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This article shows how one can formulate the representation problem starting from
Bayes’ theorem. The purpose of this article is to raise awareness of the formal solutions,
so that approximations can be placed in a proper context. The representation errors
appear in the likelihood, and the different possibilities for the representation of reality
in model and observations are discussed, including nonlinear representation probability
density functions. Specifically, the assumptions needed in the usual procedure to add a
representation error covariance to the error covariance of the observations are discussed,
and it is shown that, when several sub-grid observations are present, their mean still has
a representation error; so-called ‘superobbing’ does not resolve the issue. Connection is
made to the off-line or on-line retrieval problem, providing a new simple proof of the
equivalence of assimilating linear retrievals and original observations. Furthermore, it is
shown how nonlinear retrievals can be assimilated without loss of information. Finally we
discuss how errors in the observation operator model can be treated consistently in the
Bayesian framework, connecting to previous work in this area.
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1. Introduction

Representation errors have since long troubled scientists involved
in data assimilation. One of the reasons is that no clear definition
is used by the community. Several scientists (e.g. Thacker, 2003;
Janjic and Cohn, 2006; Köhl et al., 2007; Leeuwenburgh, 2007; Oke
and Sakov, 2008) define the representation error as the component
of the observation error due to unresolved scales. Others focus on
the mis-specification of the observation operator (Lorenc, 1986;
Liu and Rabier, 2002). More generally, representation errors have
been defined as errors due to any physical processes appearing
in the observations but not in the model (Anderson et al., 2005;
Zaron and Egbert, 2006; Ponte et al., 2007). Note that ‘model’
in this context and article will mean the dynamical model.
This meaning will be used throughout the article. Sometimes
the errors in the model equations, either from missing physics
or from discretisation, are taken as part of the representation
error. (Also the nomenclature is not identical among different
authors. Some call these errors representivity errors, others
representativity; we will use the simpler representation errors.)
Obviously, representation errors will depend on model resolution,
as do model errors, but they enter the data assimilation problem
differently.

In this article the distinction between model error and
representation error is taken very strictly. Representation errors

are defined here as resulting from different representations of
reality in model and observations. Although the model will
be an imperfect representation of reality, the data assimilation
problem does not address that since the solution to the data
assimilation problem is the posterior probability density function
(pdf) of this model given the observations, not of reality given
the observations. As such, only representation differences between
model and observations come into play. With this definition, they
enter the data-assimilation problem via the likelihood and not via
the prior probability density of the model. Strictly speaking, the
terminology ‘error’ is misleading, in that no error has been made,
and it is also not related to ‘small-scale noise’. It is rather a misfit
term: model and observations describe different parts of reality.
With this definition, it is stressed that we explicitly consider all
errors in the model as part of the prior. The fact that the model
cannot be trusted at its smallest scales does not change that.

There is another related issue which needs a brief discussion. If
there is a representation error, one could argue that observations
try to bring information into the model which push it out of its
‘natural’ state, e.g. push it into unbalanced states. In operational
numerical weather forecasting, filtering operations are typically
needed after each update step to filter out unwanted gravity
waves which tend to ruin the forecast. The reasons are twofold.
Firstly, if the atmosphere were linear, the gravity waves would do
no or very little harm. In linear data assimilation methods (or,
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more accurately, data assimilation methods in which the prior is
assumed to be Gaussian), the prior covariance defines the linear
space in which the updates can take place. If one would allow for a
prior covariance evolving with the flow, like in a full Kalman filter,
the projection of the update on the gravity waves would be small in
a linear system, and not damaging. However, we cannot afford to
evolve full covariances, so either we use approximations, such as
in the Ensemble Kalman filter, or we use prescribed covariances, as
in four-dimensional variational assimilation (4D-Var), or hybrids
of the two. If the actual model is linear, the balances are known
and prescribed projection onto the slow manifold is relatively
straightforward. A low-rank approximation of the covariance will
need an extra filtering step.

Secondly, the issue is to a large extent related to the fact that
linear data assimilation methods are used on nonlinear systems.
The forecasts are damaged due to the nonlinear coupling of
gravity waves with (e.g.) precipitation. For a nonlinear model, the
nonlinear balances are not known, or very hard to implement, and
projection onto gravity waves is much more of a problem. Several
filtering techniques are used in the covariance model to reduce
the damage. Even fully nonlinear data assimilation methods
could become unbalanced by the update step. An exception is a
standard particle filter with resampling in which only the relative
weights are adjusted by the observations, and the members are
unchanged. However, the number of ensemble members needed
would be astronomical (e.g. Snyder et al., 2008; van Leeuwen,
2009). More efficient particle filters could have balance issues
simply because the observations do not constrain all possible
solutions (e.g. van Leeuwen, 2010; van Leeuwen, 2011). At this
moment it is unclear how large this effect will be, and how to
solve it if it is large. In this article we do not consider this kind of
‘error’ to be part of the representation error as defined above.

Typically representation errors are taken into account by
inflating the error covariance of the observations, sometimes
dependent on position and/or flow regime, or by adding an
extra error covariance to the observation-error covariance in
the likelihood (e.g. Derber and Rosati, 1989; Oke et al., 2005;
Rogel et al., 2005; Schiller et al., 2008). This is typically based on
Lorenc (1986) also Daley (1993) who showed that, for Gaussian
distributed variables, errors related to an inexact observation
operator H can be added directly to observation-error covariance
related to measurement noise. It is important to realise that
Lorenc actually treats a different problem as will be discussed
later (section 7). We have to understand the justification for this
procedure, and how general it is. To this end, we will recapitulate
the actual meaning of the likelihood, after which we discuss
different methods to take representation errors into account.

This article is organised as follows. The origin of the
representation error is discussed in the next section, followed
by the different forms of representation mismatch and how
to formally solve them in observation (section 4) and model
(section 5) space. We touch upon the retrieval problem here as
a good example of some of the issues in section 6. Section 7
discusses the situation when H is known approximately, and
section 8 summarises and concludes the article.

2. Bayes’ theorem and the representation error

At the heart of data assimilation is Bayes’ theorem, which states
that the posterior pdf can be obtained by multiplying the prior
pdf with the likelihood:

p(x|y) = p(y|x) p(x)

p(y)
. (1)

The meaning of the terms is as follows:

(1) p(x|y) is the posterior pdf, which is the probability density
value of model state x given a set of observations y,
for all possible model states. This pdf is the solution to

the data assimilation problem, and one could argue that
Bayes’ theorem shows that data assimilation is in fact a
multiplication problem and not an inverse problem.

(2) p(y|x) is the probability density value of the observation set
y given that the model state is x, the so-called likelihood,
i.e. the likelihood of the observations being y given that the
state is x, for each of the possible model states.

(3) p(x) is the prior probability density value of the model state
x, for each possible model state, before observations have
been taken into account.

(4) p(y) is the prior probability density of the observations, i.e.
before we know any of the possible states, and before we
know the truth. It is not the probability density value of the
observation given the truth, since the truth is also a model
state (plus extra information on e.g. smaller scales). In fact
‘nothing is given’. Since we use Bayes to evaluate the pdf
of the state for a specific set of observations, p(y) does not
depend on x and is a normalisation constant that can quite
often be ignored.

It is important to realise that Bayes’ theorem is a point-wise
equality, i.e. for each x, y combination the equality holds. In
any specific data assimilation problem, the observation vector y
is given, and the posterior pdf is only a function of the model
state x. The above is completely general, and ‘model state’ can be
changed to ‘model parameters’, or a combination of both. In all
cases, the posterior pdf is obtained by multiplying the prior, our
starting point, with the likelihood.

Before we continue, it is good to try to understand the likelihood
term in case the model and the observations represent the true
system in the same way, so when there is no representation error
according to our definition. The observations are related to the
true state of the system as

y = Ht(xt) + εm, (2)

in which Ht is the true observation operator, xt is the true
state of the system, and εm is a specific realisation of the
measurement error. One could argue that, if the model is biased,
there is still some sort of representation error that should be
accounted for in the likelihood, as this bias will result in an extra
model–observation misfit. However, that is incorrect. What we
need in Bayes’ theorem is not the likelihood of the observation
given the true state of the system, but given any possible state x of
the modelled system. So, the idea is that we measure that modelled
state x, and then, using the distribution of the measurement error,
determine the likelihood of the actual observation with value y.
The fact that x is biased or obtained through a model with a
systematic error is not relevant; this is the given state and we
just need to know the likelihood of y given that state. Any bias
term should appear in the prior. After this clarification, we now
concentrate on the representation errors in the rest of this article.

3. The likelihood with exact observation operator

The representation error issue is related to the likelihood; that is
where the observations come in, or rather, that is where model and
observations are compared. The likelihood p(y|x) is the value of
the pdf of the observations y given that the model state is x. Several
possible relations exist between observations and model states,
and each leads to a different way to calculate this likelihood. In
general the relation between model space and observation space
is given by an operator H, so

ym = H(x) (3)

transforms a model state x to vector ym in observation space.
ym comes under several different names, modelled observation,
forecasted observation, model equivalent of observation, etc. To
increase confusion, the seismology community tends to call the H
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operator the ‘theory’, and the parameter space (i.e. the slowness
field) the ‘model’.

Sections 3–6 focus on the case that H is known exactly. Section 7
deals with the case in which H is only known approximately.

Let us now have a look at the different possibilities for this H
operator.

(1) The observations and the state represent the same
phenomena. A special case is that in which there is a
one-to-one relation between a model state variable and the
model equivalent of the observation. In the more general
case, several model variables are involved in producing
a model equivalent of the observation, e.g. H can be an
integral over a path in model space. Note that H can
be nonlinear. This would restrict the data assimilation
methods that can be used, but is not the focus of this
article. This is an ‘easy case’ i.e. no extra information is
needed to calculate the likelihood.

(2) The model has a higher level representation of reality
than the observations. We have to find the closest relation
between the model and the observation. For instance, the
observations are low-resolution satellite observations, to
be assimilated in a high-resolution model. In that case H is
an averaging operator, i.e. a spatial average. Also this case
is an ‘easy case’.

(3) More problematic is the case when the observations
represent phenomena that are not resolved by the model.
An example is a point measurement, e.g. a temperature
measurement with a thermometer, while the model has a
spatial resolution of 1 km, or 100 km. To solve this case
one has to realise what the likelihood actually means.
p(Y = y|X = x) is the probability that the observation
random variable Y is realised as y given model state
random variable X = x. The notation we use is that upper-
case letters denote the random variable, and lower-case
letters the realisation. The first thing to do is to find
the relation between the pure observation and the closest
model representation. There are two ways to approach this
problem: via observation and via model space, as discussed
below.

(4) Finally, observations and model can represent different
phenomena. An example is a satellite measurement of the
radiance at a certain wavelength, while the model has a
temperature field, but no radiation-transfer code. This is
usually treated using retrievals which transform the original
observations to so-called retrieved variables which do have
direct model equivalents. The question then is how one
should assimilate these retrievals, one of the problems
being that the retrieval is a pdf, not a specific value.

In the next sections we will concentrate on cases (3) and (4)
above.

4. The likelihood via observation space

We discuss here the situation where the observation is of higher
resolution but of the same type as (part of) the state vector.

To ease the presentation, we will assume that H(x) is defined
as the average over a certain modelled area i. The observation
equation is given by:

y = H(x) + ε (4)

in which ε contains the representation and measurement errors,
and H(x) singles out that part of the model that relates best to the
observation y.

This could be a model grid box, but, since the model has
typically large errors at its finest resolution (think of e.g. group
speed errors of waves), it could also be an average over several
model grid boxes for several model variables. One should choose

that combination of model variables that closely resembles the
observation. So, from now on, H(x) denotes this combination of
model variables.

Assume the observation is located in this area i, then we need
to calculate the probability of Y = y, given that the average value
of y over this area is given. So we need

p(Y = y|Y = y) (5)

and the likelihood becomes

p(y|y = H(x)). (6)

Intuitively it is clear that the width of this pdf must be larger
then when the model can represent the observations. For the
sake of argument, let us assume that the measurement errors
are Gaussian distributed when the full state is given, with error
covariance given by Cm. If only part of the full state is given as
the model state, extra uncertainty is present in y which is not
directly related to errors in the measurement process. This extra
uncertainty is what is called the representation error. It should be
realised, however, that there is no a priori reason to assume that
the extra uncertainty leads to a Gaussian pdf, so assume an extra
covariance can be added to Cm. This is illustrated below.

The question we want to answer is how to determine the pdf of
Eq. (6). It is most straightforward to gather observations at more
points in area i, and average them. When the average is equal (or
close) to H(x), we have one sample of p(y|y = H(x)). We have
to do a large number of these measurements to gather enough
samples of p{y|y = H(x)} to be able to use it in Bayes’ theorem,
especially when we realise that this has to be done for each value
of H(x) that comes up, e.g. for each ensemble member in an
Ensemble Kalman filter. Figure 1 illustrates this for one specific
value of H(x). Another way might be to make an ‘educated guess’,
exploiting other prior knowledge on this pdf. This is what has to
be done in nonlinear data assimilation.

We can formalise the above procedure as follows. Firstly, H(x)
is that part of the model state vector that is related to observations
in area i. Next we define vector z in observation space which is
related to the model state vector x as z = H(x) + z̃. z̃ is the high-
resolution variation in area i, at the position of the observations.
So, in our case z is a vector with elements H(x) + z̃, in which
H(x) is the same for each element and z̃ varies from element to
element. These elements coincide with the observation locations.

From standard probability theory we obtain:

p(y|x) =
∫

p(y|x, z̃) p(̃z|x) d̃z =
∫

p(y|z) p(̃z|x) d̃z. (7)

y
i

Time

y

H(x)

Time

Figure 1. (a) shows individual observations and (b) the mean of these and H(x).
To calculate p{y|y = H(x)} or Cr, we take only those times into account when
y = H(x), i.e. those times indicated by the dashed lines (green in online).
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Now p(y|z) is the pdf of the measurement errors, and these
are assumed to be known, e.g. from the manufacturer of the
measurement apparatus.

The second pdf p(̃z|x) is the pdf of high-resolution variations
z̃, given that the model average over area i is H(x), and this is the
factor responsible for the representation errors. We could use the
measurement campaign and the method outlined above to find
p(̃z|x).

To illustrate this further, assume both measurement errors and
representation errors are Gaussian with error covariances Cm and
Cr, respectively. When H(x) is known and the model average
is unbiased, the average over area i of z̃ = 0, so the Gaussian
assumption leads to:

p(y|x) ∝∫
exp

{
−1

2
(y − z)TC−1

m (y − z) − 1

2
z̃TC−1

r z̃

}
d̃z. (8)

Assuming H is a linear operator and using z = Hx + z̃, the
integration over z̃ can be performed, leading to

p(y|x) ∝ exp

{
−1

2
(y − Hx)T(Cm + Cr)

−1(y − Hx)

}
. (9)

So, in this case the representation error appears as a covariance
matrix Cr which has to be added to the measurement error
covariance Cm to find the total observational error R = Cm + Cr.
This derivation is the rationale behind the common way of
adding the representation error covariance to the measurement
error covariance. Note that, if the model average over area i is
biased, we have that the average over z̃ = z0 �= 0. This leads,
through a change of variable in the integral to z̃ − z0, to a bias
correction of the form Hx → Hx − z0 in the expression above.

The covariance Cr can be obtained from the set of
measurements in area i. However, it is important to realise
that the common procedure to use for Cr the covariance of
the unconditioned observations yi is not necessarily correct. The
equations above show that one needs the covariance of the
observations yi given the mean state H(x) over area i. The latter
covariance will typically be smaller than the former for Gaussian
distributed errors. This is illustrated in Figure 1. Also, since x
varies over time, so will this covariance be time-dependent in
general.

It is possible that the representation errors are correlated over
time. The representation errors are due to the covariance of
the unresolved scales conditioned on the mean state H(x). Here
we assume that the unresolved scales will decorrelate between
observation times, also because the conditioning will change
because the mean state H(x) changes over time.

Obviously, when more observations are present in area i,
all these m observations can be assimilated. If their errors are
correlated this leads to the likelihood

p(y1, ..., ym|y = H(x)), (10)

in which y is the average over area i. Note that this has to be done
for each possible model state x.

Another solution when we have the set of observations in area
i is to average them and compare them directly to the model
state x. This is sometimes called ‘superobbing’. Will this elevate
the representation error problem? The answer is no, as illustrated
below. In this case likelihood is taken as:

p(y|x). (11)

To use this, we have to know the pdf of y, and intuitively one
might reason as follows. Assuming the yi are independent with
equal variance σ 2, in the limit of a large number of observations
the central limit theorem allows us to approximate this pdf by

a Gaussian distribution N(y, σ 2/m). However, it would be a
mistake to assume that y has no representation error. This mean
is just the mean of the observations, not the mean over the model
area represented by H(x). If we would like this mean to represent
the mean of the model area, each individual observation has to be
taken as an estimate of that model area. However, in that case one
has to attach a representation error to each individual observation.
So, as estimate of the model area, each observation is Gaussian
distributed with error variance σ 2

m + σ 2
r , leading to a combined

estimate of the model area distributed as N{y, (σ 2
m + σ 2

r )/m},
under the assumption of independent identically distributed
measurement and representation errors. The main point is that
one cannot get rid of the representation error.

There is an interesting issue that the representation errors of
the different observations yi are likely to be correlated because all
represent something different from the model in a similar way,
related to e.g. missing model dynamics. Let us now for simplicity
assume that the correlation in the representation errors between
any two observations is given by ρ. In that case the variance of the
observational mean including the representation error becomes

σ 2
y = σ 2

m + σ 2
r

m
+ m − 1

m
ρσ 2

r . (12)

The importance of this equation is that the correlated part of the
representation error does not decrease with an increasing number
of observations, so the representation error quickly becomes the
dominant term in the error of the averaged observation. The main
message is, again, that one cannot get rid of the representation
error; it will always be present.

Let us now compare using the all observations individually in
the data assimilation scheme to using the average observation.
For the average observation, the update can be written as:

xav = x +(B−1+ HTσ−2
y H)−1HTσ−2

y (y−Hx), (13)

where we used the information form of the Kalman filter update
and again assumed H to be linear. The measurement operator Hx
is the value of the state vector x in area i, which, just to remind
the reader, should be a combination of model variables that
closest represents the observation. For the set of observations we
find an update:

xd = x +(B−1+ HT
d R−1

d Hd)−1HT
d R−1

d (y−Hdx), (14)

in which Rd and Hd are the corresponding covariance and
measurement operator for the set of observations. It is shown
in the Appendix that this update is exactly equal to that of
assimilating the average observation in Eq. (13).

However, this is only the case if we treat the average of the obser-
vations correctly. Ignoring the representation error in the average
estimate is incorrect. It should be noted that the above equations
are only true for Gaussian-distributed observation errors, and
all observations have to be identically distributed with the same
correlation between all observations. In the more general non-
Gaussian case, the two solutions, assimilating individual observa-
tions versus assimilating their average, will lead to different results.

5. The likelihood via model space

More often than not, one does not have access to extra
observations, so the problem is again how to compare the
high-resolution observation to the low-resolution model. Several
authors used high-resolution models to determine the relation
between ‘point’ measurements and the larger-scale average in
the model world, e.g. Janjic and Cohn (2006). It is important
to understand what is done, and the analysis is similar to that
given above, but the interpretation is slightly and importantly
different. First we introduce a high-resolution model that has
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the same resolution as the observations. If we denote the total
high-resolution model variable by z = (x, z̃)T, where z̃ denotes
that part of the high-resolution model variable not represented
by the coarse-resolution model variable x, we have

p(y|x) =
∫

p(y|x, z̃) p(̃z|x) d̃z =
∫

p(y|z) p(̃z|x) d̃z. (15)

For p(y|z) we can use the pdf of the observations given the full
state, and no representation error is present in this pdf, similar to
the case discussed above. More difficult is p(̃z|x), the probability
density of the high-resolution variations in the high-resolution
model given a low-resolution average x.

One could build this pdf from a large number of model runs
(or one very large model run assuming ergodicity), again similar
to the observation-space solution, saving those states for which
the low-resolution equivalent is (close to) x, Unfortunately, this
has to be done for each x that comes up in the data assimilation
problem, e.g. for an ensemble Kalman filter this has to be done
for each ensemble member for each observation time.

Another way to calculate this pdf directly is to use a limited-
area high-resolution model and use the same procedure as above,
using only those states that have an area average close to x to
generate the statistics for p(̃z|x). Since only a small proportion
of the limited-area high-resolution model runs will have the
desired area average, one could constrain the model runs to
have the value x as mean over the model area in question. This
limited-area high-resolution model can be considered part of
the observation operator H. That procedure has the potential
to strongly reduce the computational burden. Of course, the
model has to be run long enough to gather enough information
on p(̃z|x). However, imposing a model-area mean condition on
the high-resolution model might not be straightforward since
it will interfere directly with the model equations. A practical
problem with both approaches is the boundary conditions on the
high-resolution model. We might use an interpolated version of
the low-resolution model, but it is unclear how this would affect
the statistics of p(̃z|x). However, it is perhaps the best practical
solution, the validity of which can be tested using a high-resolution
model everywhere, and gathering statistics on p(̃z|x).

To make some progress analytically, let us first assume that all
errors are Gaussian distributed, leading to

p(y|x) ∝∫
exp

[
−1

2
{y−H(z)}TC−1

m {y−H(z)}− 1

2
z̃TC−1z̃

]
d̃z, (16)

in which Cm denotes the covariance of the high-resolution variable
z̃ conditioned on the coarse-resolution variable x. (Note that no
bias correction is needed here by definition.) The following closely
follows the arguments by Janic and Cohn (2006). It is noted that
covariance Cr can depend on the value of x, so it can be time
dependent, and is generally smaller than that of the unconstrained
high-resolution model variability.

Let us now assume that H is linear, so that Hz = Hx + H̃̃z,
which can easily be seen by realising that H is an (m, nz) matrix,
with m the number of observations, and nz the size of the full
state vector z, H is its (m, nx) submatrix, and H̃ is the rest of the
H matrix, of size (m, ñz). This leads to the likelihood

p(y|x) ∝
∫

exp

{
−1

2
(y−Hx−H̃̃z)TC−1

m (y−Hx−H̃̃z)

−1

2
z̃TC−1z̃

}
d̃z, (17)

which can be evaluated as

p(y|x) ∝exp

{
−1

2
(y−Hx)T(Cm+H̃CH̃T)−1(y−Hx)

}
, (18)

showing how the representation error Cr = H̃CH̃ comes into the
problem. This has also been found by Bocquet et al. (2011, see also
Wu et al., 2011), who in an excellent article derive expressions for
aggregation errors and also discuss applications of this formalism.

This sequence of approximations shows what is needed to
be able to reduce the representation error related to a too low
resolution of the model to a simple addition of a covariance
matrix to the measurement error matrix. We reiterate that this
covariance can be time dependent, and is generally smaller than
that of the unconstrained high-resolution model variability.

We have to compare this treatment with that of Cohn (1997),
who presented the first very careful analysis of representation
errors. In his section 2.2 he decomposes the measurement
equation as follows:

y = Ht(xt) + εm

= H(x) + Ht(xt) − Ht(x) + Ht(x) − H(x) + εm

= H(x) + εr + εm , (19)

in which xt is the true state from which the actual observation
was measured, Ht is the true observation operator, and
εr = Ht(xt) − Ht(x) + Ht(x) − H(x). This error combination is
the representation error and has contributions from the fact that
the model state is a modelled version of the true state, and the
observation operator H we actually use is not the true one. The
second contribution will be dealt with in section 7, and the first
contribution is what we have dealt with here.

Note that our approach is different from that of Janjic and
Cohn (2006). They also assume Gaussian pdfs, but start from
the unresolved scales. This then leads to two extra covariance
operators: one for the unresolved scales, and one relating unre-
solved and resolved scales. To solve the full problem, they extend
the state vector to include the unresolved scales, and them make
approximations to this full system. By exploring a Kalman filter,
they are able to estimate these covariances sequentially. Here we
see that a full reference to the unresolved scales is not needed,
only the relation between the unresolved and the resolved scales.
However, we still have to specify p(̃z|x), and approximations will
be needed in any large-scale problem. (Another difference is that
Janjic and Cohn (2006), similarly to Cohn (1977), assume that the
observation is a point measurement, in which case the unresolved
variables are continuous, and covariance matrices become convo-
lution operators working on model fields. We refrain from such a
formulation, arguing that point measurement observations do not
exist, and consequently assume observations are spatial averages.)

Finally, we reiterate that the representation errors might be
correlated over time. Again we take the view that the unresolved
scales will decorrelate between observation times, also because
the conditioning will change because the mean state Hx changes
over time.

When the pdf of the unresolved scales is not Gaussian, we can
approximate it with a standard kernel technique, e.g. Silverman
(1986). Using a Gaussian as the kernel leads to the so-called
Gaussian mixture density:

p(̃z|x) =
M∑

i=1

ciN(μi, �i), (20)

in which M is the number of mixture components. The N(μi, �)
stands for the Gaussian density with μi the mean of the Gaussian
pdf i, �i is the covariance and ci are normalization constants
constrained by

M∑
i=1

ci = 1. (21)

There are standard techniques to estimate M, and the μi

and �i from the high-resolution runs, like the Expecta-
tion–Maximization technique, e.g. Bishop (2006), but since this
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estimation problem is nonlinear it can be quite complex. Because
Hx is assumed to be the mean over area i, the mean of the z̃ = 0
over this area, leading to

z̃ =
∫

z̃ p(̃z|x) d̃z =
M∑

i=1

ciμi = 0. (22)

Using this expression in Eq. (15), assuming Gaussian
distributed observations leads to

p(y|x) ∝
∑

i

ciN(Hx + H̃μi, Cm + H̃CiH̃
T). (23)

This formulation does require estimating the parameters of the
Gaussian mixture model, but is very general because the Gaussian
mixture model is quite general.

A potential problem with this expression in linearised data
assimilation is that it is not in unimodal Gaussian form. If
this expression is considered too complex to use in the existing
assimilation scheme, we can approximate it by considering only
its mean and covariance. Its mean is given by

y =
∫

yp(y|x) dy = Hx, (24)

where we used
∑M

i=1 ciμi = 0, and the covariance becomes∫
(y−y)(y−y)Tp(y|x) dy=Cm+

∑
i

ciH̃(Ci+μiμ
T
i )H̃T. (25)

We can understand this result by realising that the covariance of
the Gaussian mixture for p(̃z|x) is equal to

C̃z|x =
∑

i

ci(Ci + μiμ
T
i ), (26)

so we find that the covariance for the observations y given the
low-resolution model state x is the sum of the measurement
errors of the observations Cm and a representation error due to
the relation between the high- and low-resolution model.

With this Gaussian approximation of the representation error
we find for the full likelihood:

p(y|x) ∝

exp

[
− 1

2
(y−Hx)T

{
Cm+

∑
i

ciH̃(Ci+μiμ
T
i ) H̃T

}−1

× (
y−Hx

)]
, (27)

where we identify the full observation error as
R = Cm + ∑

i ciH̃(Ci + μiμ
T
i )H̃T. This equation sheds some

light on the origin and on how to estimate the representation
error when the high-resolution pdf given the low-resolution state
is non-Gaussian, as will often be the case. Interestingly, we do not
have to estimate the Gaussian mixture model parameters in this
case because, as shown above, we use only the total covariance of
that model, which can be estimated directly from the distribution
of z̃ given x.

6. Observations and state vector are of different types:
assimilating retrievals

Another possibility is that the model does not have a direct
equivalent of the observation, i.e. the process that governs the
observation is not modelled at all. The previous section can be
seen as a special case of what we discuss here. Again, one has to

find the pdf that describes the relation between the observation
and the model fields, and we can do that only by introducing
other models.

Two possibilities exist to solve this problem. Firstly, the extra
model can be incorporated directly in the original model,
e.g. a radiative transfer model is built into the numerical
weather prediction model. The advantage is that all statistics
will be consistent, so the radiative transfer model will use the
temperature and humidity field from the original model directly.
A disadvantage is of course that the extra model can be quite
expensive to run, which is not desirable when time is critical, as
in numerical weather prediction.

A second option is to run the extra model off-line and
assimilate the retrieved field into the original model. A potential
problem is that, instead of assimilating the direct observations,
one assimilates the extra model, which is not necessarily what one
would like to do. An example is again radiance observations and
an atmospheric circulation model that does not have a radiative
transfer code. One could run the radiative transfer model off-line,
and assimilate e.g the resulting temperature profiles. The problem
is that the radiative transfer model with all its errors is assimilated,
instead of the radiance. One of the potential errors is that the extra
off-line model is run with a temperature and humidity field that is
not the same as that of the actual model used in the assimilation.

As we will show below, there is actually no disadvantage in
doing the assimilation off-line, and assimilating the retrieved
variables at a later stage as long as proper care is taken. This
has been discussed in great depth in Migliorini (2012) for the
linear case, and below we will extend this to the nonlinear case,
exploring Bayes’ theorem.

6.1. General formulation

Let us denote a vector in the retrieval space as z, related to the
original observations y via

y = Hret(z) + ε . (28)

As an example, y could be the radiation measurement from a
satellite, and z an atmospheric temperature profile. Hret is then
the radiative transfer model.

We also need the relation between the retrieved value and the
original model variables:

z = Hr(x). (29)

For numerical weather prediction, x could be the full state
vector of a full atmospheric model, and z the temperature profile
mentioned above. Hr(x) would in this case be the restriction of
the full atmospheric model state to the temperature profile at the
specific location connected to z. Clearly, one has to define Hret

and Hr such that H(x) = Hret{Hr(x)}.
The retrieval problem can be derived from the original data

assimilation problem exploring Bayes’ theorem as follows:

p(x|y) = p(y|x)

p(y)
p(x) = p(y|x)

p(y)

p(x)

p(z)
p(z), (30)

in which we just multiplied the prior p(x) with the prior of the
retrieval p(z), and divided by the same density. It is crucial to
fully understand the notation: the pdf p(..) is defined by the
argument, so p(x) is a different pdf from p(z). This equation can
be rewritten as

p(x|y) =
[

p(y|x)

p(y)
p(z)

]
p(x)

p(z)
. (31)

Because the direct interaction between the observation and the
original model variable x is via z, so p(y|x) = p{y|Hr(x)} = p(y|z),

c© 2014 The Authors. Quarterly Journal of the Royal Meteorological Society
published by John Wiley & Sons Ltd on behalf of the Royal Meteorological Society.

Q. J. R. Meteorol. Soc. (2014)



Representation Error Formulation in Data Assimilation

we can interpret the first two factors in brackets in this equation
as the retrieval process. To find the posterior for the original
data-assimilation problem we have to multiply the retrieval pdf
by p(x)/p(z), so

p(x|y) = p(z|y)

p(z)
p(x). (32)

A few remarks can be made about the process outlined above.
Firstly, we see that the retrieval is in fact a full pdf, which allows us
to incorporate the nonlinear case quite naturally. Secondly, this
retrieval can be ‘assimilated’ in the original model by a simple
multiplication with the original prior divided by the prior of the
retrieval. Thirdly, since z = Hr(x), the denominator depends on
x, contrary to the direct assimilation of the observations into the
original model. To eliminate this dependency, one might argue
to store the retrieval as p(z|y)/p(z), and assimilating that pdf into
the original model reduces to a simple multiplication by p(x).
However, note that p(z|y)/p(z) = p(y|z)/p(y), which, as function
of z is not unique because Hret can typically not be inverted. This
means that either one first calculates p(x)/p(z) and multiplies
that with the retrieval pdf, or one combines retrieval, p(x) and
p(z) in one process. Below we will evaluate this general formalism
in linear Gaussian and nonlinear context.

Finally, it is possible that a representation error is present
between the observations y and the retrieval variable z. In that
case one can follow the methods explained in sections 3–5, or
7, dependent on the issue. It is also possible that the retrieval z
represents reality differently from the model state x. In that case
we can write the retrieval as

z = Hr(x) + z̃, (33)

and proceed as

p(x|y) = p(x)

∫
p(y|z)

p(y)
p(̃z|x) d̃z

= p(x)

∫
p(y|z)p(z)

p(y)

p(̃z|x)

p(z)
d̃z, (34)

in which we recognise the retrieval as the first factor in the
integral. However, the change from standard retrieval case is that
we have to integrate over all possible values of the high-resolution
retrieval, as in sections 3 and 4. So one has to build the pdf of
the high-resolution retrieval variable given the coarse-resolution
dynamical model variable x.

6.2. The linear Gaussian case

For the linear Gaussian case we assume all pdfs and the likelihood
are Gaussian distributed. In particular the prior for the retrieval
is p(z) = N(zb, Bret). This leads to a retrieval

p(z|y) = p(y|z)

p(y)
p(z)

∝ exp

{
−1

2
(z − zret)

TP−1
ret (z − zret)

}
(35)

in which

zret = zb + Kret

(
y − Hretzb

)
(36)

with retrieval gain

Kret = BretH
T
ret

(
HretBretH

T
ret + R

)−1
(37)

and posterior covariance

Pret = (1 − KretHret) Bret, (38)

which is the standard solution. As mentioned above, to ‘assimilate’
this retrieval into the original model it has to be multiplied by
p(x)/p(z) leading to

p(z|y)

p(z)
p(x) ∝ exp

[
−1

2
(z − zret)

TP−1
ret (z − zret)

+ 1

2
(z − zb)TB−1

ret (z − zb)

− 1

2
(x − xb)TB−1(x − xb)

]
. (39)

Using z = Hrx and completing the squares in x we find

p(z|y)

p(z)
p(x) ∝ exp

[
−1

2
(x − xa)TP−1(x − xa)

]
(40)

in which xa is found as

xa = PB−1xb + PHT
r

(
P−1

ret zret − B−1
ret zb

)
Hr (41)

with

P−1 = B−1 + HT
r

(
P−1

ret − B−1
ret

)
Hr . (42)

These are the equations that assimilate the retrieval into the
original model. We have to store not only the retrieval zret and its
error covariance Pret, but also retain the retrieval prior zb and its
covariance Bret.

Note that we cannot write the solution in usual covariance
form, mainly because there is no equivalent for y in terms of zb

and zret. This is directly related to the fact the the information
matrix of p(z|y)/p(z) is given by

A = P−1
ret − B−1

ret = HT
retR

−1Hret, (43)

and the latter expression cannot be inverted if Hret is not full rank.
To make the connection to present-day data assimilation

methods used in numerical weather forecasting, variational
algorithms would minimise minus the logarithm of the posterior,
and so minimise

J(x) =1

2
(Hrx − zret)

TP−1
ret (Hrx − zret)

− 1

2
(Hrx − zb)TB−1

ret (Hrx − zb)

+ 1

2
(x − xb)TB−1(x − xb). (44)

No specific problem arise here since the gradient can be calculated
directly.

The application of ensemble Kalman filters is less straightfor-
ward as they are typically derived from the covariance form. Below
we explain how one can use the Ensemble Transform Kalman
Filter (ETKF). We can write:

P = {
B−1 + HT

r

(
P−1

ret − B−1
ret

)
Hr

}−1

=[
B−1/2

{
1+B1/2HT

r

(
P−1

ret −B−1
ret

)
HrB

1/2
}

B−1/2
]−1

= B1/2
{

1 + B1/2HT
r

(
P−1

ret − B−1
ret

)
HrB

1/2
}

B1/2

= X
{

1 + (HrX)T
(
P−1

ret − B−1
ret

)
HrX

}
XT

= XTTTXT, (45)

in which we used the standard notation B = XXT in which X is the
ensemble perturbation matrix defined as X = 1/

√
N − 1(x1 −

xb, ..., xN − xb) for an ensemble of size N. In an ETKF one used
the matrix T to update the ensemble perturbations as Xa = XT,
and the above gives an expression for this T. As in the ETKF we
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can relate the terms in the transform matrix T to the ensemble,
exploring SVDs etc. Details can be found in the ETKF literature
(e.g. Bishop et al., 2001). The ensemble mean is found from
Eq. (41) as

xa = (1−KHr)xb+XTTT(HrX)T
(
P−1

ret zret−B−1
ret zb

)
Hr, (46)

with

K = PHTA = XTTT(HrX)T(P−1
ret − B−1

ret ). (47)

This closes the linear retrieval case, and elements of this derivation
can be found in e.g. Migliorini (2012), who discusses this
issue in great detail. Specifically he mentions two conditions
that are needed for the equivalence of assimilating observations
directly and assimilating retrievals. The first one is that a linear
approximation of the observation operator is adequate, essentially
making his retrieval problem linear. The second one is that the
prior information covariance used in the retrieval should not be
taken too narrow to avoid losing observation information. This
latter point is not discussed here, but is obviously a very important
point for practical applications.

6.3. The nonlinear case

As mentioned above, the retrieval is in fact a full pdf. Because of the
direct connection to Bayes’ theorem, we know immediately how
to use the retrieval in the nonlinear case. Several nonlinear data
assimilation methods exist and we will discuss particle filtering
here since these can be applied in high-dimensional systems (e.g.
van Leeuwen, 2011; Ades and van Leeuwen, 2014).

We start again from our general expression for assimilation via
a retrieval:

p(x|y) = p(y|x)

p(y)

p(x)

p(z)
p(z). (48)

In importance sampling one considers samples from the prior of
the retrieval p(z) and incorporates the other terms as additional
weights on these samples. So we start from

p(z) =
Nz∑
i=1

δ(z − zi), (49)

and plug this into Bayes for the retrieval, leading to

p(z|y) = p(y|z)

p(y)
p(z) =

∑ 1

N

p(y|zi)

p(y)
δ(z − zi)

=
∑

wiδ(z − zi), (50)

so the retrieved particles are now weighted with

wi = 1

N

p(y|zi)

p(y)
∝ p(y|zi). (51)

Returning to the full assimilation, we find

p(x|y) = p(y|x)

p(y)

p(x)

p(z)
p(z) =

∑
wi

p (x|zi)

p(zi)
δ(z − zi). (52)

The meaning of the extra weights p(x|zi)/p(zi) is as follows. First
p(zi) is the probability of particle zi in the retrieval prior p(z). For
example, if the retrieval prior is a Gaussian, this can be evaluated as

p(zi) ∝ exp

[
−1

2
(zi − zb)TB−1

ret (zi − zb)

]
, (53)

so just a number we can calculate directly. Note that we do
not need to worry about the normalisation constant of the
Gaussian, as it is the same for each particle and is taken care of
automatically when we normalise the sum of the weights to one.
The other factor p(x|zi) is a bit more problematic. First we have
to realise that, when zi is given, only part of the full state vector
x is known, namely the part Hr(x) (in which Hr(..) can be a
nonlinear operator). So, we have to evaluate this term as follows:

p(x|zi) = p {x|Hr(x) = zi} . (54)

If we could know p(x) for every x, we would be able to calculate
this, at least in principle. However, this is typically not the case
in nonlinear data assimilation.

To proceed, let us assume the original model uses a particle
filter. In the simplest particle filter, p(x) is represented by a sum
of delta functions as

p(x) =
Nx∑
j=1

1

N
δ(x − xj), (55)

where we assumed equal weight particles, but including weighted
particles is straightforward. The issue is now that typically
Hr(xj) �= zi for every i, j combination: the retrieval prior and
the prior of the original model are not generated simultaneously.
There are several ways to solve this problem, and some are valid
only approximately. One could interpolate in state space the
posterior retrieval pdf from the weighted prior retrieval samples
zi. Since the dimension of the zi is much smaller than that of the
xj, this should be easier than interpolating in x space.

Another option is to kernel dress the particles, i.e. assume each
particle is the mean of a known function, say a Gaussian, with
pre-specified width (covariance). Or, similarly, one could fit a
Gaussian mixture model. This can be done on either the posterior
retrieval, or on the prior of the original model, or both. In that
case either p(zj|y), p(xi), or both can be calculated directly from
the interpolated pdfs.

Typically, however, a more sophisticated particle filter will be
used, which explores a proposal density (e.g. van Leeuwen, 2009).
In short, instead of using the model equations from the original
model to arrive at the observation time, one can use modified
equations that include information about the observations in the
form of e.g. a relaxation term, or even a full 4D-Var. The fact that
one uses a modified equation can be compensated for by changing
the relative weights of the particles. In our case one could change
the model equations also to include information on the location
of the zi. In its simplest form this could be implemented as a
relaxation term that relaxes each xj to one of the zi, as well as to
the rest of the observations. If needed, one can add steps as in the
Equivalent-Weights Particle Filter to ensure that the particles of
the original model end up close enough to the posterior retrieval
particles (e.g. van Leeuwen, 2010; van Leeuwen, 2011; Ades and
van Leeuwen, 2013). Clearly several possibilities are open here,
and it is unclear what the best technique is. We will discuss an
example below.

If we consider present-day large-scale data assimilation systems,
they are typically either linear or based on linearisations. In that
case it can be useful to approximate the retrieval pdf by a Gaussian,
while still using a nonlinear retrieval. The idea is that a linear
retrieval will be biased, and the retrieved covariance will be biased
too for a nonlinear retrieval process. However, if a fully nonlinear
data assimilation method for the retrieval is used, the first two
moments of the retrieved pdf are unbiased.

We have found an expression for the assimilation of nonlinear
retrievals, showing that this is possible without loss of information
from the original observations. Practically, one either has to
interpolate or use proper proposal densities to make this a valid
statement.

c© 2014 The Authors. Quarterly Journal of the Royal Meteorological Society
published by John Wiley & Sons Ltd on behalf of the Royal Meteorological Society.

Q. J. R. Meteorol. Soc. (2014)



Representation Error Formulation in Data Assimilation

6.4. Examples

We will now discuss two examples to illustrate the use of this
equation, one analytical and one exploring particle filters. In the
first example we assume that observation and model state are
related by

y = |Hrx| + ε , (56)

in which Hr is the projection of the full model state to a subspace
of the full model state, e.g. a model grid point, or a small model
area, and ε is a random variable drawn by the measurement
process from Nε(0, R). Note the subscript on N to denote the
active variable. The retrieved variable is defined as the model state
subspace z = Hrx, so

y = |z| + ε . (57)

The prior for the retrieval is taken as a pdf given by Nz(zb, Bret).
We then find for the retrieval from Bayes’ theorem:

p(z|y) ∝
{

Nz(y, R) Nz(zb, Bret) if z ≥ 0,
Nz(−y, R) Nz(zb, Bret) if z < 0,

which can be evaluated as:

∝
{

Nz{zb + Kret(y − zb) , Pret} if z ≥ 0,
Nz{zb + Kret(−y − zb), Pret} if z < 0,

in which Kret = BretH
T
ret(HretBretH

T
ret + R)−1 and Pret = (1 −

KretHret)Bret (compare with the linear case). This is the retrieved
pdf, which we now assimilate into the full model. Note that the
retrieved pdf is bimodal with Gaussian distributions around the
two modes zb + Kret(y − zb) and zb + Kret(−y − zb).

How we proceed from here depends on the prior of the
original model. Assuming that prior is Gaussian Nx(xb, B) (or a
Gaussian mixture, the extension is straightforward), we find for
the posterior pdf (see the linear case):

p(x|y) ∝
{

Nx (x1, P) if Hrx ≥ 0,
Nx (x2, P) if Hrx < 0,

in which x1 = PB−1xb+PHT
r

(
P−1

ret zret − B−1
ret zb

)
Hr, with zret =

zb+Kret(y−zb)
and x2 = −x1{zret = zb+Kret(−y−zb)}.
This closes this example.

We close the discussion with a numerical example using particle
filters. Assume that the observation operator reads as

y = x2 + ε , (58)

in which ε ∼ N(0, R), with variance R = 0.01. As retrieval prior
we use a Gaussian as

p(z) = N(0, Bret) (59)

with Bret = 0.4.
Figures 2 and 3 show the retrieval prior and retrieval posterior

pdfs using an ensemble of 50 particles. The effective ensemble
size, defined as 1/w2

i was 16. Experiments with smaller numbers
show similar results but with increased sampling noise. We
assume the two-dimensional prior of the original model 1 time
step before the time of the observation (or retrieval) is given
by a Gaussian

p(x) = N(0, B) (60)

to allow for an exact solution for comparison, with, for simplicity,
B = diag(0.01).

Figure 2. Retrieval prior pdf using an ensemble of 50 particles against value of x.

Figure 3. As Figure 2, but showing the retrieval posterior pdf against value of x.

The model evolution equation is taken as the identity

xn+1 = xn + βn, (61)

in which the model error is β ∼ N(0, Q), with the model error
covariance Q given by:

Q =
(

0.1 0.05
0.05 0.2

)
. (62)

The observation operator between model state and retrieval state
is now linear as all nonlinearity is taken up by the retrieval, so
Hr(x) = x1, the first element of x.

To ensure convergence to the posterior retrieval parti-
cles while retaining non-degenerate particles, we use the
Equivalent-Weights Particle Filter scheme (e.g. Ades and
van Leeuwen, 2013). This consists of employing a modified model
equation

xn+1
j = xn

j + β̂n
j + αjT{zi − Hr(xj)}, (63)

in which T = QHT
r (HrQHT

r + R̂)−1 and R̂ is small. We choose
R̂ = 0.00001, which will ensure that the Hr(xj) part of xj is

forced to be almost equal to zi. The random term β̂n
j is

chosen from a mixture density with small amplitude, (Ades
and van Leeuwen, 2013, 2014, give details). We retain 80% of
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Figure 4. Model posterior pdf for argument 1 after the assimilation of retrieval
pdf against value of x.

Figure 5. Exact posterior pdf for direct assimilation of observation, argument 1
against value of x.

the particles but little difference was seen in the range 70–100%.
The scheme chooses αj such that the weights of all particles are
equal, taking into account the weights accumulated over previous
time steps. These accumulated weights are 1/p(zi) in this case
(Eq. (52)).

Figure 4 shows the posterior pdf for x1 = Hr(x) and Figure 5
shows the exact solution. The two are very close (apart from
sampling noise), with the left peak having 24 members and the
right peak 26 members, showing that assimilating the retrieval
works. The effective ensemble size was 40, as expected since 80%
of the particles were retained.

The second element of xj is also changed due to the non-
zero covariances in Q, leading to the posterior marginal for that
element depicted in Figure 6, with exact solution in Figure 7.
This closes the example on how to assimilate nonlinear retrievals
using a particle filter into the original model represented by a set
of particles.

7. The likelihood with non-exact observation operator

When the relation between model and observations is not known
exactly, an extra step has to be taken into account, as identified
by e.g. Cohn (1977). Note that this problem is different from
that in section 3. There, model and observations represented

Figure 6. Model posterior pdf for argument 2 after assimilation of retrieval pdf
against value of x.

Figure 7. Exact posterior pdf for direct assimilation of observation, argument 2
against value of x.

the truth differently. Here we assume that the representation is
similar, but we do not know exactly how the two are related. For
instance, the observation operator used to connect model state
to observation state has parameters that are not well known. The
likelihood will depend on the observation operator used, and the
pdf representing the uncertainty of the observation operator has
to be taken into account. This can be done by bringing in the
observation operator as an extra random variable. The likelihood
can now be written as

p(y|x) =
∫

p(y, H|x) dH . (64)

This equation can be evaluated as

p(y|x) =
∫

p(y, H|x) dH =
∫

p(y|H, x) p(H|x) dH . (65)

The first factor p(y|H, x) can be evaluated in the usual way, as
discussed in the previous sections, including the representation
error in case our modelled state is a low-resolution version of the
true state. The second factor p(H|x) is the pdf of the observation
operator given state x. If H is linear it will not depend on x so
p(H|x) = p(H). This pdf has to be known to be able to solve the
data assimilation problem.

c© 2014 The Authors. Quarterly Journal of the Royal Meteorological Society
published by John Wiley & Sons Ltd on behalf of the Royal Meteorological Society.

Q. J. R. Meteorol. Soc. (2014)



Representation Error Formulation in Data Assimilation

In general little can be said about this solution. To make some
progress, let us now concentrate on the special case that both H|x
and y|H, x are Gaussian distributed. We then have

p(y|x)∝
∫

exp

[
−1

2

{
y − H(x)

}
C−1

m

{
y − H(x)

}T

−1

2
{H(x)−h(x)} S−1{H(x)−h(x)}T

]
dH , (66)

in which h is our best guess of the observation operator, and S its
error covariance. When H is linear we can reduce this further to

p(y|x) ∝ exp

[
−1

2

{
y−h(x)

}
(Cm + S)−1

{
y−h(x)

}T
]
. (67)

So, in the linear Gaussian case we can just add the error covariance
of the observation operator model to the error covariance of the
measurement noise. Note that this equation holds also when h(x)
is nonlinear and the uncertainty in the observation operator is in
the linear regime. This is the case discussed in Lorenc (1986) and
Bocquet et al. (2011).

Let us finally bring the results from sections 3–5 and 7
together. If the model is less realistic than the observation,
and the observation operator is not known exactly, the likelihood
becomes, using z as the high-resolution model variable,

p(y|x) =
∫

p(y|x, z) p(z|x) dz =
∫

p(y|z) p(z|x) dz

=
∫

p(y|H, z) p(H|z) p(z|x) dHdz . (68)

When all pdfs are assumed to be Gaussian and H linear, we can
evaluate this as

p(y|x) ∝

exp

[
−1

2

{
y − h̃(x)

}T(
Cm+S+h̃C̃̃hT

)−1{
y − h̃(x)

}]
, (69)

in which h̃ is the mean of the observation operator in the low-
resolution model, with error covariance S, and C̃ is the covariance
matrix of the high-resolution fields, given the low-resolution
value x.

Finally, other approximations than the pure Gaussian can be
used to describe representation errors of this kind. The simplest
analytically is the Gaussian mixture model explored earlier, but
other methods can be explored also.

8. Conclusions

This article discusses the formal treatment of the so-called
representation error using Bayes’ theorem. It is shown how
the likelihood can be interpreted and calculated when the
model and the observations represent different phenomena. The
representation error issue in observation space is discussed, and
we showed how the Gaussian assumption leads to the traditional
formulation of the representation error. It is stressed that the part
of the likelihood related to representation mismatch is dependent
on the model state in general. For the Gaussian case, this means
that the representation error covariance is model state dependent,
and typically smaller than the subgrid-scale covariance.

We also discuss the idea of averaging observations (super-
obbing) to avoid the problem of the representation error and
show that this does not work: one cannot get rid of the rep-
resentation error, and when the observations are correlated the
relative influence of the representation error increases when more
observations are used in the averaging.

When the representation error is solved for via model
simulation, we find again that the representation mismatch

depends on the model state, and similar caution as above should
apply here. Several strategies are discussed to solve the problem
using high-resolution model simulations.

The off-line versus online retrieval problem is discussed
and using Bayes’ theorem a new simple proof is given of
the equivalence of assimilating the original observations and
assimilating their linear retrievals. This proof is extended to
nonlinear retrievals, again using Bayes’ theorem.

Furthermore, we discuss how to treat uncertainty in the
observation operator model. In the most general case, one has to
solve a convolution of the likelihood given a certain observation
operator model and the pdf of the observation operator model
itself. It is shown that, only when both are Gaussian and H
are linear (or linearisable around a mean observation operator
model), the error covariance in the likelihood becomes the sum
of the error covariances of the likelihood given an observation
operator model and the error covariance of the observation
operator model.

While no real-world applications have been discussed, it
is hoped that this article clarifies some of the issues around
representation errors.
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Appendix

Equivalence of Eq. (13) and (14)

We will prove that assimilating a set of subgrid observations
(y1, ..., ym)T with identical variances σ 2

m + σ 2
r and correlations

ρ leads to the same analysis as assimilating their average y. We
assume that the model equivalent of the observation is given by
Hx, in which H can be a model grid box, or a spatial average over
a few model grid boxes.

For the update of the average we have

xav = x +(B−1+ HTσ−2
y H)−1HTσ−2

y (y − Hx). (A1)

The variance of the observation average is given by

σ 2
y = σ 2

y = σ 2
m + σ 2

r

m
+ m − 1

m
ρσ 2

r . (A2)

To show how to work out these term for each specific case, we
use the following example. Assume that H is an average over five
model grid points and we arrange the ordering in the state vector
such that these five grid points are positioned next to each other.
Then H will be a matrix of size 1 × n with value 1/5 at the five
grid points and zeros elsewhere:

H = (0, ..., 0, 1/5, 1/5, 1/5, 1/5, 1/5, 0, ..., 0). (A3)

Clearly HTσ−2
y H will be an n × n matrix with values 1/5 × 1/5 ×

σ 2
y = 1/(25σ 2

y ) at the entries (i, j) in which i and j relate to the
five grid points:

HTσ−2
y H =

⎛⎝ 0, ... 0 0, ...
0, ... 1/(25σ 2

y ) 0, ...

0, ... 0 0, ...

⎞⎠ .

The other observation-specific term in the update is
HTσ−2

y (y − Hx). Note that because we have just one observation,
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HTσ−2
y will be an n × 1 matrix with values 1/(5σ 2

y ) at the
five grid point positions, and zero elsewhere. This finally
leads to HTσ−2

y (y − Hx) being a n × 1 matrix with entries

(y − Hx)/(5σ 2
y ) at the five grid points, and zeros elsewhere.

Let us now look at the more complicated calculation when we
assimilate all observations at the same time. The update for this
case is given by:

xd = x + (B−1 + HT
d R−1

d Hd)−1HT
d R−1

d (y − Hdx), (A4)

in which y = (y1, ..., ym)T, and Hd is an m × n matrix with zeros
everywhere except in the columns related to the five grid points:

Hd =

⎛⎜⎝ 0, ...0 1, 1, 1, 1, 1 0, ...
...

...
...

0, ...0 1, 1, 1, 1, 1 0, ...

⎞⎟⎠ .

The observation-error covariance Rd is a matrix with σ 2 + σ 2
r

on the diagonal and ρσ 2
r at all other entries:

Rd =
⎛⎝ σ 2 + σ 2

r ρσ 2
r ρσ 2

r

ρσ 2
r σ 2 + σ 2

r ρσ 2
r

ρσ 2
r ρσ 2

r σ 2 + σ 2
r

⎞⎠ .

The inverse of Rd is easily found as a m × m matrix with

σ 2 + σ 2
r + (m − 2)ρσ 2

r

(σ 2 + (1 − ρ)σ 2
r )(σ 2 + σ 2

r + (m − 1)ρσ 2
r )

(A5)

on the diagonal and

−ρσ 2
r

(σ 2 + (1 − ρ)σ 2
r )(σ 2 + σ 2

r + (m − 1)ρσ 2
r )

(A6)

in all other entries. (This can be checked simply by multiplying
Rd with this matrix.) It is easy to see that R−1

d H will be a m × n
matrix with entries 1/(5mσ 2

y ) at the columns related to the five
grid points:

R−1
d H = 1

5mσ 2
y

⎛⎜⎝ 0, ...0 1, 1, 1, 1, 1 0, ...
...

...
...

0, ...0 1, 1, 1, 1, 1 0, ...

⎞⎟⎠ .

Here we use the fact that the diagonal of R−1
d plus m − 1 times

its off-diagonal elements is equal to 1/{σ 2 + σ 2
r + (m − 1)ρσ 2

r }
which is equal to 1/(mσ 2

y ).

Similarly, multiplying this matrix by HT leads to a n × n matrix
with entries 1/(25σ 2

y ) at those positions (i, j) for which i and j
correspond to the five grid points. So we see directly that the
HTR−1H combination is the same for both assimilation methods.

We now show the same for the HTR−1
d (y − Hx) factor. Clearly

HTR−1
r is a n × m matrix with non-zero entries 1/(5mσ 2

y ) at
the rows related to the five grid points. Multiplying this matrix
with the innovation vector leads directly to an n × 1 matrix
with entries (y − Hx)/(5σ 2

y ) at the five grid points, and zeros
elsewhere. Again, we find the same matrix as for the case in which
we assimilated the average observation. This concludes the proof.
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