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Abstract Advanced forecasting of space weather requires simulation of the whole Sun-to-Earth system,
which necessitates driving magnetospheric models with the outputs from solar wind models. This presents
a fundamental difficulty, as the magnetosphere is sensitive to both large-scale solar wind structures, which
can be captured by solar wind models, and small-scale solar wind “noise,” which is far below typical solar
wind model resolution and results primarily from stochastic processes. Following similar approaches in
terrestrial climate modeling, we propose statistical “downscaling” of solar wind model results prior to their
use as input to a magnetospheric model. As magnetospheric response can be highly nonlinear, this is
preferable to downscaling the results of magnetospheric modeling. To demonstrate the benefit of this
approach, we first approximate solar wind model output by smoothing solar wind observations with an
8 h filter, then add small-scale structure back in through the addition of random noise with the observed
spectral characteristics. Here we use a very simple parameterization of noise based upon the observed
probability distribution functions of solar wind parameters, but more sophisticated methods will be
developed in the future. An ensemble of results from the simple downscaling scheme are tested using a
model-independent method and shown to add value to the magnetospheric forecast, both improving the
best estimate and quantifying the uncertainty. We suggest a number of features desirable in an operational
solar wind downscaling scheme.

1. Introduction

Increasing reliance on space-based technologies, notably GPS and continuous satellite-based Earth observa-
tion, leads to increasing societal need to characterize and forecast space weather, particularly geomagnetic
storms. These are periods of enhanced disturbances to the terrestrial magnetosphere resulting from variabil-
ity in the near-Earth solar wind [e.g., Feynman and Gabriel, 2000; Hapgood, 2011]. Such storms pose a serious
threat to the power grid via geomagnetically induced currents, particularly as the system is restructured to
incorporate renewable power sources [e.g., Thomson et al., 2010].

Geomagnetic activity can, in principle, be forecast through magnetospheric and ionospheric simulations
driven by upstream solar wind conditions (though there remain many technical and scientific challenges).
While ionospheric conductivity is an important and active inner-magnetospheric boundary condition
[e.g., Merkin and Lyon, 2010], the most common approach to magnetospheric modeling is simply to impose
the outer boundary conditions using in situ solar wind observations from spacecraft at the first Lagrange
point (L1). As L1 is approximately 99% of the distance from the Sun to the Earth, the solar wind undergoes
little further evolution before arriving at the magnetosphere. Thus, L1 is an ideal position for very short
lead time or “nowcasting” of magnetospheric and ionospheric conditions, but any forecast lead time is lim-
ited to well under an hour. Solar wind observations from closer to the Sun could, theoretically, extend this
lead time significantly. Maintaining a spacecraft in such an orbit, however, is difficult and no such capability
currently exists.

By driving magnetospheric simulations with predictions from coronal and solar wind models, as opposed
to L1 spacecraft observations, the forecast lead time can be extended from under an hour to 2–4 days,
the solar wind travel time from the Sun to Earth. Figure 1 shows a chain of coupled numerical models for
space weather forecasting, ultimately driven by remotely sensed photospheric magnetic field observations,
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Figure 1. A coupled numerical scheme for predicting space weather using photospheric magnetic field observations. Using model solar wind output to drive
magnetospheric simulations requires significant spatial and temporal downscaling of the time series.

though white light observations of the corona are also being investigated as initialization method. Indi-
vidual model components are those used in Luhmann et al. [2004] and Merkin et al. [2007], listed here
only as examples. Such “Sun-to-Earth” forecasting of geomagnetic storms can be broadly considered a
two-step process: forecasting the solar wind conditions in near-Earth space, and forecasting the subsequent
magnetospheric response to those solar wind conditions.

As discussed, solar wind models are initiated with coronal models which are constrained by photospheric
magnetic field data. This approach is often capable of reproducing the steady state, large-scale structure
of the ambient solar wind in near-Earth space [e.g., Owens et al., 2008] (see also Figure 2), though there is
obviously much ongoing work to further improve their predictive capability. Initial attempts at simulating
large-scale transient structures such as coronal mass ejections are also promising [Titov et al., 2008]. How-
ever, using solar wind model output to drive magnetospheric models presents a fundamental problem:
the magnetosphere is sensitive to both the large-scale structure, which is captured by solar wind models,
and small-scale fluctuations which are far below both typical solar wind model spatial and temporal scales
[Borovsky and Funsten, 2003; Merkin et al., 2007]. Much of this solar wind “noise,” loosely defined here as
fluctuations below the 1 day time scale (shown as the vertical dashed line in Figure 2), is likely the result
of stochastic processes such as turbulence [e.g., Horbury et al., 2001; Alexandrova et al., 2009]. Thus, even
substantial improvements/developments in the numerics and physics of solar wind models are unlikely to
be able to deterministically forecast these structures. As the solar wind noise can change simulated mag-
netospheric responses by an order of magnitude [Merkin et al., 2007], a qualitatively different approach
is required.

2. Downscaling Techniques

The terrestrial weather- and climate-modeling communities have addressed similar scaling issues to
those described in the previous section. For example, global climate models (GCMs) are used to predict

Figure 2. (left) The solar wind speed in near-Earth space for Carrington Rotation 1958 (i.e., January 2000). Black: 64 s
resolution observations from the Advanced Composition Explorer (ACE) spacecraft. Red: Model predictions based upon
Kitt Peak magnetograms. (right) The power spectrum in the same format. Although the large-scale structure of the
solar wind is very well reproduced by the numerical modeling scheme during this particular interval, fluctuations below
approximately 1 day (shown as the vertical dashed line) are much weaker. This is a fundamental limitation of using
magnetogram-derived solar wind properties to drive magnetospheric simulations.
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precipitation, which is typically determined by processes on spatial scales finer than GCMs can resolve
[Christensen and Christensen, 2003]. Two different approaches are generally taken [e.g., Christensen and
Christensen, 2003; Maraun et al., 2010, and references therein]. The first method is to nest higher spatial res-
olution grids within coarser global models, allowing finer-scale structure to be resolved where required.
This method would not allow deterministic forecast of solar wind noise but could, in principle, predict the
correct spectral characteristics. However, as there is evidence of small-scale structure convecting from the
Sun to Earth [Viall et al., 2009], this would require higher spatial resolution along the entire Sun-Earth pas-
sage, which would be both computationally expensive and highly model dependent, requiring individual
implementation in whatever solar wind code is used. Furthermore, it is not clear that even with increased
resolution current solar wind models would be able to accurately capture physical processes responsible
for turbulent formation and evolution [e.g., Bruno and Carbone, 2005, and references therein]. The sec-
ond method is to use statistical relations between large- and small-scale parameters. If it is assumed that a
model perfectly reproduces the large-scale parameters (i.e., it provides a “perfect prognosis” at these time
scales), the downscaling can be based entirely on regression between observed small-scale and observed
large-scale parameters, as the latter are assumed to be identical to the model outputs. While this will not
correct for any systematic biases in the model-predicted solar wind, it is entirely model independent. Con-
ditional weather generators perform a similar function, but instead of using large-scale parameters to make
a single small-scale prediction, they generate a randomized time series at the local scale with the correct
spectral properties [Wilks and Wilby, 1999].

Previous studies suggest that magnetospheric response to small-scale solar wind structure is primarily
determined by the spectral properties of the fluctuations rather than their precise timing and phasing. The
inclusion of the solar wind fluctuations increases the dayside magnetospheric ULF wave power [Huang et
al., 2010] and consequently improves statistical agreement with observations of the inner magnetosphere
during high-speed solar wind streams (S. L. McGregor et al., Modeling magnetospheric response to syn-
thetic Alfvénic fluctuations in the solar wind: 2. ULF wave fields in the magnetosphere, submitted to Journal
of Geophysical Research, 2014b). However, the magnetosphere is such an integrated and stochastic system,
that simulations can only predict statistical patterns of plasmoid response (S. L. McGregor et al., Modeling
magnetospheric response to synthetic Alfvénic fluctuations in the solar wind: 1. Effects on plasmoid evo-
lution, submitted to Journal of Geophysical Research, 2014a). Thus, a “perfect prognosis weather generator,”
which assumes the undownscaled model solar wind values are correct and simply adds appropriate noise, is
a valid approach to the space weather scaling issue. We note that downscaling the magnetospheric, rather
than solar wind, model results would be more computationally efficient, but the non-linear response of the
magnetosphere to small-scale structure in the solar wind renders this approach inadequate. In the remain-
der of this paper, we put together a simple version of a solar wind downscaling scheme and demonstrate
both how best to validate the process and the value it adds to space weather forecasting.

3. Introducing Noise to Solar Wind Models
The Advanced Composition Explorer (ACE) spacecraft provides continual in situ measurements of the solar
wind in near-Earth space. The entire ACE magnetic field and plasma data set (1998–2011) at 64 s resolu-
tion, the spin period of the spacecraft, is used to produce probability distribution functions (PDFs) of ΔX ,
point-to-point changes in solar wind parameter X (as per Borovsky [2008] and Owens et al. [2011]), in the
three components of magnetic field vector, three components of the proton velocity vector, proton density,
and temperature. These are shown in Figure 3. From the PDFs, we generate cumulative distribution func-
tions (CDFs). These are used to introduce high-frequency noise to solar wind model time series. To demon-
strate and test this process, we select a 2 day interval from 4 January 2000 to 6 January 2000. Two days
is chosen as it is a reasonable run time for a magnetospheric simulation. The black line in Figure 4 shows
that this interval is rather unremarkable in character though does feature both fast and slow solar wind.

The first step is to produce a “model-like” time series for this interval, which perfectly reproduces the
large-scale features, but none of the noise. The simplest method is to smooth the observed ACE time series
with an 8 h filter. The result is shown as the blue lines in Figure 4. This level of filtering produces a similar
“smoothness” in the time series to current solar wind models [Riley et al., 2001; Odstrcil et al., 2004; Tóth et
al., 2005]. Using smoothed observations, rather than actual model data, allows testing of the downscaling
scheme without introducing any solar wind model bias. This synthetic model-like time series correctly
reproduces the large-scale features of the solar wind but does not capture the small-scale fluctuations.
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Figure 3. Probability distribution functions of ΔX , point-to-point differences in various solar wind parameters.

The next step is to downscale the model-like time series. The process described here is the simplest means
to test the general downscaling approach, rather than an operationally ready downscaling scheme. We use
a random number generator (RNG) to create a series of numbers between 0 and 1 with uniform probability.
These are used to draw values of |ΔX| from the appropriate observationally determined CDF. A second RNG

Figure 4. The 2 day solar wind interval used in this study. The observed 64 s ACE solar wind time series is shown in
black and as grey-shaded regions, while the model-like time series, obtained from an 8 hour filter of the ACE data, is
shown in blue. The downscaled model-like series is shown in red. (top to bottom) The radial (BX ) and out-of-ecliptic (BZ )
components of the magnetic field in GSE coordinates, followed by the radial solar wind speed, |VX |, the proton density,
nP , and the proton temperature, TP .
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series is used to make approximately half the solar wind changes negative, creating a ΔX time series. The X
noise time series is then assembled by joining successive ΔX values. As the large-scale structure is assumed
to be captured by the solar wind model, the noise-only time series is linearly detrended in 1 h chunks to
remove any drifts from the RNG (however, as fluctuations are approximately symmetric about zero, very
little detrending is actually required and only weak 1 hour periodicity is introduced). Finally, this noise time
series is added to the model-like time series to give the downscaled model-like time series, shown as the
red line in Figure 4. As expected, the downscaled model-like time series shows the same large-scale trends
as the undownscaled model-like series but similar small-scale variability to the ACE solar wind. Obviously,
the downscaled noise does not provide a one-to-one match with the observed fluctuations, but as a RNG
was used, this is only one possible solution and an ensemble of downscaled solar wind time series can easily
be produced (see section 5). Note also that the largest observed changes in, e.g., BZ , are not present in the
downscaled time series as the simple PDF approach does not include the effect of intermittency across time
scales other than 64 s, etc.

4. Magnetospheric Response

The “skill” gained by the using the downscaling scheme, if any, is now tested by comparing the magne-
tospheric response with and without the downscaling scheme. We use the Lyon-Fedder-Mobbary (LFM)
[Lyon et al., 2004] magnetospheric/ionospheric simulation, version 2.1.1, at NASA’s Community Coordinated
Modeling Center (CCMC). Both the downscaling scheme itself and testing procedure are required to be
independent of both solar wind and magnetospheric models, as many different combinations of models
are possible. While we must necessarily assume that the magnetospheric model being used responds to
small-scale solar wind changes in the correct sense, the following approach is taken in order to minimize any
further magnetospheric model bias in validation:

1. LFM is first run using the actual 64 s ACE observations, providing a “baseline” result against which all other
runs are compared. Any systematic bias in the magnetospheric model is incorporated at this stage.

2. LFM is run using the undownscaled model-like time series (i.e., ACE observations with 8 h filter). The differ-
ence between this result and the baseline will be entirely due to the lack of solar wind noise as the same
magnetospheric model bias is present in both sets of results.

3. LFM is then run a third time using the downscaled model-like time series. Comparison of this result
with both the baseline and undownscaled model-like results quantifies any skill added by the
downscaling scheme.

This process could be applied to any metric of magnetospheric disturbance, ideally chosen to specifically
emphasize the desired forecasting application. In this study we use two simple diagnostics of the global
magnetospheric state, which are routinely calculated as part of the CCMC’s simulation runs, namely, the
magnetopause standoff distance at local noon, RMP, and ionospheric Joule heating computed from radial
current and electric potential, JR𝜙. For the purposes of demonstrating the downscaling validation process,
the details of these properties are somewhat irrelevant; what is important is how these parameters compare
between runs using the observed solar wind, undownscaled model-like, and downscaled model-like time
series, shown as black, blue, and red lines in Figure 5, respectively.

Table 1 lists the statistical properties of the magnetospheric response to the various solar wind time series.
In general, the effect of this single realization of downscaling is to bring the mean and standard deviations
of magnetospheric parameters closer to those obtained from the use of actual ACE observations (this is
further illustrated in the reliability diagrams in Figure 7, discussed in the next section). Despite this statistical
improvement, this single downscaling instance also increases the point-by-point error (i.e., the mean-square
error increases, and the linear correlation decreases). Note, however, that point-by-point analysis may not be
the best assessment of the usefulness of a forecast, as it frequently over penalizes forecasts which exhibit the
correct variability but contain small timing errors [e.g., Owens et al., 2013, Figure 8]. In the next section, we
test the value added to downscaled forecasts using an ensemble approach rather than a single realization.

5. Ensemble Results

As the noise added by the downscaling scheme is produced by a random number generator, it is trivial to
produce multiple noise realizations. By running the magnetospheric model multiple times with each down-
scaled model-like time series, we can produce a simple ensemble forecast [Leutbecher and Palmer, 2008] of
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Figure 5. Magnetospheric response to different solar wind time series. Black, blue, and red lines show the observed,
undownscaled, and downscaled model-like time series, respectively. (top) The magnetopause standoff distance at local
noon (RMP). (bottom) Ionospheric Joule heating computed from radial current and electric potential (JR𝜙 . Solid (dashed)
horizontal lines show the observed 50th (90th) percentile values.

magnetospheric conditions. Figure 6 shows the results from an ensemble of five magnetospheric model
runs driven by five individual model-like downscales (including the one shown in Figure 5), in a similar
format to Figure 5. The red line shows the ensemble mean, while the pink-shaded area shows the spread
between the maximum and minimum values of ensemble members. In an operational forecast capacity,
more than five ensemble members would ideally be used.

The ensemble results show a number of important points. As downscaled solar wind noise is random fluc-
tuations about the undownscaled values, a purely linear magnetospheric response would result in the
magnetospheric ensemble downscaled mean (red) being identical to the undownscaled run (blue), so long
as a sufficiently large number of ensemble members are included. For much of the interval, this is a rea-
sonable approximation, but there are clearly times when the ensemble downscaled mean significantly
deviates from the undownscaled magnetospheric response, e.g., Jr𝜙 on days 0.4, 0.8, and 1.7. Here the mag-
netosphere is better reconstructed when solar wind noise is added, regardless of the precise timing and
orientation of these fluctuations. This demonstrates the value in downscaling the solar wind model results,
rather than simply downscaling the magnetospheric model output, which would be cheaper computation-
ally. A further point of note, again most prominent in Jr𝜙, is that the ensemble spread is generally greatest

Table 1. Magnetospheric Response to Driving by Various Solar Wind Time Seriesa

RMP (RE ) JR𝜙 Giga Watts (GW)
Mean SD rL MSE Mean SD rL MSE

ACE observations 10.23 0.579 – – 50.1 40.9 – –
Undownscaled model-like time series 10.41 0.349 0.537 0.490 31.8 18.3 0.530 34.9
Single model-like downscale 10.31 0.440 0.376 0.581 39.8 27.9 0.408 39.0

aSD = standard deviation; MSE = mean-square error.
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Figure 6. Same as Figure 5 but with the red line showing the downscaled ensemble mean and pink-shaded region
showing the spread between maximum and minimum values of ensemble members.

when the ensemble mean is furthest from the observed value. This suggests that even when downscaling

does not necessarily improve the magnetospheric forecast, it does at least provide a useful estimation in the

uncertainty in the forecast, as discussed below.

Figure 7 (left) shows magnetospheric reliability diagrams, plots of the observed CDF against that

of a forecast, for RMP (top) and Jr𝜙 (bottom) resulting from undownscaled, single downscale, and

ensemble-downscaled model-like time series. These plots basically quantify a forecast’s ability to produce

the observed climatology [e.g., Atger, 1999]. The mean reliability, R, is the average square difference between

the observed and forecast frequency in the different CDF categories. Thus, a forecast with a perfect reliabil-

ity would have R = 0, and the associated reliability curve would lie exactly along y = x, shown by the dashed

diagonal line. The undownscaled model-like time series has the worst reliability (33.6 for RMP and 101 for Jr𝜙),

primarily because its dynamic range does not capture the small values of RMP and large values of Jr𝜙 that are

observed. The downscaled model-like time series substantially improves the reliability (11.1 for RMP and 29.3

for Jr𝜙), though the same basic trends are still present. Even with only five members, the ensemble approach

is found to be more a small but significant amount more reliable (9.28 for RMP and 26.7 for Jr𝜙) than a single

downscaling realization.

Figure 7 (right) shows the “spread” (the standard deviation between ensemble members), as a function of

the “error” (the mean-square error between the ensemble mean and observations) [e.g., Atger, 1999]. Corre-

lation in the “spread error” plot quantifies how well an ensemble correctly captures periods of uncertainty

in the forecast. Both the RMP and Jr𝜙 spread error plots show correlation significant above the 95% level

(rL = 0.166 for RMP and 0.544 for Jr𝜙). The spread error uncertainty estimate is particularly good for Jr𝜙, which

responds highly nonlinearly to solar wind forcing, and suggesting the ensemble approach adds significant

value to the forecast.
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Figure 7. (left) Reliability diagrams for (top) RMP and (bottom) Jr𝜙 resulting from undownscaled, single downscale, and
ensemble downscale model-like time series. (right) Ensemble spread error diagrams. See text for discussion.

6. Potential Economic Value of Downscaling

The value of a probabilistic forecast ultimately lies in its use as a decision-making tool. Here we use a
cost/loss model [Murphy, 1977; Richardson, 2000], widely used in testing the value of numerical weather pre-
dictions, which aims to quantify the benefit (or otherwise) of taking action based upon a forecast. As this
method is not widely used in space weather, we here illustrate the basic principle with a hypothetical exam-
ple. Let us assume that a satellite operator can put his/her hardware into safe mode to protect against space

Table 2. The Expense Matrix For a Deterministic
Forecast, Such as the Undownscaled Model-Like
Time Series or a Single Realization of Solar Wind
Downscalinga

Forecast
Ft ≤ T Ft > T

Observed Ot ≤ T 0 C
Ot > T L C

aOt (Ft) is the observed (forecast) value at
time t. T is the threshold at which action should
be taken. L is the economic loss suffered by not
taking action if T is exceeded, while C is the cost
of taking action.

weather effects, which come in to play when a magne-
tospheric parameter exceeds a threshold T . The cost of
temporarily interrupting operations is C, whereas (s)he
will incur an economic loss L if T is exceeded, and no pro-
tective action is taken. It is given that L > C, else there is
no benefit in ever taking action. In space weather appli-
cations, where L may represent the complete loss of a
spacecraft or the extended interruption to a power grid
[e.g., Kappenman, 2006], C∕L will generally be low.

In the complete absence of any forecast, it follows that
the spacecraft should be always operating (always in safe
mode) if the climatological probability of exceeding T is
less (greater) than C∕L. Thus, the climatological expense
over any interval, EC , is then the sum of the costs and
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Table 3. The Expense Matrix For a Probabilistic
Forecast, Such as the Ensemble of Downscaled
Model-Like Time Seriesa

Forecast

Pt ≤ C∕L Pt > C∕L

Observed Ot ≤ T 0 C

Ot > T L C

aOt is the observed value at time t. Pt is the
ensemble forecast probability that T , the thresh-
old at which action should be taken, will be
exceeded. L is the loss suffered by not taking
action if T is exceeded, while C is the cost of
taking action.

losses incurred at each time step. In this study, we do
not have access to a full LFM climatology of RMP and Jr𝜙,
so we simply compute the climatological probability
over the same 2 day interval that is tested. Thus, EC will
be lower than in a “real-world” scenario and provides a
tougher test for the forecasts.

The undownscaled model-like time series and the sin-
gle downscaling realization both result in a deterministic
forecast of magnetospheric properties, in that the fore-
cast value at time t, Ft , is uniquely either ≤ T or > T . The
total forecast “expense,” EF , of acting upon these fore-
casts is then simply the sum of the cost/loss at each time
step, which can be computed from Table 2.

For the ensemble forecast, each time step has a proba-
bility of exceeding T at time t, Pt , determined by the fraction of ensemble members which exceed T . In this
case, the operator should take action only if Pt > C∕L and EF can then be computed by considering the
costs/losses at each time step, computed from Table 3.

Figure 8. The potential economic value of magnetospheric forecasts driven by different solar wind time series. (top and
bottom) The magnetopause standoff distance and ionospheric heating, respectively. (left and right) Action thresholds
above the median and 90th percentile. Blue/black/red lines show the undownscaled, single downscale realization, and
ensemble downscale, respectively.
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The potential economic value, V, of a forecast is then given by

V = 100
(

EC − EF

EC − E0

)
(1)

where E0 is the minimum expense that could be incurred over the interval considered (i.e., the sum of costs
for necessary protective action, which is equivalent to acting on a perfect deterministic forecast). Thus,
V = 100% means the forecast is perfect, whereas V = 0% means the forecast is more expensive than
simple climatology.

Figure 8 shows the potential economic value, V , as a function of cost/loss ratio (C∕L), for undownscaled and
downscaled driving of the magnetospheric model. We consider two threshold values, the observed 50th
and 90th percentiles, equivalent to testing a forecast’s ability to predict whether a parameter will be above
or below the median, and whether it can predict extremes of the observed distribution, respectively. For the
limited intervals under consideration here, Figure 8a shows that the downscaled ensembles improve fore-
casting relative to the median RMP at low and high C∕L but not intermediate values (0.25 < C∕L < 0.55). For
extremes of RMP (Figure 8b), the undownscaled forecast has no value above climatology at all C∕L values,
whereas the downscaled forecast, particularly in ensemble use, shows value at low C∕L. For Jr𝜙, (Figures 8c
and 8d) the downscaling ensemble provides a more valuable forecast than the undownscaled solar wind
at nearly all C∕L across both thresholds, but again this is most notable for the extreme threshold and at
low C∕L.

7. Discussion and Conclusions

The first half of this paper outlines a simple method of solar wind downscaling in order to more realistically
drive magnetospheric models with the output of solar wind models. It uses the observed solar wind noise
characteristics to insert random fluctuations into time series which approximate solar wind models. The sec-
ond half of the paper demonstrates a model-independent method of testing such downscaling schemes.
Applying these tests to the simple downscaling scheme shows that the process adds value to Sun-to-Earth
forecasting when an ensemble approach is taken. Downscaling seems to be most beneficial in improv-
ing forecasting skill at the extremes of observed conditions, particularly for low cost/loss ratios, which are
the most likely parameter regimes in space weather mitigation. There are, however, a number of obvious
improvements to the downscaling scheme which will be incorporated in future iterations:

1. There is observational evidence that the spectral properties of solar wind noise vary systematically with
solar cycle and between different solar wind types, such as fast and slow solar wind flows [Yordanova et
al., 2009; Borovsky, 2010; Hietala et al., 2014]. Thus, the solar wind noise PDF should be separated into
different solar wind types, namely, fast, slow, and transient/CME solar wind. The relevant noise PDF would
then be used to introduce noise into the solar wind model time series.

2. Within different solar wind types, the relation between observed noise and observed bulk solar wind
parameters could be quantified in order to generate a multidimensional “lookup” table of noise proper-
ties. This should be used to produce a “conditional weather generator,” which further tailors the spectrum
of noise introduced into the large-scale properties set by the model time series.

3. Fluctuations in solar wind parameters are known to be coupled, e.g., B and V variations in the presence of
Alfvén waves. The coupling between solar wind parameter fluctuations should be quantified and used to
produce a more physically realistic noise profile.

Finally, note that the methods of assessment used in this study consider each point in the time series inde-
pendently. So forecasts with the correct variability but small systematic timing errors will be penalized more
severely than a similarly flawed forecast which also underestimates the variability. Thus, if the general form
and magnitude of magnetospheric variations are of more value to an operator than the exact timings [e.g.,
Kappenman, 2006; Thomson et al., 2010], an event-based forecast assessment method [e.g., Owens et al.,
2005] may be more appropriate. This will form part of a future study.
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