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ORIGINAL ARTICLE

Integrin-linked kinase regulates the rate of platelet activation
and is essential for the formation of stable thrombi

C. I . JONES ,* 1 K . L . TUCKER ,*† 1 P . SAS IKUMAR,* T . SAGE ,* W. J . KA I SER ,* C . MOORE ,‡

M. EMERSON‡ and J . M . G IBB INS*
*Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading; †Department of Primary

Care Health Sciences, University of Oxford, Radcliffe Observatory Quarter, Oxford; and ‡National Heart and Lung Institute, Imperial College

London, London, UK
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Summary. Background: Integrin-linked kinase (ILK) and

its associated complex of proteins are involved in many

cellular activation processes, including cell adhesion and

integrin signaling. We have previously demonstrated that

mice with induced platelet ILK deficiency show reduced

platelet activation and aggregation, but only a minor

bleeding defect. Here, we explore this apparent disparity

between the cellular and hemostatic phenotypes. Methods:

The impact of ILK inhibition on integrin aIIbb3 activation
and degranulation was assessed with the ILK-specific

inhibitor QLT0267, and a conditional ILK-deficient

mouse model was used to assess the impact of ILK defi-

ciency on in vivo platelet aggregation and thrombus for-

mation. Results: Inhibition of ILK reduced the rate of

both fibrinogen binding and a-granule secretion, but was

accompanied by only a moderate reduction in the maxi-

mum extent of platelet activation or aggregation in vitro.

The reduction in the rate of fibrinogen binding occurred

prior to degranulation or translocation of aIIbb3 to the

platelet surface. The change in the rate of platelet activa-

tion in the absence of functional ILK led to a reduction

in platelet aggregation in vivo, but did not change the size

of thrombi formed following laser injury of the cremaster

arteriole wall in ILK-deficient mice. It did, however,

result in a marked decrease in the stability of thrombi

formed in ILK-deficient mice. Conclusion: Taken together,

the findings of this study indicate that, although ILK is

not essential for platelet activation, it plays a critical role

in facilitating rapid platelet activation, which is essential

for stable thrombus formation.

Keywords: embolism; integrin alpha-IIb beta-3;

integrin-linked kinase; platelets; thrombus.

Introduction

Integrin-linked kinase (ILK) was identified for its interac-

tion with the cytoplasmic tail of b-integrin subunits and

its serine/threonine kinase activity, which is upregulated

by the stimulation of platelets [1,2]. ILK functions as an

adaptor protein, binding a number of focal adhesion

(FA) proteins [3,4], including, but not restricted to,

PINCH [5,6] and parvin [7,8], to form the ILK–PINCH–
parvin (IPP) complex [9]. The IPP complex promotes

integrin clustering and the generation of FA complexes,

providing a structural link between the extracellular

matrix and the cytoskeleton, and an array of signaling

events [2,10–13]. ILK is important in a large range of tis-

sue types and cellular responses that depend on integrin

clustering and the formation of FAs [8,11,14–17]. In

platelets, where integrins have a vital role in hemostasis,

by facilitating adhesion to sites of damage and platelet–
platelet interactions, ILK interacts with, and regulates the

function of, b1 and b3 integrin subunits [18,19].

Mice with induced ILK deficiency show reduced plate-

let activation and aggregation, but only a minor bleeding

defect [14]. This disparity between the cellular and gross

hemostatic phenotypes may result from a number of fac-

tors. Our previous work showed that ILK deficiency

reduced platelet aggregation but that this effect had a

temporal component, with the inhibition being greater at

90 s than at 300 s poststimulation [14]. Given the

dynamic nature of thrombus formation, it seems intuitive

that the rate of platelet activation will have a critical role
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in regulating thrombus development; however, given the

lack of bleeding in these mice, it is possible that this sub-

tle cellular phenotype is overcome in vivo and does not

greatly alter thrombus formation.

Here, we explored this apparent disparity between the

cellular and hemostatic phenotypes by using an ILK-defi-

cient mouse model and the ILK inhibitor QLT0267 to

investigate ILK-mediated regulation of the platelet

response to stimuli and the impact of this on thrombus

formation in vivo. We show that ILK plays a critical role

in regulating the rate of platelet activation, and that this

is essential for stable thrombus formation.

Materials and methods

Platelet aggregation

Systemically inducible ILK-deficient mice were generated

as previously reported [14,20]. LoxP-flanked ILK trans-

genic mice containing a Cre-transgene under control of

the Mx1 promoter were generate and, in all cases, litter-

mate ILK(+/+): MxCre were used as the control (Ctrl).

Mice were given an intraperitoneal injection of 300 mg of

poly(I)-poly(C) 8 days prior to experiments, after which

ILK could not be detected in knockout (KO) mouse

platelets [14]. Platelets were prepared from mouse whole

blood by differential centrifugation, and aggregation was

measured in an optical aggregometer following stimula-

tion with collagen (100 lg mL�1) at 37 °C [14].

For aggregation studies on human blood, platelets were

prepared from healthy donors by differential centrifuga-

tion [21], and stimulated with collagen (10 lg mL�1), in

the presence of QLT0267 (1 lM) (QLT, Vancouver, BC,

Canada) or dimethylsulfoxide (DMSO) (0.025% v/v)

vehicle control. Aggregation was measured in an optical

aggregometer at 37 °C.

Clot retraction

Clot retraction was measured by mixing human platelet-

rich plasma (PRP) (200 lL), red blood cells (5 lL) and

QLT0267 (1 lM) or DMSO (0.025% v/v) vehicle control

with modified Tyrodes–Hepes buffer to a final volume of

1 mL [22]. Clotting was initiated with thrombin

(1 U mL�1), and a sealed glass capillary was placed at

the center of the glass test tube, around which the clot

formed. Clots were removed from the tube after 1.5 h

and 3 h, and superficial liquid was removed from the sur-

face before the clot was pushed from the glass capillary

liquid and weighed.

Flow cytometry

Fibrinogen binding to platelets from KO or Ctrl mice in

the presence of QLT0267 was measured by diluting PRP

in Hepes-buffered saline (HBS) containing fluorescein

isothiocyanate (FITC)–anti-fibrinogen antibodies (Dako,

Ely, UK) and cross-linked collagen-related peptide (CRP-

XL; monomeric sequence GCI[GPO]10GCOG), prepared

as previously described [23] (0.5 lg mL�1, 1 lg mL�1,

and 2 lg mL�1). Reactions were stopped after 45 s, 90 s

and 300 s by 100-fold dilution in 0.2% formyl saline, and

analyzed on an Accuri C6 flow cytometer (BD, Oxford,

UK).

For time-resolved flow cytometry experiments measur-

ing fibrinogen binding, P-selectin exposure, and calcium

flux, human PRP was diluted in HBS containing either

FITC–anti-fibrinogen antibodies (Dako) and phycoery-

thrin–anti-P-selectin antibodies (BD), or Fluo-4 NW dye

(Invitrogen, Paisley, UK), together with QLT0267 (1 lM)
or DMSO (0.025% v/v) vehicle control. All reagents were

dialyzed prior to use to remove azide. Samples were

transferred to a 96-well plate on an Accuri C6 flow

cytometer (BD) modified to maintain the plate at 37 °C,
and stimulated during data acquisition with CRP-XL

(1 lg mL�1), ADP (1 9 10�6
M) or thrombin (0.3 U mL�1)

in the presence of Gly-Pro-Arg-Pro peptide (Sigma,

Poole, UK). Data were acquired for 300 s at approxi-

mately one platelet per 1 ms, and analyzed with R (www.

r-project.org) by calculating median fluorescence intensity

(MFI) every 100 ms and fitting a LOESS curve to this,

from which the maximum platelet response and the rate

of platelet response were derived.

For time-resolved flow cytometry experiments measur-

ing surface expression of integrin aIIbb3, human PRP was

diluted in HBS, maintained at 37 °C, stimulated with

CRP-XL (1 lg mL) for 15–300 s, and then fixed with an

equal volume of 4% formyl saline. Fixed platelets were

washed twice with HBS, and then incubated with anti-b3
antibodies (Dako) for 20 min, and for a further 20 min

with Alexa Fluor 647-labeled goat anti-mouse secondary

antibodies (Life Technologies, Paisley, UK).

In vivo platelet aggregation

In vivo aggregation of radiolabeled platelets was assessed

by measuring the percentage change in radioactive counts

in the pulmonary vascular bed following the injection of

collagen into the femoral vein of Ctrl/KO mice [24].

Blood was collected into acidified citrate–dextrose solu-

tion from terminally anesthetized (urethane [25% w/v] at

10 lL g�1 intraperitoneal) donor mice by cardiac punc-

ture. Platelets were isolated by differential centrifugation,

incubated with 1.8 MBq of indium-111 oxine for 10 min,

and then repelleted, washed, and resuspended. Anesthe-

tized (urethane [25% w/v] at 10 lL g�1 intraperitoneal)

recipient mice were infused with radiolabeled platelets,

and allowed to equilibrate for 15 min before collagen

(25–100 lg kg�1 intravenous; Nycomed, Konstanz, Ger-

many) was injected via a femoral vein. A single point

extended area radiation detector (eV Products, Saxon-

burg, PA, USA) was fixed over the pulmonary vascular
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bed, and counts were recorded on a UCS-20 spectrometer

(Spectrum Techniques, Oak Ridge, CA, USA) with cus-

tom-made software (Mumed Systems, London, UK).

Platelet responses were then determined as an increase in

the counts in the pulmonary vascular bed associated with

the platelet agonists.

In vivo thrombus formation

In vivo thrombus formation following laser injury of the

cremaster arteriole wall was performed and analyzed as

described previously [21]. Mice were anesthetized by

intraperitoneal injection of ketamine (125 mg kg�1), xyla-

zine (12.5 mg kg�1), and atropine (0.25 mg kg�1), and

and anesthesia was maintained with 5 mg kg�1 pentobar-

bital as required through a jugular vein cannula. The cre-

master muscle was exteriorized, connective tissue was

removed, and the muscle was fixed as a single sheet over

a glass slide. Throughout this procedure, the muscle prep-

aration was hydrated with buffer (135 mM NaCl, 4.7 mM

KCl, 2.7 mM CaCl2, 18 mM NaHCO3, pH 7.4). Platelets

were labeled with Alexa Fluor 488-conjugated anti-mouse

glycoprotein (GP)Ibb antibody (0.2 lg g�1 of mouse

weight) (Emfret Analytics, Eibelstadt, Germany). Injury

of the cremaster arteriole wall was induced with a Micro-

point Ablation Laser Unit (Andor Technology, Belfast,

UK). Thrombus formation was observed with an Olym-

pus BX61W1 microscope (Olympus Imaging, Southend-

on-Sea, UK) and a Hamamatsu C9300 digital camera

(Hamamatsu Photonics, Welwyn Garden City, UK), and

analyzed with SLIDEBOOK5 software (Intelligent Imaging

Innovations, Denver, CO, USA).

Statistical analysis

Data are presented as mean � standard deviation of the

mean. Statistical analyses were performed with PRISM 5

GRAPHPAD software (GraphPad Software, La Jolla, CA,

USA). Data were compared by use of a Student’s t-test

or two-way ANOVA and Bonferroni post hoc test analysis

as appropriate.

Results

Reanalysis of aggregation in platelets from KO mice dem-

onstrated that aggregation in response to a high concen-

tration of collagen (100 lg mL�1) was almost entirely

abolished in KO mice as compared with Ctrl mice

(P < 0.0001) during the first 60 s, and then recovered by

300 s (Fig. 1A,B).

We have previously shown that platelets from these

mice have significantly reduced levels of both PINCH and

a-parvin [14]. To confirm that inhibition of ILK alone

causes a reduction in platelet function, and to confirm

our previous findings in humans, we used QLT0267, a

small-molecule inhibitor of the kinase-like domain of ILK

[25,26]. Although this inhibitor has been shown to effec-

tively inhibit ILK at doses ranging from 1 lM to 25 lM,
non-specific effects have been reported at high, but not

lower, concentrations [25,27]. To confirm the selectivity of

this inhibitor at a concentration previously reported to

inhibit ILK but without non-specific effects, fibrinogen

binding to CRP-XL-stimulated platelets from KO and

Ctrl mice was measured in the presence or absence of

QLT0267 (1 lM). In Ctrl mice, QLT0267 inhibited fibrin-

ogen binding at all three concentrations of CRP-XL and

across all time points (Fig. 1C). Platelets from KO mice

showed reduced fibrinogen binding as compared with Ctrl

mice, but showed no further inhibition in the presence of

QLT0267 (Fig. 1D), indicating that, at this concentration,

it is specific for ILK. Collagen-stimulated human platelets

incubated with QLT0267 showed similar inhibition of

aggregation (P = 0.0008), again characterized by complete

inhibition of aggregation in the first 45 s, accompanied by

only a moderate impairment of maximal aggregation

(Fig. 1E).

ILK inhibition also reduced the rate of clot retraction.

In the presence of QLT0267, clot retraction was inhibited

at 1.5 h but not at 3 h (Fig. 1F), consistent with reduced

‘outside-in’ signaling through aIIbb3.
We have previously shown that, although the levels of

aIIbb3 on the surfaces of unstimulated platelets from Ctrl

and KO mice are indistinguishable, following stimulation,

which leads to translocation of aIIbb3 to the platelet sur-

face, the surface expression of aIIbb3 is significantly lower

in KO than in Ctrl mice [14]. To test whether the

observed decrease in the rate of aggregation and clot

retraction following ILK inhibition or deficiency is attrib-

utable to reduced aIIbb3 surface expression or reduced

aIIbb3 activation as such, which may, in turn, lead to

reduced secretion, we assessed the activation of aIIbb3 and
surface exposure of aIIbb3 and P-selectin (a marker of

a-granule secretion) over time. Real-time flow cytometric

analysis of the rates of fibrinogen binding and P-selectin

exposure confirmed a reduction in response to the GPVI-

specific agonist CRP-XL in the presence of QLT0267.

The rate at which platelets bound fibrinogen (rate of

change in MFI) peaked at 50.8 � 18.3 s of stimulation,

and this rate was reduced significantly in the presence of

QLT0267 (Fig. 2A; dashed line). The rate of a-granule
release, as measured by P-selectin exposure, peaked later

than fibrinogen binding, at 103.3 � 19.5 s, but was simi-

larly reduced (Fig. 2B; dashed line). Although there was a

trend towards a decrease in maximum fibrinogen binding

or P-selectin exposure following treatment with QLT0267,

there was no significant difference in either (Fig. 2A,B;

solid line). As CRP-XL is a GPVI-specific agonist, this

suggests that the reduction in platelet activation is not

attributable to the involvement of ILK in a2b1 signaling.

This effect of ILK appears to be restricted to stimulation

via GPVI, as there was no observable difference in either

the rate of or maximum fibrinogen binding or P-selectin

© 2014 The Authors Journal of Thrombosis and Haemostasis published by Wiley Periodicals, Inc. on behalf of International Society on Thrombosis and Haemostasis
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exposure following treatment with QLT0267, when plate-

lets were stimulated with either ADP (Fig. 2C,D) or

thrombin (Fig. 2E,F). It is worth pointing out that ILK

may affect other aspects of thrombin-mediated platelet

activation, as QTL0267 clearly retards thrombin-induced

clot retraction (Fig. 1F), and, although KO mice did not
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Fig. 1. Deficiency or inhibition of integrin-linked kinase (ILK) reduces the rate of platelet activation. (A) Platelet aggregation in response to

collagen (100 lg mL�1) was measured in mice with an induced ILK deficiency (KO) as compared with sibling matched controls (Ctrl) [14]. All

data are expressed as a percentage of Ctrl aggregation at each time point. (B) A representative trace is shown. (C, D) The binding of anti-

fibrinogen antibodies to cross-linked collagen-related peptide (CRP-XL)-stimulated platelets from (C) Ctrl and (D) KO mice was measured by

flow cytometry in the presence (red dashed line) or absence (blue line) of QLT0267 (1 lM). (E) Aggregation of collagen-stimulated

(10 lg mL�1) human washed platelets was measured in the presence of the ILK inhibitor QLT0267 (1 lM) or dimethylsulfoxide (DMSO) con-

trol. All data are expressed as a percentage of aggregation in the DMSO control samples at each time point. (F) Clot retraction was measured

in the presence of QLT0267 (1 lM) or DMSO (0.025% v/v). The clotting was initiated with thrombin (1 U mL�1), and a sealed glass capillary

was placed at the center of the glass test tube, around which the clot formed. Clots were removed, gently blotted to remove superficial liquid,

and then weighed after 1.5 and 3 h. In all cases: *P ≤ 0.05, ***P ≤ 0.001, n = 3. All data are presented as mean � standard deviation, and

were analyzed by two-way ANOVA with post hoc Bonferroni correction for multiple comparisons to compare treated and control samples at indi-

vidual time points. WT, wild-type.
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show an aggregation defect following thrombin stimula-

tion (Fig. S1), we have previously reported a reduction in

other aspects of thrombin-induced platelet activation in

these mice [14].

Importantly, the inhibitory effect of QLT0267 on the

rate of fibrinogen binding following CRP-XL stimulation

occurred before any measurable degranulation was

observed (Fig. 2A,B). Furthermore, there was no signifi-

cant difference between treated and untreated platelets in

the surface expression of aIIbb3 at the early time points

(0–50 s), when the rate of fibrinogen binding to activated

aIIbb3 is reduced (Fig. 2G). This demonstrates that the

reduction in the rate of fibrinogen binding to platelets is

not attributable to reduced aIIbb3 surface expression, but

to a reduction in early activation of aIIbb3. In line with

our previous data on KO mice, inhibition of ILK did

reduce the surface expression of aIIbb3 at later time points

(Fig. 2G).

To establish whether the inhibition of aIIbb3 activation

at early time points was attributable to inhibition of sig-

naling events leading to ‘inside-out’ activation of aIIbb3,
we measured calcium flux in the presence or absence of

QLT0267. Surprisingly, the inhibition of ILK with

QLT0267 led to a significant reduction in the rate of cal-

cium flux in response to CRP-XL, but had no detectable

effect on peak calcium flux (Fig. 3A). It seems unlikely

that ILK has a direct effect on signaling immediately

downstream of GPVI; instead, we hypothesized that this

inhibitory effect may be the result of reduced aIIbb3
signaling in the very earliest stages of platelet activation.

To test this, we measured calcium flux in response to

CRP-XL with or without QLT0267 in the presence of

EDTA to prevent aIIbb3 activation and isolate the GPVI-

dependent mobilization of calcium. Under these condi-

tions, ILK inhibition did not affect the rate of calcium

flux (Fig. 3B), indicating that the inhibitory effect of

QLT0267 on platelet calcium mobilization is not attribut-

able to augmentation of signaling downstream of GPVI,

but to signaling downstream of aIIbb3. The observation

that inhibition of ILK does not affect the initial rate of

platelet activation following ADP and thrombin stimula-

tion may stem from the different mechanisms by which

these agonists control the activation of RAP1 leading to

aIIbb3 activation [28,29].

Collectively, the aggregation, flow cytometry and clot

retraction data show that deficiency or inhibition of ILK

impairs the rate at which platelets can respond to stimula-

tion while only modestly inhibiting the maximal extent to

which platelets can become activated. Given the dynamic

nature of thrombus formation, it may be that a reduction

in the rate, rather than in the maximum extent, of platelet

activation is critical in regulating thrombus development.

It is, however, also conceivable that this apparently subtle

phenotype is overwhelmed and rendered inconsequential

in vivo by vascular endothelial-derived mediators (e.g.

nitric oxide or prostanoids) resulting in the limited bleed-

ing phenotype. It is worth pointing out that expression of

the Mx1 promoter is not specific to megakaryocytes, and

may therefore have unknown effects on other cell types

that account for the disparity between our previous

in vivo and in vitro data. To test these competing hypoth-

eses, we assessed platelet aggregation in vivo in Ctrl and

KO mice. Platelet aggregation in vivo was reduced signifi-

cantly in KO mice (Fig. 4). Over the range of collagen

concentrations used, both the maximum percentage

change in counts and the area under the curve were

reduced in KO mice (P < 0.0001 and P = 0.0001, respec-

tively). This demonstrates the importance of a change in

the rate of platelet activation in this more physiologic

setting. It also demonstrates that this platelet phenotype

is still functionally relevant in vivo, but raises a number

of questions. Is the reduced level of accumulation of

thrombi in the lungs attributable to a reduced platelet

response to collagen or reduced stability of the thrombi

that form? Are the effects of ILK deficiency overcome by

the high concentration of collagen at the site of injury?

The latter question may be important, given that the

reduction in platelet aggregation in KO mice was most

pronounced at intermediate concentrations of collagen,

and largely overcome at higher concentrations (Fig. 4B,C,

E,F). This may help to explain the disparity between

platelet and hemostatic responses in these mice.

To test whether thrombus stability was altered in KO

mice, and whether local collagen concentrations at the

site of injury overcome the reduction in platelet function

observed in KO mice, thereby reducing the impact of

ILK on thrombus formation, we measured thrombus for-

mation following laser injury of the cremaster arteriole

wall in Ctrl and KO mice. Thrombus formation was

altered significantly in KO mice (Fig. 5A–D; Fig. S2).

Although there was no statistical difference between Ctrl

and KO mice in the sum fluorescence intensity of thrombi

(a measure of the total platelet mass recruited to the site

of injury) or the thrombus area (a measure of thrombus

size) at any time point, or between the maxima of these

measures (Fig. 5C,D), there were noticeable differences

between their thrombi. Notably, the thrombi in KO mice

were unstable, forming, embolizing and reforming contin-

uously (Fig. 5A, Fig. S2). It is this instability that, at

later time points, leads to the apparent greater thrombus

size in KO mice, which is the result of multiple unstable

thrombi forming and embolizing out of phase with each

other (Fig. 5C,D; Fig. S2B). Methods to quantify throm-

bus stability in this system have not been described. To

capture, in a quantifiable manner, this important readout

of thrombus stability, we developed a new method that

allowed us to assess the stability of thrombi. The throm-

bus instability index (TII) measures the standard devia-

tion of data immediately preceding each time point to

quantify changes (growth, retraction, or embolization) in

thrombus size. Ctrl mice had a characteristic double-

peaked TII trace. TII increased as thrombi grew in
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response to injury, decreased as thrombus size reached its

maximum and plateaued, increased again during retrac-

tion, and then showed a sustained period of stability (low

TII) resulting from the formation of a stable hemostatic

thrombus (Fig. 5E, top panel). In contrast, thrombi form-

ing in KO mice showed greater instability, growing to a

similar size as those of Ctrl mice but then embolizing,

growing again, and embolizing repeatedly. This was

clearly observed by the extension of peaks in the TII trace

from KO mice into the third and fourth minute after

laser injury (Fig. 5E, bottom panel). Thus, in KO mice,

TII remained high over the 4-min measurement period,

and was significantly higher than in Ctrl mice after 2 min

(Fig. 5F). Clearly, ILK deficiency and the associated

reduction in the rate of platelet activation does not pre-

vent thrombus formation, but it does significantly alter

the development and stability of thrombus formation.

Discussion

We set out to examine the role of ILK in regulating the

rate of platelet activation and thrombus formation, in an

effort to understand the previously reported disparity

between the reduced platelet function and the only modest

increase in bleeding in mice with an induced ILK defi-

ciency. We confirmed that inhibition of ILK reduced the

rates of both fibrinogen binding and a-granule secretion in

response to CRP-XL but not ADP or thrombin, and dem-

onstrated that the reduced rate of fibrinogen binding was a

consequence of reduced aIIbb3 activation rather than

reduced translocation of aIIbb3 to the platelet surface. Inhi-

bition of ILK resulted in a reduced rate of clot retraction

(indicating reduced ‘outside-in’ signaling) and a reduction

in the rate of calcium flux that was driven by signaling

downstream of aIIbb3, not GPVI. The reduced rate of

platelet activation was accompanied by only moderate

reduction of the maximum extent of platelet activation or

aggregation in vitro. However, absence of ILK led to a

reduction in platelet aggregation in vivo, and a marked

increase in the instability of thrombi. Taken together, these

findings indicate that, although ILK is not essential for

platelet activation, it plays a critical role in facilitating

timely platelet activation, which is essential for stable

thrombus formation. This deeper understanding of the role

of ILK provides an explanation for previous findings.

Mice with systemically induced ILK deficiency do have a

defect in thrombus development, as would be expected,

given the impairment of platelet function, but they still

form thrombi and hence prevent excessive bleeding.

Thrombus formation is a highly dynamic, sequential pro-

cess, and it is therefore intuitive that the rate at which plate-

lets become activated during this process will have a

significant impact on thrombus size and structure. The

results for KO mice clearly demonstrate this effect. It is par-

ticularly interesting that ILK deficiency does not prevent

thrombus formation, as can be seen in CalDEG-GEFI-

deficient mice, in which the rate of platelet activation is also

impaired [28–30], but instead alters the stability of thrombi

that form. In interpreting this difference, it is important to

note that: (i) although the maximum rate of activation is

reduced in Figs 2 and 3, the very earliest responses to CRP-

XL (the time at which the first detectable response can be

seen and the very earliest rate of response) are the same

with or without ILK inhibition; and (ii) the rate of fibrino-

gen binding and P-selectin expression in response to ADP

and thrombin are unaffected by ILK inhibition.

Together, these data suggest a scenario in which, in the

absence of ILK or following ILK inhibition, platelets

adhere to the site of injury and become activated by col-

lagen. This is supported by our previous findings that the

surface exposure of a2b1 or GPVI is not altered in ILK-

deficient platelets, and neither is the initial adhesion of

platelet to collagen [14]. Full activation of these initially

adherent platelets is, however, delayed, as shown by

reductions in the rate of calcium flux, aIIbb3 activation,

degranulation, and clot retraction. Subsequent platelets

binding to these partially activated platelets will react

normally to stimulation by thrombin and ADP, leading
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to thrombus formation. We hypothesize that, as the

thrombus grows, the force exerted on the initial, collagen-

activated platelets at the base of the thrombus will

increase. The delay in full activation of these platelets

renders the thrombus unstable, as the force exerted on

these platelets becomes greater than the strength of the

bonds between the platelets, leading to embolization.

It is clear that relatively subtle changes in the dynamics

of platelet activation can have a profound effect on

thrombus formation, and it is perhaps worth speculating
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© 2014 The Authors Journal of Thrombosis and Haemostasis published by Wiley Periodicals, Inc. on behalf of International Society on Thrombosis and Haemostasis

ILK, platelet activation and thrombus stability 1349



that components of signaling pathways that regulate the

rates of different aspects of platelet activation or alter the

rates of activation to differing degrees may have pro-

foundly different effects on thrombus formation.

Previous studies have shown that ILK effects both inte-

grin activation and downstream signaling [2,31]. The data

presented here suggest that in platelets these two facets of

ILK are linked. Thus, that upon collagen receptor stimu-

lation, the effect of ILK in enhancing ‘outside-in’ signal-

ing at early (< 60 s) time points acts as a positive

feedback loop that enhances the rate of calcium flux and

further ‘inside-out’ aIIbb3 activation. Modulation of the

rate of aIIbb3 activation in the presence of QLT0267,

which is a selective inhibitor of the serine/threonine

kinase domain of ILK, suggests that this domain is

important. The role of ILK as a kinase is controversial

[32]; however, it is through the kinase domain that ILK

binds to parvin, paxillin, c-Src, and others [33–35]. It is

therefore possible that QLT0267 disrupts the ability of

ILK to act as an adaptor protein, possibly altering the

role of the IPP complex in regulating Ras and Rho family

GTPases, modulation of which has been shown to alter
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Fig. 5. Induced integrin-linked kinase (ILK) deficiency increases thrombus instability. (A, B) Representative images of thrombus formation fol-

lowing laser injury of the cremaster arteriole wall of (A) control (Ctrl) and (B) knockout (KO) mice measured over a period of 4 min. (C, D)

There was no significant difference in (C) the sum fluorescence intensity or (D) the area of thrombi formed in KO and Ctrl mice. The shaded
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the rate of platelet activation and thrombus stability

[30,36]. Another potential consequence of ILK inhibition

or deficiency may be reduced kindlin activation. The

interaction of ILK with kindlin has been shown to be an

important step in regulating the conformational change

of kindlin that precipitates its binding to b-integrins [37],

which, in concert with the binding of talin, leads to acti-

vation of aIIbb3. Whichever of these mechanisms is

responsible for ILK-mediated regulation of aIIbb3, it is

interesting to note that the effects of inhibiting ILK could

only be observed following stimulation with collagen or

CRP-XL, and not in response to ADP or thrombin. This

difference may relate to the mechanisms by which GPVI

and the G-protein-coupled receptors regulate the activa-

tion of talin and hence ‘inside-out’ signaling, and their

relative reliance on feedback mechanisms (such as ‘out-

side-in’ signaling) to fully activate the large numbers of

aIIbb3 molecules on the platelet surface. Teasing apart the

relative importance of these mechanisms and their impact

on different agonist pathways will be the focus of future

work.

We conclude that ILK has a role in regulating the rate

of the platelet response to collagen via GPVI. Inhibition

or deficiency of ILK reduces the rate at which platelets

activate and form stable aggregates. The physiologic con-

sequences of this are a reduction in thrombus stability

and an inability to form tight hemostatic thrombi in a

timely manner.
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