting) time. The waiting time chosen in this manuscript is taken 

to be 120 s and according to Figure S3 correspond to a stationary (time-independent) 

state. The curves shown in Figure S3 correspond to three different waiting times (10, 60 

and 120s) and all of them being very close. 
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Figure S1.- Time dependence of the shear strain achieved during a step stress (creep) 

and recovery experiment for several stresses as indicated in the graphs. Curves 

correspond to MR fluids at        prepared in silicone oils of different viscosities: 

    98 mPa·s, 340 mPa·s, and 487 mPa·s. The magnetic field strength was fixed at 

     53 kA·m
-1

. 
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Figure S2.- Time dependence of the shear strain achieved during a step stress (creep) 

and recovery experiment for several stresses as indicated in the graphs.       ;      

53 kA·m
-1

;     487 mPa·s. The two sets of curves correspond to plate-plate and cone-

plate configuration.  
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Figure S3.- Time dependence of the shear strain achieved during a step stress (creep) 

and recovery experiment for several stresses as indicated in the graphs.       ;      

53 kA·m
-1

;     487 mPa·s. The three sets of curves correspond to three different 

waiting times: 10 s, 60 s, and 120 s.  
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