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a b s t r a c t

With a rapidly increasing fraction of electricity generation being sourced from wind, extreme wind
power generation events such as prolonged periods of low (or high) generation and ramps in generation,
are a growing concern for the ef � cient and secure operation of national power systems. As extreme
events occur infrequently, long and reliable meteorological records are required to accurately estimate
their characteristics.

Recent publications have begun to investigate the use of global meteorological “reanalysis” data sets
for power system applications, many of which focus on long-term average statistics such as monthly-
mean generation. Here we demonstrate that reanalysis data can also be used to estimate the fre-
quency of relatively short-lived extreme events (including ramping on sub-daily time scales). Veri � cation
against 328 surface observation stations across the United Kingdom suggests that near-surface wind
variability over spatiotemporal scales greater than around 300 km and 6 h can be faithfully reproduced
using reanalysis, with no need for costly dynamical downscaling.

A case study is presented in which a state-of-the-art, 33 year reanalysis data set (MERRA, from NASA-
GMAO), is used to construct an hourly time series of nationally-aggregated wind power generation in
Great Britain (GB), assuming a � xed, modern distribution of wind farms. The resultant generation esti-
mates are highly correlated with recorded data from National Grid in the recent period, both for
instantaneous hourly values and for variability over time intervals greater than around 6 h. This 33 year
time series is then used to quantify the frequency with which different extreme GB-wide wind power
generation events occur, as well as their seasonal and inter-annual variability. Several novel insights into
the nature of extreme wind power generation events are described, including (i) that the number of
prolonged low or high generation events is well approximated by a Poission-like random process, and (ii)
whilst in general there is large seasonal variability, the magnitude of the most extreme ramps is similar
in both summer and winter.

An up-to-date version of the GB case study data as well as the underlying model are freely available for
download from our website: http://www.met.reading.ac.uk/~energymet/data/Cannon2014/ .

© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/ ).
1. Introduction

Due to the increasing market penetration of wind power,
extreme wind power generation events (such as prolonged periods
of low generation and ramps in generation) are of growing concern
to policy makers and transmission system operators. Widespread
.J. Cannon), d.j.brayshaw@

.uk (J. Methven), p.j.coker@
.com (D. Lenaghan).
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low (or high) power generation can persist because wind turbines
are insensitive to changes in wind speed when it is low (and tur-
bines produce little or no net power), or high (and turbines produce
their rated maximum power). Such persistent events have impor-
tant implications for electricity system capacity adequacy [1] , as
well as for wider energy system planning and strategic assessment
purposes. In the near future, persistent (multi-day) low generation
events will likely in � uence fuel reserve planning (especially for
natural gas), whilst in the longer term, quantifying their frequency
and severity will be essential for assessing the potential of inno-
vative technologies such as bulk energy storage [2] . Ramps in
under the CC BY license ( http://creativecommons.org/licenses/by/3.0/ ).



1 The MIDAS wind speed observations are not assimilated into MERRA.
2 The smoothed topography in MERRA is a result of the coarse (approximately

50 km � 50 km) horizontal grid used in the underlying numerical weather pre-
diction model.
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generation often occur at moderate wind speeds where turbine
output ranges from zero to a rated maximum power. They also
occur at extremely high wind speeds when turbines are shut down
for safety, though this is much rarer [3,4] . Such ramps in generation
provide challenges for transmission system operators, who
schedule reserve holding in advance and require long term stra-
tegies for system balancing [5] .

Assessing the frequency of extreme generation events directly
from power system data is problematic as there is too little data
available to determine representative return periods for events that
recur infrequently [6] . This is because wind speeds vary on inter-
annual and inter-decadal time scales [7,8] . In addition, the
geographical distribution of wind farms is constantly changing. In
Great Britain (GB), there has been a considerable shift towards wind
farms located in the south and offshore. For this reason, weather
events that occurred only a few years ago may not have the same
impact on the current wind farm distribution as they did before. In
response to these challenges, recent studies have estimated the
statistical behaviour of the wind resource by inferring the long-
term nationally-aggregated wind power output from surface-
based wind speed observations. For example [3,9] , estimated
long-term mean generation statistics for the United Kingdom (UK)
and GB respectively, including a brief analysis of low wind periods.
Recent studies such as[4,10,11] have also used surface observations
to estimate generation statistics.

As an alternative to surface-based observations, authors in
academia [12e 14] , government [1] and industry [15] have begun
investigating the potential usefulness of meteorological reanalysis
data. Modern “reanalyses” are constructed using global numerical
weather prediction models that assimilate observations from a
wide variety of sources including land surface stations, buoys,
radiosonde balloons, aircraft and satellites [16,17] . Reanalysis data
is, by construction, coarsely resolved and so cannot represent
small-scale wind � uctuations at a particular site [18] . Nevertheless,
as will be shown in Section 2, good agreement with surface-based
observations is found when considering variability over suf � ciently
large spatiotemporal scales.

For assessing wind power variability on a multi-hour, region-
ally-aggregated scale (as is the focus here), reanalyses may offer
numerous advantages over surface-based observations. Firstly,
wind observations are heavily in � uenced by their immediate locale
(local topography, vegetation or buildings), and so may not accu-
rately represent the conditions at nearby wind farms. In contrast,
because reanalyses do not resolve these local features, they
reproduce the large scale wind variability more faithfully. Secondly,
changing measuring equipment and recording standards produce
biases and discontinuities in the observational record. The impact
of these biases on reanalysis data is reduced by the use of multiple
observation sources, and by the consistent modelling (and data
assimilation) methods used throughout [16,17] . Thirdly, there are
few surface-based observations offshore, whereas reanalysis data
has global coverage. Finally, modern reanalysis products estimate
the wind at multiple vertical levels near the surface using atmo-
spheric boundary layer parameterisations. Whilst still heavily ide-
alised, their consideration of stability effects on the wind pro � le
represents an improvement over the assumption of a neutrally-
strati � ed boundary layer, which is implicit in most studies using
surface-based wind observations [4,10,11] .

1.1. Paper outline

This paper is divided into two main parts (Sections 2 and 3).
Section 2 begins by investigating the accuracy with which data
from the MERRA reanalysis [16] reproduces the observed variability
in near-surface wind speed (Sections 2.1e 2.2) and aggregated wind
power generation (Section 2.3) over different spatiotemporal
scales. Statistics of long-term mean aggregated wind power and
extreme events are then derived and compared to available power
system data (Sections 2.4e 2.5).

In Section 3, a 33 year climatology of GB-aggregated wind power
generation from 1980 to 2012 is used to estimate the frequency of
extreme events (persistent low or high generation and ramping),
assuming the wind farm distribution of September 2012 (Section
3.1). The inter-annual and seasonal variability of the results is
examined (Sections 3.2e 3.3), as well as the sensitivity to changes in
the assumed dependence of wind farm power generation on wind
speed (herein, the “power curve ”; Section 3.4).

Conclusions are presented in Section 4, where the potential
impacts of the climatology for power system management are
discussed.
2. Reanalysis veri � cation

2.1. 10 m altitude wind speed comparisons

The degree to which wind speeds in MERRA reproduce surface-
based, hourly, 10 m altitude UK wind observations from the MIDAS
archive [19] will now be evaluated. 1 To facilitate a proper com-
parison, the gridded MERRA data was bi-linearly interpolated to
obtain wind speeds at the co-ordinates of all 328 MIDAS stations.
Overall, the MIDAS observations span 1980 e 2011, though no indi-
vidual stations were operational for all 32 years.

Fig. 1(a) shows a site by site comparison between the 10 m
altitude wind speed records in MERRA ( V) and MIDAS (U). As [14]
similarly noted, whilst in most cases MERRA accurately re-
produces the MIDAS wind speeds (the correlation coef � cient is
0.73), there is a small systematic overestimation for around
U < 6 ms� 1 and a large underestimation for around U > 20 ms� 1.
The worst underestimations are removed when stations above
300 m altitude are discounted ( Fig. 1(b)). This is a result of the
smoothed topography used in MERRA, 2 which leads to arti � cially
low wind speeds for stations residing on the (unresolved) peaks
[20] . The smoothed topography may similarly contribute to the
small overestimation in wind speed for some low altitude stations.

Although MERRA cannot fully capture the observed MIDAS wind
variability at individual locations, the mean wind speed (spatially
averaged over all stations) is reproduced more accurately ( Fig. 1(c)).
The range of mean wind speeds is smaller than at individual sites,
re� ecting the reduced in � uence of extremely high winds which
only simultaneously effect a small number of stations. The corre-
lation coef � cient between the mean wind speeds in MERRA and
MIDAS is greatly increased (to 0.94), which is consistent with the
“smoothing ” commonly observed when averaging (or aggregating)
over large numbers of stations [3,21] . This smoothing reduces the
impact of small-scale wind variability, leaving the large-scale
variability (well resolved by MERRA) dominant. The improved
agreement in mean wind speed implies that MERRA should be
considerably more successful in reproducing regionally-aggregated
generation than that of an individual wind farm.

To evaluate the degree to which MERRA reproduces the tem-
poral variability observed in MIDAS, the above analysis was
repeated for the change in wind speed over different time spans. At
individual locations, MERRA tends to underpredict the change in
wind speed relative to MIDAS on short time spans ( Dt ¼ 3 hr,



Fig. 1. Comparisons between the 10 m altitude wind speeds from MERRA and MIDAS between 1980 and 2011, for (a) all MIDAS station locations, (b) only stations bel ow 300 m
altitude, and (c) the mean wind speed over all MIDAS station locations. The number of occurrences within 2.06 � 2.06 m2 s� 2 bins is shown on a logarithmic scale (2.06 ms � 1 is four
times the discretisation of the MIDAS wind speed data). The black solid line indicates a 1:1 agreement, whereas the dashed line shows a linear least squ ares � t to the data. The linear
correlation coef � cient is given by r.
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Fig. 2(a)), but is more accurate over longer time spans ( Dt ¼ 24 hr,
Fig. 2(d)). The most extreme changes in wind speed are consistently
underestimated, with the largest underestimations associated with
high altitude stations ( Fig. 2(b, e)). As before, the correlation coef-
� cient increases markedly when considering the spatial mean over
all stations ( Fig. 2(d, f)).

This analysis shows that MERRA successfully reproduces the
observed near-surface wind variability over large spatiotemporal
scales, but less accurately reproduces localised wind variability
(especially in regions of complex terrain) and changes in wind
speed over short time spans. In Section 2.2, the precise spatio-
temporal scales over which MERRA reproduces the observed vari-
ability are estimated.
Fig. 2. Comparisons between the rate of change in 10 m altitude wind speed in MIDAS ( DU) a
for (a, d) all MIDAS station locations, (b, e) stations lower than 300 m altitude, and (c, f) the mea
b, d, e) 2.06 ms� 1 by 2.06 ms� 1 or (c, f) 0.515 ms � 1 by 0.515 ms� 1 bins are shown on a logarit
solid 1:1 line indicates perfect agreement and the dashed line a linear least squares � t to th
2.2. Estimating the spatiotemporal scales over which MERRA
reproduces the observed wind variability

To estimate the spatial scales over which MERRA adequately
captures the observed wind variability in MIDAS, the difference in
wind speed between two stations ( i and j) in MERRA (dV ¼ Vi � Vj)
and MIDAS (dU ¼ Ui � Uj) are compared. In Fig. 3(a), the correlation
of dV and dU (r(dU,dV)) is plotted as a function of the distance be-
tween the stations. Unsurprisingly, there are no station pairs for
which dV and dU agree perfectly (i.e., r(dU,dV) ¼ 1), however there is
a clear improvement as the station separation increases. Taking the
median r(dU,dV) as a function of distance, r(dU,dV) / 0 as the dis-
tance decreases to zero. In this extreme, dV / 0 as MERRA cannot
nd MERRA (DV) over (a, b, c) Dt ¼ 3 hr and (d, e, f) Dt ¼ 24 hr. Panels show comparisons
n wind speed over all MIDAS station locations. The num ber of occurrences within (a,
hmic scale (0.515 ms � 1 is the discretisation of the MIDAS wind speed data). The black
e data (these lines overlap in (f)). The linear correlation coef � cient is given by r.



Fig. 3. The linear correlation between MERRA and MIDAS for (a) the difference in wind speed between station pairs and (b) the difference in accelerations and d ecelerations in the
wind between station pairs, as a function of the station separation. In (a), each dot represents a different station pair and the black line represents the median linear correlation
coef� cient for each 50 m increase in distance. Also shown is the number of station pairs within each 50 m distance bin (grey in print, green online). In (b), the median lines are
shown for different time steps ( Dt). For comparison, the median line from panel (a) is reproduced in (b) as a dashed line. (For interpretation of the references to colour in this � gure
legend, the reader is referred to the web version of this article.)

3 As the wind data is available at more than one vertical level, there is no need to
assume a � xed roughness length in the vertical interpolation.
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resolve the small scale variability affecting dU. As the station sep-
aration increases, the large scale atmospheric processes resolved by
MERRA become important and r(dU,dV) increases rapidly. Although
larger spatial scales generally yield higher correlations, the bene � t
of increasing distance slows markedly beyond around 300 km,
where rðdU; dVÞz 0:5. Averaging (or aggregating) over many sta-
tions on this spatial scale is therefore likely to produce a high
correlation between the MERRA and MIDAS estimates.

To estimate the temporal scales over which MERRA accurately
reproduces the observed variability, the above analysis is extended
to compare the correlation between d(DV) ¼ DVi� DVj and
d(DU) ¼ DUi� DUj. This tests the ability of MERRA to reproduce the
observed spatial variability in accelerations (or decelerations) in
wind speed, over varying time spans ( Dt). Fig. 3(b) shows the me-
dian dependence of r(dDU,dDV) as a function of distance, for varying
Dt (for clarity, the individual station pairs are omitted, though they
have similar distributions about the median as in Fig. 3(a)). As
before, the median r(dDU,dDV)/ 0 as the distance tends to zero
regardless of Dt. The increase in r(dDU,dDV) with distance is how-
ever strongly dependent on Dt. Over short time spans, r(dDU,dDV)
remains small for all station separations, whereas for large time
spans, the increase is almost identical to that in Fig. 3(a).

In general, the degree to which small scale variability between
stations is smoothed upon averaging or aggregating is dependent on
the number of stations as well as their separation. The number of
stations beyond which the bene � t of extra smoothing is small was
estimated at around 50 by Ref. [21] , who studied the variability of
wind power generation in Germany and Ireland. A similar � gure was
found here by analysing randomly-selected distributions of stations
in MIDAS and MERRA (not shown). The number of MIDAS stations
operational at any one time averages around 130 (approximately
40% of the total), and so is considerably higher than 50.

This analysis suggests that care should be taken when inter-
preting wind variability from MERRA on spatiotemporal scales
below around 300 km and 6 h. In the following section, the MERRA
data is used to construct a GB-aggregated wind power time series,
which is evaluated against National Grid data.

2.3. GB-aggregated wind power

In this section, the accuracy with which MERRA can be used to
reproduce the measured GB-aggregated hourly wind power from
2012 is determined, and understood in light of the results of Section
2.1. The wind farm distribution shown in Fig. 4(a) is used
throughout this paper as it allows both for a comparison with the
2012 National Grid data and provides a contemporary distribution
for the climatology presented in Section 3. For each wind farm
location, a MERRA-derived power time series was derived by: (i) Bi-
linearly interpolating the horizontally gridded 2 m, 10 m and 50 m
altitude winds to each location, (ii) vertically interpolating the
winds to a representative turbine hub height (as estimated by
National Grid for each wind farm), assuming a logarithmic change
in wind speed with altitude, 3 (iii) applying an idealised power
curve (as in Fig. 4(b)) to convert hub-height wind speed to wind
farm capacity factor. The GB-aggregated capacity factor,

CF¼
100 %

C

X188

i¼1

ci giðtÞ; (1)

is the power generated by each wind farm (the product of the local
capacity factor, gi(t), and the wind farm capacity, ci) summed over
all 188 wind farms in the distribution ( Fig. 4(a)), and normalised by
the total GB capacity ( C ¼ 7.0 GW). A sensitivity test prior to pub-
lication was performed in which the distribution in Fig. 4(a) was
replaced with one from April 2014. This showed the capacity factor
time series to be only weakly sensitive to modest changes in the
wind farm distribution (not shown).

Results will be presented here using both the “original ” and
“adjusted” power curves shown in Fig. 4(b) (the “OFGEM” curve
will be used in Section 3.4). The original curve is based on the
design performance of a Siemens 2.3 MW turbine, but has been
modi � ed by National Grid to re � ect the average dependence of
forecasted wind on measured generation (personal communica-
tion). The maximum output is (on average) less than 100% due to
atmospheric phenomena such as turbine wakes, which decrease
the wind speed within wind farms [22] , as well as other phenom-
ena such as turbine unavailability [23] and ageing [14] . For
simplicity, wind farms are assumed to shut down above 25 ms � 1

and return to full power at 21 ms � 1 (typical values advised by
National Grid).

Fig. 5(a) compares the MERRA-derived CF using the original
power curve with National Grid generation data from 2012. This
includes generation from all wind farms for which National Grid



Fig. 4. (a) The wind farm distribution and capacity (colours) of September 2012 (data from National Grid). (b) A range of transformation functions used to con vert hub-height wind
speed to power output (termed “power curves ”). The black curve is based on the design performance of a Siemens 2.3 MW turbine, but is modi � ed to improve agreement between
forecast wind speed data and measured power generation. The red curve has been adjusted to correct for small biases in the GB-aggregated power output f ound using the original
curve (Fig. 5). The red dashed line indicates the wind speed at which wind farms come back online after they cut-out at 25 ms � 1. The blue curve is that assumed in Ref. [1] . The
sensitivity of the results in Section 3 to the choice of power curve is discussed in Section 3.4. (For interpretation of the references to colour in this � gure legend, the reader is referred
to the web version of this article.)

D.J. Cannon et al. / Renewable Energy 75 (2015) 767e 778 771
receive metering. 4 To facilitate a proper comparison, instances
where wind farms were deliberately curtailed in response to
transmission constraints are accounted for by adding the curtailed
power back into the generation data. 5 Other human in � uences,
such as turbine maintenance, remain. Even though, unlike the
National Grid data, the MERRA-derived estimates assume a con-
stant wind farm distribution that includes many unmetered wind
farms, the two time series are highly correlated (with a correlation
coef� cient of 0.96), albeit with a small overestimation for high
values. This high correlation can be understood given the results of
Sections 2.1e 2.2, which found that MERRA accurately represents
wind variability on spatial scales greater than around 300 km (the
mean capacity-weighted distance between wind farms is 328 km).

The adjusted curve in Fig. 4(b) is of the same form as the original
curve, but is tuned to remove the systematic biases in Fig. 5(a).
Fig. 5(b) shows a comparison between the MERRA-derived CF, us-
ing this adjusted curve, and that derived from the 2012 measured
data. All MERRA-derived results from here on utilise this adjusted
power curve.

From Sections 2.1e 2.2, we expect MERRA to reproduce changes
in CF over time intervals greater than around 6 h Fig. 6 shows
comparisons between the MERRA-derived DCF (using the adjusted
power curve) and equivalent National Grid values, for a range of Dt.
At Dt ¼ 3 hr, the time series are reasonably well correlated (with a
correlation coef � cient, r ¼ 0.77), although the largest changes in CF
are consistently underestimated. As Dt increases to 6 h and 12 h, the
correlation increases ( r ¼ 0.86 and 0.93 respectively) and the sys-
tematic underprediction in DCF reduces considerably.
2.4. Long-term mean statistics of GB-aggregated wind power

In this section, the MERRA-derived CF time series described in
Section 2.3 is used to analyse the annual-mean CF and the fre-
quency distribution of CF values. Fig. 7(a) shows a comparison
between the MERRA-derived annual-mean CF from 1980 to 2012
4 Typically this includes wind farms with capacity over 100 MW in England and
Wales, over 30 MW in southern Scotland (Scottish Power's transmission area), and
over 10 MW in northern Scotland (Scottish Hydro's transmission area) [24] .

5 On average, less than 0.1% of GB capacity was curtailed in 2012.
and recent estimates from National Grid and the UK government
(the Digest of UK Energy Statistics, herein DUKES [25] ).6 The
MERRA-derived 33 year mean capacity factor is 32.5%; slightly
above previous long term estimates ( [3] suggested 30%). From the
available National Grid and DUKES data, the variability in annual-
mean CF is well reproduced by the MERRA-derived time series,
including for the low generation year of 2010. The slight reduction
in wind speed since the late 1980s is broadly consistent with the
“stilling ” observed in the UK [4] and more generally in the conti-
nental mid-latitudes [26] . This may be a result of inter-decadal
variability associated with climate phenomena such as the North
Atlantic Oscillation (NAO) which signi � cantly in � uences European
weather [8] . The large year-to-year variability is also correlated
with inter-annual � uctuations in the NAO [7,27] .

As shown in Fig. 7(b), the frequency distribution of hourly CF
values is heavily skewed towards low values, with the most com-
mon CF around 4e 13 % in 2012 and around 5 e 6 % for the 33 year
MERRA-derived time series. The distribution closely matches that
of the National Grid data (to within 15 h per unit CF on average).
There are no occurrences above CF > 90 % in either the MERRA-
derived or National Grid estimates. The cumulative frequency re-
veals the 33 year median CF ¼ 26.4 %, which is signi� cantly below
the mean (32.5%) due to the positive skew in the frequency dis-
tribution. Percentiles from the cumulative distribution will be used
in Sections 2.5 and 3 to de� ne persistent low and high wind power
events.

2.5. Extreme wind power generation in 2012

As the central purpose of this paper addresses extreme wind
power generation events (persistent low or high generation and
ramping), we now evaluate the ability of the MERRA-derived power
time series to reproduce the extremes of 2012.

The number of persistent low generation events is presented in
Fig. 8(a, d) as a function of both a threshold below which CF drops,
and the length of time for which it persists below that threshold. 7

Events that persist beyond the beginning or end of the time series
6 The government estimates are for the whole of the UK.
7 These are sometimes called “load-duration ” curves.



Fig. 5. Comparisons between MERRA-derived and National Grid estimates of GB-aggregated wind power generation in 2012. The MERRA-derived capacity factor ( CF) is calculated
using (a) the original power curve, and (b) the adjusted power curve ( Fig. 4(a)). The shading indicates the number of occurrences of CF within 4% by 4% bins, and is displayed on a
logarithmic scale. The black solid line indicates a 1:1 agreement, whereas the dashed line shows a linear least squares � t to the data (these lines overlap in (b)). The linear correlation
coef� cient is given by r.

D.J. Cannon et al. / Renewable Energy 75 (2015) 767e 778772
are immediately terminated. For example, there were 32 events for
which CF � 10.3 % for at least 24 h according to the MERRA-derived
estimates and 29 according to the National Grid data. Similarly,
Fig. 8(b, e) shows the number of persistent high generation events as
a function of both a threshold above which CF rises, and the time for
which it persists above that threshold. The thresholds used corre-
spond to percentiles of the cumulative frequency distribution in
Fig. 7(b). The CF¼ 2.2%, 6.3% and 10.3% thresholds correspond to the
1st, 10th and 20th percentiles, whereas the CF ¼ 55.3 %, 69.6% and
87.1% thresholds correspond to the 80th, 90th and 99th percentiles.

For both persistent low and high generation events ( Fig. 8(a, b)),
there is good general agreement between the MERRA-derived and
National Grid estimates. In most cases however, the number of
short-lasting events is underestimated and the number of long-
lasting events is overestimated. This is consistent with the
observed underestimation of high frequency variability in the
MERRA-derived time series ( Fig. 6), which may otherwise break up
persistent events into shorter segments. Fig. 8(d, e) shows the same
plot but focuses on the rarest (and most extreme) persistent events.
The MERRA-derived time series reproduces the most extreme
events well in most (but not all) cases.

Fig. 8(c, f) shows the number of hours which preceded a ramp in
CF of at least the given threshold magnitude, within different time
windows. For example, there were 57 h in 2012 that preceded a ramp
of at least DCF¼ 50% within 12 h according to the MERRA-derived
estimates, and 55 according to the National Grid data. By de � nition,
any ramp occurring within 12 h of a given hour must also have
occurred within any time window greater than 12 h. There is
generally good agreement between the MERRA-derived and
measured ramps ( Fig. 8(c)), albeit with a systematic underestimation
of the number of hours preceding modest ramps. As before, this may
be due to the lack of high frequency variability in MERRA, which may
otherwise add to the maximum DCF. This is also true for the rarest
(and most extreme) ramps ( Fig. 8(f)), though the underestimation
reduces as the time window increases and the magnitude of high
frequency variations becomes small relative to the size of the ramps.

This analysis demonstrates that, whilst imperfect, the frequency
with which extreme wind power generation events occur in the
MERRA-derived time series closely matches that from the National
Grid data.

3. A 33 year climatology of extreme wind power generation in
Great Britain

In this section, a 1980 e 2012 climatology of extreme wind power
in GB is presented using the hourly time series of MERRA-derived
CF described in Section 2. The mean frequency (the number that
occur in an average year) of different extreme events is presented in
Section 3.1, after which the inter-annual and seasonal variability is
discussed (Sections3.2e 3.3). Finally, the sensitivity of the results to
the choice of power curve is analysed in Section 3.4.

3.1. Mean frequency of extreme events

The mean frequency with which persistent low CF events occur
is shown in Fig. 9(a) as a function of both the threshold below
which CF drops and the time for which it persists below that
threshold. The frequency reduces as the CF threshold is decreased
or when the persistence time increases, as both provide a more
stringent test for what constitutes a persistent low CF event. For
example, there are on average 5.6 events per year where CF � 5% for
at least 24 h. Similarly, Fig. 9(b) shows the mean frequency with
which persistent high CF events occur as a function of both the
threshold above which CF rises and the time for which it persists
above that threshold. In this case, the frequency reduces as the
threshold CF is increased or when the persistence time increases.
The dashed lines in Fig. 9(a, b) indicate the most persistent events
in the 33 year time series, for each threshold CF.

The mean frequency with which low or high generation events
occur decreases approximately exponentially with increasing
persistence, suggesting they can be approximated as a Poisson-like
process where the mean frequency,

N ¼ N0 exp
�

� tp

l

�
; (2)

where tp is the persistence time, N0 is the mean frequency of events
of any length (with tp � 0) and l controls the rate at which N de-
creases with increasing tp. Fig. 10(a, b) shows the mean frequency of
persistent low and high generation events on a logarithmic scale,
for a range of CF thresholds.

Both l and N0 vary as a function of the threshold CF. To illustrate
this, Fig. 10(c) shows the variation of l with CF threshold. For all
thresholds, l was calculated via a linear regression of log ½NðtpÞ�, for
all points with N > 1 yr � 1 (so each N is based on more than 33
events). To properly compare the persistence of low and high
generation events, the rate parameter is plotted not against the
threshold CF itself, but against the corresponding percentile of the
cumulative distribution in Fig. 7(b), from the most extreme
percentile to the least. For the 20 most extreme percentiles, the
values of l are very similar for both low and high wind power
generation events. For less extreme percentiles, l is smaller for high



Fig. 6. Comparisons between MERRA-derived and National Grid estimates of the rate of change in GB-aggregated wind power generation in 2012. Changes over (a) Dt ¼ 3 hr, (b)
Dt ¼ 6 hr and (c) Dt ¼ 12 hr are shown. The adjusted power curve is used in all panels. The shading indicates the number of occurrences of DCF within 4% by 4% bins, and are shown
on a logarithmic scale. The black solid line indicates a 1:1 agreement, whereas the dashed line shows a linear least squares � t to the data. The linear correlation coef � cient is given
by r.
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generation events than for low generation events, implying that
less extreme low generation events tend to persist longer than less
extreme high generation events. This may be a consequence of
atmospheric blocking, which is associated with low winds and can
persist for weeks [28] . As shown by the alternative axes in Fig.10(c),
the percentiles of extremeness correspond to very different ranges
of threshold CF for low and high generation events. This is a
consequence of the CF frequency distribution being heavily skewed
towards low values ( Fig. 7(b)).

In Fig. 9(c), the mean frequency of hours for which there is a
subsequent ramp in CF is shown as a function of a threshold DCF,
which the ramp surpasses, and the time window within which the
ramp took place. Ramps become rarer as the threshold DCF increases
or as the time window decreases, as both modi � cations provide a
more stringent test for what constitutes a ramp. The most extreme
DCF increases rapidly with the time window up to around 9 e 12 h,
after which it plateaus. This corresponds to the transition time of a
typical low pressure (cyclonic) weather system over the UK. As the
time window increases to very large values (not shown), the most
extreme ramp tends to the maximum permitted by the power curve
(DCF¼ 91.3%). Given the variability in CF over short time spans is
likely to be underestimated (Section 2), the statistics for time win-
dows less than around 6 h should be treated with caution.

Unlike persistence events, ramps do not have beginning and end
points de � ned by speci� c thresholds, and so are not counted
independently. For example, a ramp may be counted multiple times
if it corresponds to the largest DCF within a given time window for
more than 1 h in the time series. The number of hours for which
Fig. 7. A comparison of (a) different estimates of annual-mean capacity factor and (b) the frequ
Grid data. The cumulative frequency distribution obtained using the full (1980 e 2012) time s
low and high generation events.
there is a subsequent ramp of at least a given threshold DCF does
not therefore decrease exponentially with increasing time window
(not shown). For this reason, the analysis shown in Fig. 10 is not
repeated for ramping events.

As a sensitivity test, the exclusion of high wind cut-out events
was found to make little difference to the mean frequency (not
shown). This is likely because they tend to be geographically iso-
lated, and so have a small impact on GB-aggregated generation. In
addition, similar results were found by analysing positive and
negative ramps in isolation. Whilst similar qualitative trends were
observed on smaller regional scales, the mean frequency of extreme
events increased markedly as the smoothing effect of aggregation
was reduced (not shown). Some differences between the regions of
GB were noted, with a propensity for fewer low generation events,
more high generation events and more ramps in more northerly
regions.

3.2. Inter-annual variability

The results of Section 3.1 vary substantially from year to year.
Fig. 11(a, b, d, e) shows the frequency of low and high generation
events as a function of persistence time, for the CF thresholds
introduced in Section 2.5. The frequency in a mean year ±1 stan-
dard deviation is shown, as well as the highest and lowest number
found in any one year. When the persistence time tends to zero, the
number of events tends to the mean number of low CF events. As
the persistence time increases, the number of events that persist at
least that long reduces.
ency distribution of capacity factor values within the MERRA -derived and National
eries is shown in grey. Percentiles from this curve are used to de � ne the thresholds for
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