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Abstract

Our digital universe is rapidly expanding, more and more daily activities are digitally recorded, data arrives in streams, it needs to be

analyzed in real time and may evolve over time. In the last decade many adaptive learning algorithms and prediction systems, which

can automatically update themselves with the new incoming data, have been developed. The majority of those algorithms focus

on improving the predictive performance and assume that model update is always desired as soon as possible and as frequently as

possible. In this study we consider potential model update as an investment decision, which, as in the financial markets, should

be taken only if a certain return on investment is expected. We introduce and motivate a new research problem for data streams –

cost-sensitive adaptation. We propose a reference framework for analyzing adaptation strategies in terms of costs and benefits. Our

framework allows to characterize and decompose the costs of model updates, and to asses and interpret the gains in performance

due to model adaptation for a given learning algorithm on a given prediction task. Our proof-of-concept experiment demonstrates

how the framework can aid in analyzing and managing adaptation decisions in the chemical industry.

Keywords: evolving data streams, concept drift, evaluation, cost-sensitive adaptation, utility of data mining

1. Introduction

Learning from evolving data has become a popular research

topic in the last decade. As distributions of real world data of-

ten evolve over time [1], predictive models need to have mech-

anisms to update themselves by regularly taking into account

new data, otherwise their predictive performance will degrade.

Such adaptive predictive algorithms have been developed in dif-

ferent research fields, such as data mining and machine learn-

ing in general [2, 3, 4], recommender systems [5], user model-

ing and personalization [6], information retrieval [7], intrusion

detection [8], robotics [9], time series analysis [10], chemical

engineering [11] and more. The majority of those algorithms

focus on optimizing the prediction accuracy over time. Several

studies (e.g. [12, 13]), consider time and memory consumed for

this operation as additional performance criteria. Different pre-

dictive analytics applications may operate in different environ-

ments, generate very different volumes of data, have different

complexities of predictive decisions, and different sensitivity to

errors. Naturally, there is no single best adaptation strategy or

algorithm for all situations (“no free lunch” [14]).

From a practical perspective excessive adaptation (e.g. too

often) may be a waste of resources and provide only incremen-

tal insignificant benefits towards the predictive performance.

Consider as an example a chemical production process where
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an adaptive predictive model estimates the quality of a prod-

uct given sensor readings as inputs. Sensor readings may arrive

every second. However, changes in the process that require a

model update, such as new suppliers or replacement of sensors,

are not likely to happen every second, but rather on a yearly

basis or so. During that year an incremental learning algorithm

would make updates to itself every second, resulting in 30 mil-

lion incremental updates. The question is, weather it would be

a desirable investment of resources.

In response to this question we introduce a research problem

of cost-sensitive adaptation, where model adaptation is consid-

ered as an investment decision. Computational resources are in-

vested for updating the models, and labour resources to obtain

feedback (the true labels) expecting to improve the predictive

performance. In the financial markets investment decisions are

made on the basis of the expected return on investment (ROI)

[15]. In predictive systems to estimate ROI of adaptation we

need to assess costs and benefits of running an adaptive algo-

rithm. This assessment needs to be performed in a standardized

way such that different algorithms and their implementations

could be compared before putting an adaptive system into op-

eration. Moreover, in order to fully utilize the opportunities

presented by the modern market of computing resources, such

as cloud computing, we need to be able to decompose adaptive

algorithms into critical and optional components and to assess

the costs and contributions of each component independently.

In this study we propose a reference framework for assess-

ing the utility of an adaptive algorithm for a given prediction

problem. The framework includes a methodology for identify-
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ing cost components, a model for analytically combining those

components, and a setting for experimental assessment of ROI

before putting the algorithm to online operation. We propose

using our analytical framework and the ROI – the gain in pre-

dictive performance per resources invested, for comparing and

justifying algorithmic decisions in designing adaptive predic-

tion systems.

Our study makes the following contributions. Firstly, we in-

troduce and motivate a new research problem for data streams

– cost-sensitive adaptation. Secondly, we systematically char-

acterize costs of adaptive learning, which are typically ignored

in theoretical work, but are critical for real-world applications.

Thirdly, the proposed reference framework makes it possible

to compare adaptive algorithms within a given application con-

text in terms of costs and benefits of adaptation. Different busi-

nesses naturally have different costs and benefits. Even if the

same measure is used for assessing the predictive performance,

the implications of 1% improvement may be very different in

different applications. For instance, in the airline industry a

10% improvement in the demand prediction accuracy can bring

2-4% additional monetary revenue [16]. Our proof-of-concept

experiments demonstrate how the proposed framework can help

in deciding upon an optimal adaptation strategy in a chemical

production application.

The paper is organized as follows. Section 2 discusses the

requirements for adaptation, and overviews adaptation possi-

bilities offered by available computing resources. In Section

3 we propose a framework and accompanying methodology

for quantifying utility of adaptation retrospectively and online

in real time. Section 4 characterizes existing adaptive learn-

ing algorithms following our framework. Section 5 presents a

proof-of-concept experimental analysis that demonstrates how

the framework can be used for analyzing learning algorithms.

Section 6 discusses related work, and Section 7 concludes the

study.

2. Overview of requirements and resources

This section provides a context for our study. We first dis-

cuss the requirements for adaptation quoted in research litera-

ture and illustrate the need for adaptation with a few application

examples. Then we present an overview of currently available

computing resources, and discuss what are the possibilities for

adaptivity from the technical point of view. The goal of this sec-

tion is to analyze how adaptivity can be organized and to what

extent adaptivity needs to and can be flexible (on demand).

2.1. Requirements and need for adaptation

In the data streams literature the following requirements are

often quoted [17]: (1) process one example at a time, and

inspect it only once; (2) use a limited amount of memory;

(3) work in a limited amount of time; (4) be ready to predict

at any time.

The requirements (2) and (3) are critical in the online set-

ting, since otherwise a predictive system fails to operate. These

requirements originate from the incremental learning domain.

Incremental learning[18] refers to situations where the learning

data arrives and model is updated over time. Adaptive learning

is different from incremental learning setting in a way that in-

cremental learning only learns from new data, while adaptive

learning in addition needs to forget the old data. Both incre-

mental and adaptive learning algorithms need to scale linearly

with the incoming data.

The requirement (1) originates from one-pass algorithms that

read their inputs exactly once, and generally require O(n) time

and less than O(n) memory, where n is the size of the input.

Such algorithms traditionally address exploratory analysis of

large data, where the output of an algorithm is an answer to a

query (e.g. what is the mean of the data). Reading of data is

typically a major operation, followed by a basic mathematical

operation (e.g. addition). In adaptive learning the output of

a training algorithm is a trained predictive model. Reading of

data consumes a small share of resources, the majority is con-

sumed by model training or update (e.g. gradient descent or

matrix inversion). Thus, in our opinion, multiple passes can be

considered if that improves overall utility of the system.

The requirement (4) originates from any-time algorithms in

computing, which can provide an answer after performing a

fixed amount of computation. The answer may be not glob-

ally optimal. This requirement is, as well, more critical in ex-

ploratory data analysis, where the answer is a summary of data.

In predictive modeling the answer is a trained predictive model.

We argue, that in adaptive learning the any-time requirement is

relevant only in situations where occasionally next observation

arrives so fast that the previous model update is not yet finished.

In such cases we may consider keeping our previously trained

model instead of replacing it by a half-trained new model, i.e.

we may chose to adapt the predictive model less frequently.

This cannot happen continuously, since in such a case an earlier

requirement (3) would be violated.

With respect to the above discussion we conclude that in

terms of resources, online adaptive algorithms should: (1) scale

linearly with the incoming data in terms of processing time;

(2) use limited memory; (3) execute adaptation only if the ex-

pected utility is sufficient.

Let us consider two application examples that both require

adaptivity, but the constraints for adaptation are very different.

TransUnion provides credit scoring services, aggregating infor-

mation from ∼ 83 000 data sources, with the data coming in

4 000 different formats [19]. TransUnion has 8.5 PB of data

and receives 100 million updates a day and all this data is stored

in their data warehouse. TransUnion uses Ab Initio1, which

is close to a brute-force parallelization scheme. The Chief In-

formation Officer of the company states that the major costs

associated with data are costs of moving and storing it, while

computing is not a problem, as long as it can be parallelized.

Consider an industrial plant producing chemical raw mate-

rials. A plant typically runs from one up to twenty processes,

with around five of those running in parallel. During the pro-

duction process sensor readings (e.g. temperature, pressure,

1http://www.abinitio.com/
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flow) are available in real time, the frequency of data arrival

can range from less than a second to one hour with a typical fre-

quency of around five seconds. Sensor readings are mostly real-

valued. Large processes may have a few thousands of sensors,

while a typically process has up to 500. Such data is neither too

large nor too speedy, commodity workstations can be used for

processing. Typically, neither computing resources, nor storage

is a limiting resource, but that, of course bears costs. The major

limiting resource is often a feedback in the form of the true tar-

get value, as these values are obtained manually, for instance,

in a chemical laboratory. Adaptivity is required due to changes

in the operation styles or variations in raw material.

The utility of adaptation depends on a particular source of

data; in assessing the utility of adaptation it is important to take

into account the source of data and realistically assess whether,

for instance, adaptation needs to be fully incremental or a buffer

of historical data can be easily stored in memory.

2.2. Available computing resources and technologies

Online processing of smaller data can be handled by conven-

tional workstations and data warehousing technologies. Big on-

line data may require specific processing and storage solutions,

such as in-memory data analytics, in-database data analytics or

cloud computing.

In-memory analytics is an approach to querying data from

RAM, as opposed to querying data that is stored on physical

disks. It allows faster query response times. In-memory online

analytics on a desktop PC is becoming feasible for many appli-

cations, as the 64-bit operating systems can already address 1

TB of memory.

In-database analytics refers to processing data within

a Database Management System (DBMS) using analytic

database platforms that provide parallel processing, partitioning

and scalability. That saves efforts of moving data between the

database and analytics applications. Two trends can be distin-

guished: relational DBMS optimized for analytical workloads

(ADBMS) and nonrelational systems (NoSQL) for processing

multistructured and unstructured data [20]. ADMBS focus on

parallel processing, enhanced data structures, data compression

and pushing analytical processing into the DBMS. NoSQL sys-

tems are primarily targeted for processing multistructured big

data. Hadoop2 is a leading nonrelational processing system,

which uses the MapReduce programming model [21] to divide

application processing into small fragments that can be exe-

cuted concurrently on multiple nodes in a network of commod-

ity workstations.

Recent developments aim to bring real time analytics and

parallel and distributed processing together. For example

Spark3, aims to bypass Hadoop’s batch processing nature by

providing distributed event processing capabilities. Also the

StreamCentral4 system aims to facilitate real time data ana-

lytics in cloud computing environments.

2http://hadoop.apache.org/
3http://spark.incubator.apache.org/
4http://www.virtus-it.com/

stream-central-real-time-analytics-solutions/

Cloud computing delivers computing as a service rather

than tools. Amazon Elastic Compute Cloud5 (Amazon

EC2) provides resizable computing capacity in the cloud as a

web service. Pricing is per memory-time, data transfer in and

out carry additional charges. Moreover, Amazon facilitates a

spot market for biding for unused EC2 computing capacity in

real time. Public cloud computing web services are also pro-

vided by GoGrid6 or Ninefold7.

Growing cloud computing possibilities, and particularly,

computing as a service provides the main motivation for study-

ing resource-aware cost-sensitive adaptation. In cloud comput-

ing the resources may be released when not in use, which is par-

ticularly attractive in the context of adaptive systems, in which

the demand for processing and storage for a given application

may vary over time depending on the need to adapt. In cloud

computing every update of the current model comes at a cost.

Thus, in this setting it is particularly important to be able to

assess the utility of adaptation and select the most beneficial

adaptation regime. Therefore, our further analysis focuses on

the cloud computing settings.

3. Assessing costs and benefits of adaptation

In this section we consider how to measure the utility of

adaptation. First we formally define the setting of adaptive su-

pervised learning and then we present the framework for assess-

ing utility of adaptation and discuss its components.

3.1. Problem setting for online prediction

Data continuously arrives over time and we need to predict in

real time. Let Xt be the input data at time t, and yt be the target

variable which we aim to predict (label). A predictive model is

a function L : Xt → yt, which operates online making a pre-

diction for every incoming data observation (t denotes the time

of arrival). The model L can be fixed, or it may be adaptive,

Table 1 illustrates the procedure in each case.

Table 1: Operation of online predictors at time t

Fixed predictor Adaptive predictor

at time t:

(1) receive Xt (1) receive Xt

(2) predict L : Xt → ŷt (2) predict L : Xt → ŷt

(3) receive true yt

(4) update L with (Xt, yt)

An adaptive predictor has two additional operation steps, it

needs to receive feedback (in the form of the true label) and

update the model. Both actions bear additional cost. The model

update itself includes the following steps:

1. Adaptation condition check, e.g. change detection, request

by a human operator, or arrival of the true label yt in case

of periodic adaptation.

5http://aws.amazon.com/ec2/
6http://www.gogrid.com/
7http://ninefold.com/
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2. Model adaptation action, such as updating model parame-

ters, switching to an alternative model, or deploying a new

model part. If the adaptation condition is not flagged, the

old model will be retained.

3. Data management action updates the information in mem-

ory that is not used for making predictions, such as a

past data buffer or data summary, an alternative predictive

model for potential future use or performance statistics for

change detection, if required.

Model adaptation is always triggered by the adaptation condi-

tion. Data management may be triggered or independent from

the adaptation condition.

3.2. When to adapt?

This study considers steps (3) and (4) in Table 1 as optional;

we propose how to analyze the utility of executing those steps.

In the vast majority of cases if step (4) is intended, step (3) must

be executed, since supervised learning models need labels for

training. The standard adaptive predictors aim to adapt when-

ever opportunity presents itself regardless of resources needed

for adaptation (with a few exceptions of active learning restrict-

ing labeling costs, e.g. [22]). We argue that adaptation rate can

and often should be varied or even suspended depending on ex-

pected gains in predictive performance relative to spending on

computational resources and labeling of training examples that

enable adaptivity. At each time step expected costs and bene-

fits of that adaptation need to be estimated. Adaptation should

only happen if the expected gain in performance, such as the

prediction accuracy, exceeds the cost of resources required for

adaptation.

Our framework focuses on measuring the utility of adapta-

tion. Let LT be the current predictive model. Suppose at time

t1 adaptation is triggered and we produce a model LT+1. If we

do not update the model at time t1, we would save some com-

putational and labeling costs, but the model would potentially

lose some accuracy. To measure that effect we retain the old

model LT to operate in parallel until the next update at time

t2, which allows assessing the gains of adaptation within the

time horizon [t1, t2], based on the difference in performance of

LT and LT+1, as well as assessing the costs of adaptation as-

sociated with maintaining LT+1 adaptable (i.e. change detec-

tors, data buffers, alternative models). At t2 we build LT+2, and

replace the reference model LT with LT+1. This assessment

requires small additional computational costs, however, we ex-

pect the costs of operation of existing model to be negligible as

compared to the costs of training new models and obtaining the

labels.

Decisions for the future adaptation can be based on observ-

ing the trends of utility, i.e. if utility is decreasing or remains at

unsatisfactory level, then adaptation needs to become less fre-

quent or stop.

3.3. The gain of adaptation

The gain of adaptation can be measured retrospectively in

terms of a change in loss λ(LT (Xt), yt), where LT denotes the

predictive model after the T th adaptation, and L is the loss func-

tion. The gain of the T th adaptation is given by

γT =

TNT
∑

t=T1

[

λ
(

LT−1(Xt), yt

)

− λ
(

LT (Xt), yt

)]

. (1)

where NT is the number of samples after the T th adaptation but

before the T + 1st adaptation, and Ti is the time index of the ith

sample after the T th adaptation. Note that LT−1 is just a copy

of the previous predictive model, it does not require any extra

change detection or adaptation itself.

The simplest loss function is the absolute prediction error,

defined as λ : |LT (Xt) − yt |. In this case gain is a decrease

in prediction error, which can also be called an increase in the

prediction accuracy. Alternative loss functions can be defined

depending on an application at hand, for instance, by assigning

different relative costs to various types of incorrect predictions

[23]. For example, in a binary classification problem of medi-

cal diagnosis, we can assign higher cost of classifying a person

with a serious disease as healthy than the other way around.

In the usual circumstances the loss function should be fixed

throughout the online operation. For comparing alternative pre-

dictors under the proposed framework, the same loss function

should be used or losses from different functions should be con-

verted to monetary units.

3.4. The cost of adaptation

The costs of adaptation are not limited to computational costs

of model updates. We pay for keeping the option to adapt even

if the actual model update does not happen. Such costs may

include: keeping a data buffer in memory, periodically running

change detectors or training alternative models for potential fu-

ture use. Adaptation can also generate indirect (opportunity)

costs for delayed or missed predictions due to resources being

engaged elsewhere or the predictive model’s ongoing updates.

Moreover, for updating the model the true labels are required,

which may impose costs. Last but not least, communication

costs may occur to supply the predictor with new data and to

retrieve results. Thus, adaptation costs consist of four compo-

nents: (1) computational costs, (2) costs of delayed predictions,

(3) labeling costs, and (4) communication costs, which we dis-

cuss in the following subsections.

3.4.1. Computational cost

In order to perform model adaptation computational re-

sources need to be engaged. The costs of computational re-

sources include the processing power, memory consumption

and disk storage. When computation is outsourced (e.g. cloud

computing discussed in Section 2.2) disk storage is usually

priced in slots of a reasonably large quantity (e.g. each 500GB).

Thus, we assume them to constitute the fixed costs of running

the predictive system independently whether it is adaptive or

not. Hence in assessing the utility of adaptation we only take

into account the processing power and memory consumption.

Recently Bifet et al proposed [13] to use RAM-hours for

quantifying the consumption of resources in online learning. A
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RAM-hour (Rh) refers to 1 GB of RAM engaged for one hour,

and we use it as a basis for quantifying computational costs.

RAM-hour is a standard unit of pricing in cloud computing ser-

vices. That is, many providers of computing services charge per

RAM-hour, hence computing costs in RAM-hours can straight-

forwardly be translated into monetary costs. Growing availabil-

ity of computing as a service is one of the main motivations for

this work on assessing the utility of adaptation. If we can asses

the benefit of extra (computing) resources deployed, we can de-

ploy exactly as much resources as is beneficial.

The computational costs of adaptation ψcom relate to:

• PROCESSING TIME of

Ct data observation interarrival time,

cP making prediction (not adaptation costs),

cD verifying if model update is needed,

cL updating predictive model,

cB obtaining and updating data summaries, including al-

ternative decision models that are not currently in

use, and

• REQUIRED MEMORY for

mD verifying if model update is needed,

MD storing detectors and statistics for detection,

mL updating predictive model,

ML storing predictive model (not adaptation costs),

mP making prediction (not adaptation costs),

mB updating data summaries or alternative models,

MB storing raw data, data summaries and/or alternative

models in the memory buffer.

In the above, M denotes resources that are constantly employed,

while m denotes resources that are deployed only during the

corresponding processing actions.

Consider the time period between two model updates. We

define the computational costs for the T th update as:

ψcom
T =

TNT
∑

t=T1

[

Ct(MD
t + MB

t ) + (cB
t mB

t + cD
t mD

t + cL
t mL

t )
]

. (2)

NT is the number of samples after the T th adaptation but before

the T + 1st adaptation, Ti is the ith sample after T th adapta-

tion. The first component occupies memory constantly, since

we need to store the detector (MD) and data buffer (MB) con-

tinuously if we opt for an adaptive system. The second com-

ponent is the memory occupied temporarily during checks and

updates. Note, that ML and cP are not accounted as these costs

are present in an online prediction system regardless of it being

adaptive or not. We assume the system operation in the setting

of on-demand computational resources (e.g. cloud computing),

where unused resources can be released at most once per time

step of operation (a time step t has been defined in Table 1),

therefore, the maximum of the operational resources for detec-

tion, model update or data buffering is considered in Eq. (2).

3.4.2. Opportunity cost

The opportunity costs (loss) occur if the system is unable

to deliver predictions at the time of adaptation because model

update is being performed. This cost highly depends on the ap-

plication and in general may be difficult to quantify. In safety-

critical applications a prediction may be needed, for instance,

at every second, and any delay may have catastrophic conse-

quences. In other applications, e.g. recommender systems,

skipping predictions may not be that critical, if overall the sys-

tem is improved.

The delayed prediction cost can be mitigated at the expense

of extra RAM-hours. One possible scenario is to use as many

RAM-hours as needed in order to perform adaptation within a

fixed time. However, in practice any adaptation procedure can

only be parallelized up to some point, after which employing

additional computational resources will have no effect. That

is known as the maximum speed up. Moreover, usage of par-

allelization frameworks imposes computational administration

overheads. Hence, it is important that the data mining task is

large enough (in computational terms) to be able to gain enough

speed up from parallelization in order to be beneficial. For ex-

ample setting up a task in Hadoop will take some time. In the

Hadoop manual it is recommended that each subtask takes at

least one minute to execute8.

Alternatively we can deploy a backup copy of the predic-

tive model, which would be used for providing predictions,

while the original model is adapting, at an expense of additional

RAM-hours, storage and data transfer. The cost of deploying

and using this copy is defined as

ψ
opp

T
=

TNT
∑

t=T1

cL
t mL

t . (3)

If for a given application model adaptation is expected to be fast

and a delay in prediction would not make a major harm, we may

choose not to deploy a copy of the model and assume ψ
opp

T
=

0. We also would not need to deploy a copy in cases where

adaptation affects only restricted parts of the model, meanwhile

other parts can deliver meaningful predictions, e.g. retraining

one expert in an ensemble of classifiers.

3.4.3. Labeling cost

Timely feedback in the form of the true labels is required

for the adaptation of predictive models. Obtaining the labels

may be a manual resource-intensive, and hence costly proce-

dure. The costs of labeling ψlab
T

need to be expressed in com-

parable units to ψcom
T

and ψ
opp

T
, thus converting ψlab

T
, ψcom

T
, ψ

opp

T

into monetary costs may be required. In forecasting tasks, such

as weather or sales prediction, labels become available the next

time period at almost no cost. Therefore in this study we as-

sume ψlab
T
= 0, but the proposed framework is flexible enough

to accommodate nonzero or even variable labeling cost.

8https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.

html
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3.4.4. Communication cost

Using computational services, such as cloud services for

adaptive or nonadaptive predictive systems requires to trans-

mit data from the source to the service, and from the service to

the user in the form of predictions. The cost of communicat-

ing predictions may be neglected as it is usually very small in

size. However, communicating training data or unlabeled data

for the prediction may impose a bottleneck and cause higher

cost. Cost in this context is caused for consuming a certain bit

rate (measured in bits per second – bps) over a period of time.

We distinguish two kinds of communication costs with the

cloud service: the general communication cost of prediction,

and the extra costs associated with having the predictive system

adaptive. The general communication cost is dependent on the

number of data items that need to be predicted by the system,

these costs are the same for nonadaptive and adaptive systems

and hence are not part of the cost of adaptation. The extra com-

munication cost ψntw
T

associated with having the system adap-

tive are caused by communicating new training observations to

the cloud service. This consumption may vary depending on

the required speed of adaptation, as the training observations

may have to be made available in time to accommodate for the

required speed of adaptation. The cost of communication ψntw
T

needs to be expressed in units comparable to ψcom
T

, ψ
opp

T
and ψlab

T

and may be converted into monetary costs if required. In some

cases ψntw
T

may be zero or small enough to be neglected. This

could be the case if the bandwidth is already available and does

not need to be purchased, or if the cloud services are provided

in-house.

3.4.5. The total cost of adaptation

The overall cost of the T th adaptation is given by:

ψT = ψ
com
T + ψ

opp

T
+ ψlab

T + ψ
ntw
T , (4)

where ψcom
T

and ψ
opp

T
are defined in Eq.(2) and (3), ψlab

T
is de-

fined in Section 3.4.3, ψntw
T

is defined in Section 3.4.4. With

respect to the arguments discussed in this study we assume that

the major cost is the computational cost, hence ψT ≈ ψcom
T

while ψ
opp

T
, ψlab

T
, ψntw

T
≈ 0. For instance, in the credit scoring

and chemical plant examples in Section 2 data storage and pro-

cessing capacities could be varied depending on the deployed

data analysis methods, while other costs would stay more or

less fixed. Thus, we focus on accurately assessing ψcom
T

.

3.5. Return on resources invested (ROI)

Return on Investment (ROI) is a standard performance mea-

sure used to asses the attractiveness of an investment [15].

This metric is used for measuring, per period, rates of return

on money invested in an economic entity in order to decide

whether or not to undertake an investment. It is also used as in-

dicator to compare different project investments within a project

portfolio. The one which gives the best return (ROI) is priori-

tized. As a decision tool it is simple to compute and understand

(return per unit of resources invested), and gives the means for

standardized comparison across different applications.

One adaptive (or nonadaptive) predictive modeling algorithm

can be seen as a single investment project. Our goal is not

to choose the best performing predictor regardless of the cost,

but the best performing predictor considering the resources in-

vested. For example, 1% improvement in prediction accuracy

in spam filtering, may be less beneficial than 1% improvement

in bankruptcy prediction. Hence, frequent updates may poten-

tially be more beneficial in the second case.

We propose using ROI for quantifying the gain in perfor-

mance per resources (Rh) invested. The return on RAM-hours

over the time period between adaptations T and T + 1 is

ROIT =
γT

ψT

, (5)

gains γT are defined in Eq.(1), costs ψT in Eq.(4).

We can make use of ROI measurement in three cases. Firstly,

we can use streaming ROIT as any other performance statistic,

such as streaming error, for monitoring the performance online.

For that after each adaptation action we need to compute the

gain in Eq.(5) since the previous adaptation action.

Secondly, we can measure the weighted average ROI of all

the adaptations over a given period of time retrospectively to

judge about the overall effectiveness of the employed adapta-

tion strategy. This overall ROI is given by

ROI =

∑T ′

i=1 (Ni × ROIi)
∑T ′

i=1 Ni

=
1

∑T ′

i=1 Ni

T ′
∑

i=1

Ni

γi

ψi

, (6)

where T ′ is the total number of adaptation actions, gains γi are

defined in Eq.(1), costs ψi in Eq.(4) and (2).

Finally, a baseline ROI can quantify the return on employing

an adaptive predictor as compared to keeping a fixed nonadap-

tive model

ROI =
γ

ψ
. (7)

In this setting we assume that all data corresponds to one long

adaptation period (T = 1). L0 is the fixed predictor and Li is

the adaptive predictor at time i. The gains in Eq.(7), as defined

in Eq.(1), become

γ =

NT ′
∑

t=1

[

λ(L0(Xt), yt) − λ(Lt(Xt), yt)
]

, (8)

Following the assumption, that all the costs except compu-

tational are zero (opportunity, labeling and network costs), the

costs in the denominator of Eq.(7) become

ψ =

NT ′
∑

t=1

[

Ct(MD
t + MB

t ) + (cB
t mB

t + cD
t mD

t + cL
t mL

t )
]

. (9)

3.6. The price of evaluation

The evaluation of ROI carries some computational costs it-

self, that is a price of evaluation. The costs are related to storing

and executing the previous model LT−1 for assessing the gain

of adaptation given in Eq.(1).

A data analyst needs to be aware of those costs; however, we

do not recommend including those costs into ROI computation.
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The reason is that ROI is supposed to quantify, how beneficial

it is to deploy an adaptive model. The benefit is there indepen-

dently of whether we are running the evaluation of it or not.

The computational price of ROI evaluation over the period

between adaptations T and T + 1 is given by the cost of storing

an additional predictive model ML , the cost of making an ad-

ditional prediction cP, the cost of storing all the cost variables

mROI (about 10 variables) and the cost of computing ROI after

each adaptation cROI.

πT =

NT ′
∑

t=1

[

Ct M
L
t + cP

t mP
t

]

+ cROImROI . (10)

In practice we expect πT to be much smaller than the cost

of adaptation ψT , since making an extra prediction using an

existing model is typically less computationally intensive than

updating the model. The latter belongs to the costs of adap-

tation. As an example, consider linear regression, where pre-

diction is just a weighted sum of inputs, while model update

requires computationally intensive matrix inversion or gradient

descent.

ROI evaluation would not incur extra opportunity costs,

would not require any additional labeling costs, and the ex-

tra communication costs in case of online evaluation would be

negligible. The input data sent to the server would still be the

same. The data coming back from the server would have one

extra value (ROI) in addition to predictions, which need to be

broadcasted periodically anyway.

The proposed framework defines costs and benefits of adap-

tation and allows assessing the utility of a given adaptive learn-

ing algorithm in a given application context. Next we will char-

acterize existing adaptation algorithms within our framework.

4. Adaptation strategies

Many adaptive learning algorithms have been developed,

each offering different benefits, but also requiring different re-

sources for adaptation. In terms of resources, five types of adap-

tation strategies can be distinguished.

Fully Incremental (FI). The predictive model is updated us-

ing only the previous model and the latest data observation:

LT = f (LT−1, {Xt, yt}), here f is the model update function, t is

the current time and T = t is the counter of model adaptations.

Adaptation is performed on a sample-by-sample basis and only

the information necessary for producing predictions is stored;

no models in progress, data summaries or extra parameters are

stored.

Summary Incremental (SI). The predictive model is up-

dated using the previous model, the latest data observation and a

data summary: LT = f (LT−1, {Xt, yt},L
′). This data summary

can be stored as an alternative predictor L′ that is not used for

making predictions yet, or sufficient statistics of the incoming

data, for instance, the covariance matrix. Summary Incremental

strategies can be further split into:

• fixed memory methods, where the space for storing a data

summary does not depend on the data covered (e.g. storing

the covariance matrix for updating linear regression);

• variable memory methods, where data summaries can

grow in line with the arriving data (e.g. data summary in a

form of an alternative decision tree).

Batch Incremental (BI). The previous model is updated

with a batch of past observations that are stored in a memory

buffer: LT = f (LT−1, {Xt−b, yt−b}, . . . , {Xt, yt}), where b is the

size of the buffer. The update does not require rebuilding the

model from scratch. Some versions of this strategy may require

a summary of the past data, leading to a Summary Batch In-

cremental (SBI) strategy.

Nonincremental (NI). The model is rebuilt from scratch on

a batch of past observations every time adaptation is required:

LT = f ({Xt−b, yt−b}, . . . , {Xt, yt}). Typically the batch to be

stored in memory is much larger than in BI to make up for the

loss of information caused by discarding the old model.

Table 2 summarizes the strategies. (Xt, yt) is the current data

observation, LT−1 is the latest available predictive model and

L′
T−1

is a data summary, b is the batch size.

Table 2: Adaptation strategies

Fully Incremental LT = f (LT−1, {Xt, yt})

Summary Incremental LT = f
(

LT−1,L
′
T−1

, {Xt, yt}
)

Batch Incremental LT = f (LT−1, {Xt−b, yt−b}, . . . , {Xt, yt})

Summary Batch Incremental LT = f
(

LT−1,L
′
t−1
, {Xt−b, yt−b}, . . . , {Xt, yt}

)

Nonincremental LT = f ({Xt−b, yt−b}, . . . , {Xt, yt})

Above adaptation strategies apply to individual prediction

models as well as ensembles of models. In the Fully and Sum-

mary Incremental strategies every labeled data observation has

an immediate impact on the following predictions. The Fully

Incremental adaptation does not require a change detector, it

updates periodically (P), while Summary Incremental typically

requires a change detector (D). Batch incremental and Nonin-

cremental adaptation may work with or without a change detec-

tor.

Adaptation is not always a yes-no decision. Incremental

learning algorithms can be modified to smoothly forget the past

information using observation weighting [3]. Such algorithms

fit well into our framework as FI or BSI strategies updating pe-

riodically.

Note, that strategies that update periodically consume mem-

ory and processing power evenly over time. The strategies with

change detection, on the other hand, have peaks in process-

ing time when changes are detected. At those times predictive

models are updated, and at the same time the memory buffer

is released. Strategies, which are using change detection, may

have larger peaks in memory consumption when changes are

not detected for a longer time. During no change periods they

accumulate a long buffer of observations in memory, but at the

same time have lower computation costs, which are only used

for change detection and making predictions, no model updates

are happening. Variation of time and memory consumption is

an important aspect to take into account when considering pe-

riodical adaptation against detection based adaptation.

Examples of Fully Incremental algorithms with forgetting

mechanisms can be found in [24, 25], where DWM [25] is
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a Fully Incremental ensemble. Summary Incremental algo-

rithms often employ a change detector that signals the (re)start

of storing a data summary in a form of an alternative predictive

model. This model is maintained in parallel before a change

is confirmed, and it becomes accurate enough. In that respect

CVFDT [26], and DDM [27] can be considered as Summary

Incremental strategies. Adaptive ensembles that retrain and re-

place individual members on the latest batch (such as [28]) can

be considered Batch Incremental.

Developing an incremental algorithm for model update is a

challenge and not all of the base learners have those versions,

therefore an alternative is to retrain a model from scratch every

time adaptation is required (e.g. [3]). Retraining from scratch

has another important advantage, which is the ability to op-

timize additional parameters, which are not optimized by the

learning algorithm itself (e.g. the number of principal compo-

nents in PCA).

In Table 3 we characterize each adaptation strategy in terms

of typical memory consumption (m and M) and typical process-

ing time (c and C) defined in Section 3. For the strategies with

change detection we provide an indication of maximum, min-

imum and expected mean time and memory; however, practi-

cally the required resources may vary a lot depending on the

frequency of changes.

FI requires minimum amount of memory, since it does not

require to store data or detectors (MD = 0 and MB = 0, as well

as update them mD = 0, mD = 0). Therefore, FI is expected

to generate very little overhead in terms of RAM-hours due to

adaptation, only to cover for cLmL. Thus, ψcom = cLmL. FI

however adapts even if changes are not happening. Although

in the limit its performance (loss) should converge to that of

the batch counterpart, in practice it can take many thousands of

samples. Thus FI is likely to exhibit the highest loss.

SI may store data summaries in a form of an alternative pre-

dictive model, thus MB > 0, but it is expected to be small. Up-

dating the summary model is comparable to updating the orig-

inal model cBmB ≤ cLmL. If we need to store and operate a

detector, it is an overhead, which is likely to be cDmD > cLmL.

Thus, ψcom ≤ C(MD + MB) + cDmD + 2cLmL.

At the other end of the spectrum there is the loaded with fea-

tures NI strategy, which is likely to produce low loss but is

resource-hungry. BI and NI are expected to have high mem-

ory consumption due to data storage (typically higher for NI

than for BI), while updating the data storage should not be

resource-intensive cBmB ≤ cLmL. If there is no change detec-

tion (MD = 0 and mD = 0), then ψcom ≤ CMB + 2cLmL. If there

is a change detector, typically cDmD < cLmL, particularly for

NI, then ψcom < C(MD + MB) + 3cLmL.

This leads to a trade-off situation and in practice one may

need to find a compromise. Hence, BI may often appear as the

most viable choice, given that the incremental version of the

chosen learning algorithm is available. We emphasize that our

analysis should be seen as an indication of expectations, one

can always find algorithms that may constitute exceptions.

Table 3: Performance: ↓ low,{ medium, ↑ high, ↑↑ very high; (D) with detec-

tion, (P) periodic

Adaptation strategy FI SI BI BI NI NI

(P) (D) (P) (D) (P) (D)

Processing time [c,C] ↓ ↓ { { ↑ ↑

max time ↑ ↑↑

min time ↓ ↓

Memory [m,M] ↓ { ↑ ↑ ↑↑ ↑↑

max memory ↑ ↑↑

min memory { {

Frequency of adaptation ↑ ↑ { ↓ { ↓

Expected costs [R] • • •• •• • • • • • •

Expected gains [B] ◦ ◦◦ ◦ ◦◦ ◦◦ ◦ ◦ ◦

5. Experimental Analysis

The goal of this experimental analysis is to demonstrate

how a basic instantiation of the proposed evaluation framework

could help in the evaluation of adaptive learning algorithms.

The intention is to present a proof-of-concept case rather than

examining a wide spectrum of methods and problems.

5.1. Data

The experiments are performed on the Catalyst Activation

Data, which has been made publicly available within the NiSIS

2006 competition9. The dataset originates from a chemical re-

actor, which consists of some 1000 tubes filled with catalyst,

used to oxidize a gaseous feed in a exothermal reaction coun-

teracted by the cooling, which leads to a temperature maximum

somewhere along the length of the tube. As the catalyst decays,

this becomes less pronounced and moves further downstream.

The catalyst activity usually decays within some time to zero.

The process to be modeled takes input from other, larger pro-

cesses, so that the feed will vary over several days. The operat-

ing personnel reacts to this by choosing appropriate operating

conditions. The catalyst decay is, however, much slower than

these effects.

The data contains 13 input variables (originally there were

14, we discarded one with a constant value), and one continuous

target variable – the activity of the catalyst, corresponding to an

operating period of 8 months (242 days × 24 hours). Data is

standardized prior to the experiments.

5.2. Predictive model

We use the Recursive Partial Least Squares (RPLS) [29] as

the inner predictive model to be integrated with the adaptation

strategies. Following the classification presented in Section 4,

RPLS uses a Summary Incremental adaptation strategy, since

it stores data summaries required for updating the model with

new data, and updates the model recursively. RPLS also can

easily be used as a batch nonincremental learner. The choice of

RPLS has been dictated by the popularity of PLS in the process

industry [30].

9http://www.nisis.risk-technologies.com
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5.3. Experimental protocol

We test and compare two strategies: incremental (BSI) and

nonincremental (NI) with periodic adaptation at different adap-

tation rates k (time intervals at which adaptation is executed).

The size of the data buffer (fixed window) for NI is set to be the

same as the adaptation rate. Note, that if k = 1 BSI becomes SI,

because adaptation is no longer executed in batches, but with

every new observation. These strategies have been selected for

comparison, since they offer an interesting opportunity to ana-

lyze the performance across a spectrum of possible parameter

settings (k), while keeping the rest of the settings nearly identi-

cal.

The goals of the experiments are to:

• Demonstrate how to select an optimal adaptation strategy

and adaptation rate for a given dataset using ROI offline.

• Illustrate how the proposed ROIT can be used for monitor-

ing and analyzing the benefits of adaptation online.

In each experiment we first train an initial model L0 on 120

data points and then process the dataset from observation #121

with a fixed adaptation rate k from 1 to 240. The initial training

includes simple optimization of the number of latent variables

(NLV ) in terms of the norm of the input data residual matrix.

The chosen NLV is then kept constant during model updates,

unless a full model retraining is performed.

The performance of the models is assessed using the test-

then-train evaluation protocol [31]. Following this protocol

each incoming observation is first used for testing the current

model, and then for updating the model. We use the Mean Ab-

solute Error (MAE) as the loss function.

All the experiments are coded in MATLAB, which provides

built in functions for measuring processing time and memory

used by data structures at a fine granularity. All the costs are

calculated as defined in Eq.(2). The costs of adaptation are mea-

sured in RAM-seconds.

5.4. Analyzing the utility of adaptation offline

Consider an online prediction scenario where data is ex-

pected to evolve over time. A snapshot of historical data is

available for designing a prediction system and testing it be-

fore putting it to online operation. Suppose we have a choice

between two adaptive algorithms using BSI or NI adaptation

strategies. We also need to fix the adaptation parameter k.

With the current evaluation practice a data scientist would

run the two algorithms with different parameter settings on the

historical snapshot and select the one which gives the lowest

testing error. Figure 1 (top) presents an example of such evalu-

ation, where the best algorithm is considered to be the one giv-

ing the lowest testing MAE. In our example, the data scientist

would deploy BSI with k = 1, since it gives the best predic-

tive performance. However, this evaluation does not take into

account computational costs. If new data arrives every second,

updates would happen every second.

The proposed ROI evaluation would suggest a different strat-

egy, as illustrated in Figure 1 (bottom). Here the higher the

ROI, the better. We can see from the plot that the best tradeoff

0 50 100 150 200 250
0

0.2

0.4

k⋆ = 1 (for both)

adaptation step (k)

M
A

E

NI

BI

0 50 100 150 200 250

0

0.02

0.04
k⋆ = 54

k⋆ = 10

adaptation step (k)

R
O

I

NI

BI

Figure 1: Evaluation of adaptive algorithms using MAE vs. ROI. Circles denote

best performance in each criteria. k⋆ denote optimal adaptation rates.

between the computational costs and achieved accuracy is at

k = 54. It suggests, that for this prediction problem it is worth

having an adaptive model (ROI is positive), but it is not worth

adapting at every time step.

We can see that the proposed evaluation allows to capture

three aspects of the performance in one measure: accuracy, ben-

efits over a nonadaptive model and computational costs. In ad-

dition, the proposed evaluation can be used for selecting the

optimal adaptation parameters. If we assessed only prediction

accuracy in a conventional way, we would be pushed to spend

unnecessary large amount of computational resources. The pro-

posed framework, on the other hand, indicates that the optimum

trade-off between the gains in accuracy and the resources in-

vested can be achieved at a less frequent adaptation rate. The

proposed ROI evaluation appears to be more informative from

the application perspective, and could particularly be useful in

the environments where the processing power can be consumed

in a flexible way, for instance, in a cloud.

One more interesting observation follows from this experi-

mental analysis. We compare two adaptive systems that use

very similar settings and the same base predictor (PLS regres-

sion) based only on accuracy. As it can be seen, the perfor-

mance does not differ considerably (Figure 1, top) and in gen-

eral the loss increases with k. However, the proposed integrated

ROI measure clearly shows that the incremental version (BSI)

is more beneficial or is a better investment of resources, which

is the result of lower computational costs at similar gain. At the

same time, as it can be expected, NI has lower accuracy at small

adaptation rates, since it does not accumulate sufficient amount

of data to rebuild a good predictive model.
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Figure 2: Monitoring ROI online.
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Figure 3: Analysis of the costs of adaptation.

5.5. Analyzing the utility of adaptation online

Consider another online prediction scenario, where an adap-

tive predictor is deployed, and the performance of the system

needs to be monitored. The proposed ROI evaluation may be

used for monitoring and diagnostics of performance in the same

way as any other streaming statistic, such as streaming error.

After each adaptation action T we can calculate ROIT , and, for

instance, plot the statistic over time. This way the progress of

ROI can be monitored, and if the return is unsatisfactory, the

adaptation rate can be decreased or the adaptation can be sus-

pended all together, while the fixed current model continues to

provide predictions.

Figure 2 illustrates such monitoring of ROIT for a fixed adap-

tation rate k = 110 for illustration purposes. We can see that

there are two periods of low return, one starts around adapta-

tion action #10 and the other around #30. If we were using

cloud computing services with dynamic allocation of resources,

at about time T = 15, after observing a continuous period of

low return, we could consider making adaptation less frequent,

since adaptation at those times does not give a reasonable return

on the resources invested. Reducing the adaptation frequency

would make the computational costs go down, and in turn ROIT

can go up.

Monitoring ROI and online evaluation carries extra computa-

tional costs of storing an alternative predictive model and com-

puting the performance statistics. However, as discussed in Sec-

tion 3.6, these costs are expected to be negligible as compared

to the costs of model updates. Figure 3 plots the costs of adap-

tation psiT and the costs of evaluation πT . We can, indeed, see

that the costs for evaluation is by orders of magnitude lower,

than the costs for adaptation, and can be considered negligible

in the overall system design.

The experimental analysis demonstrates that important infor-

mation about the cost-benefit tradeoffs becomes available when

using the proposed cost-sensitive evaluation strategy, that en-

ables more precise evaluation of the performance offline for

design choices, and online for monitoring and fine-tuning the

system in operation.

6. Related work

From the algorithmic perspective our approach to monitor-

ing the performance over time may resemble optimization with

adaptive learning rates [32, 33]. Adaptive learning rates in

optimization refer to dynamically adjusting the search step in

search for the optimum. The goal is typically to arrive at the

optimum faster. While the adaptive learning rate procedure

is concerned with finding the final optimum, which is fixed,

our monitoring of ROI aims to remain at the optimum position

while the optimum itself is moving over time, which falls into

the class of dynamic optimization problems [34]. In our future

research we plan to explore the theory of dynamic optimization

in search for theoretically optimal adaptation rates for individ-

ual adaptive learning strategies.

Our setting is also related to cost-sensitive learning [35],

which is the problem of optimal learning and decision making

when different misclassification errors incur different penalties.

The settings are similar as they aim to guide the learning pro-

cess by incorporating costs into decision making. There are

two major differences though. First, cost-sensitive learning tra-

ditionally concerns learning at the model level, while we con-

sider learning at a system level. Moreover, traditionally cost-

sensitive learning concentrates on the costs of different types of

errors [36], while in our framework cost of errors are consid-

ered to be the same and the costs are incurred due to the need

to update the model due to nonstationarity of data.

Finally, as we have already discussed, the trade-off between

accuracy and computational costs has been analyzed in a recent

study on data streams [13], where RAM-hours were proposed

as a measure for quantifying the consumption of resources in

online learning, which is a standard basis for pay-as-you-go

pricing in cloud computing.

7. Conclusions and future work

We introduced a new research problem of cost-sensitive

adaptation and proposed a reference framework for assessing

the utility of adaptation in online predictive modeling tasks.

The proposed framework defines the components of gains and

costs in adaptive online learning, and proposes a way to mea-

sure the return resulting from adaptation of the model on the

resources invested. As we saw in the airline example, business

can estimate concrete monetary gains that can result from im-

proved predictive accuracy. The proposed framework enables

a standardized assessment and comparison of different adaptive

algorithms within a given application context. An analytical as-

sessment of costs and benefits is essential before setting up a

predictive system for a long term online operation.
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Our proof-of-concept experiments in chemical industry do-

main comparing two distinct adaptation strategies were in-

tended as a demonstration of the potential of our framework.

The experiments also demonstrated that the proposed approach

can help in finding an optimal adaptation rate for a given appli-

cation. The analysis showed that the proposed measure can be

effectively applied for retrospective analysis of adaptive learn-

ing algorithms performance and online monitoring of the utility

of adaptation.

Our work opens a range of new interesting research avenues

for data streams. Firstly, a thorough investigation of individual

costs components, their interactions and tradeoffs would enable

much more precise assessment of the utility, and more impor-

tantly, possibly theoretical estimation of utility given an adap-

tive learning algorithm. Secondly, we analyzed several simple

adaptation strategies. A comparative analysis of a wide range

of existing adaptive learning algorithms in terms of adaptation

costs would provide a good systematization of data streams re-

search and useful guidelines to practitioners.

From the resource perspective, our study used a simplified

representation of a public cloud model as a motivation and

the cost of communication has been described in basic terms.

A focused more fine-grained study on communication costs

presents an interesting future research direction. Different net-

work types as well as exploiting network latency times need to

be addressed. For example, if the available network bit rate is

fluctuating over time, then it may be desirable to wait for the

available bit rate to increase before new data is supplied to the

cloud (independently of the required speed of adaptation).

Finally, another exciting and promising follow up research

direction would be to develop a methodology for taking into

account possible variations in spot prices of computational

resources that could help to make more informed decisions

whether to adapt in real time.
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