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Abstract9

This paper describes a fast and reliable method for redistributing a10

computational mesh in three dimensions which can generate a complex11

three dimensional mesh without any problems due to mesh tangling. The12

method relies on a three dimensional implementation of the parabolic13

Monge-Ampère (PMA) technique, for finding an optimally transported14

mesh. The method for implementing PMA is described in detail and ap-15

plied to both static and dynamic mesh redistribution problems, studying16

both the convergence and the computational cost of the algorithm. The17

algorithm is applied to a series of problems of increasing complexity. In18

particular very regular meshes are generated to resolve real meteorolog-19

ical features (derived from a weather forecasting model covering the UK20

area) in grids with over 2 × 107 degrees of freedom. The PMA method21

computes these grids in times commensurate with those required for op-22

erational weather forecasting.23

This work was funded by EPSRC EP/H500103/1 Knowledge Transfer Grant24

- University of Bath.25

1 Introduction26

1.1 Overview27

Many physical problems exhibit a variety of different spatial scales and feature28

localised small scale structures embedded within a much larger scale geometry.29

Examples include the boundary layers frequently encountered in fluid mechanics30

and gas dynamics, meteorological inversion layers [1], weather fronts, combus-31

tion layers and shock waves. Computations on such problems using a uniform32
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computational mesh may encounter problems when the computational mesh size33

is too large to resolve the small scale structures. When such a computation is34

part of a computational fluid dynamics (CFD) calculation then this may lead to35

large truncation errors [2]. In the data assimilation context, an adaptive mesh is36

a convenient way of representing anisotropic spatially varying correlation struc-37

tures in a flow dependent manner, which would otherwise be represented by38

spurious isotropic correlations. It is thus often important, both for accuracy39

and for computational efficiency, to use a computational mesh which is adapted40

in some manner to the small scales in the underlying problem. This is relatively41

easy in one spatial dimension with many excellent examples of successful im-42

plementations both in PDE calculations [3] and in data assimilation, [4] leading43

to significant increases in accuracy and computational efficiency. However, the44

computational difficulties of (dynamically) adapting a mesh for a three dimen-45

sional problem and coupling it to a solver, are considerable [5]. Furthermore,46

fully three dimensional adapted meshes can take a significant time to generate47

[6]. In this paper, we will describe an algorithm for adaptive mesh redistribu-48

tion based on optimal transport ideas, which is both fast to implement, avoids49

mesh tangling and gives excellent three dimensional meshes for some large and50

challenging problems. We demonstrate the effectiveness of this procedure on a51

number of problems, including large meteorological calculations based on real52

data. These methods have the potential for relatively easy coupling to both53

CFD codes and data assimilation procedures.54

1.2 An outline of adaptive mesh redistribution55

Broadly speaking adaptive meshes fall into three types. The most commonly56

used is Adaptive Mesh Refinement, AMR or h-adaptivity, in which a structured57

mesh is locally refined (or possibly de-refined) by the addition (or subtraction)58

of new mesh points [7] when some local refinement condition is satisfied [8]. This59

is closely related to p-adaptive methods [9] in which the order of the elements60

used in the computation is locally increased, again prompted by some local re-61

finement condition. Both of these methods have the advantages of a degree of62

maturity in implementation and flexibility of use. However they also suffer from63

various disadvantages. The complex and evolving data structures needed to de-64

scribe the mesh and its changing connectivity [10] can make it difficult to couple65

them to other software. Furthermore the very local nature of the mesh refine-66

ment, can lead to meshes with poor global structures, without good alignment67

or regularity. An alternative procedure, a specific version of which is described68

in this paper, is Adaptive Mesh Redistribution, also known as r-adaptivity (or69

more simply as a moving mesh method). In this procedure a fixed number of70

mesh points in a constant connectivity structure is redistributed so that the fine-71

scale features of interest are best resolved. A powerful method for doing this72

is to move the points so that the point density is controlled by equidistributing73

an appropriate scalar or matrix monitor function. This procedure has certain74

similarities to Lagrangian methods in which the velocity of the mesh points is75

coupled to convective features of the underlying solution. However, it avoids the76
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mesh tangling problems often associated with such methods [11]. Whilst less77

mature than AMR type methods, adaptive mesh redistribution offers potential78

advantages. Firstly, the constant data structure makes them straightforward79

both to use in their own right and to couple to existing software. Secondly,80

the fact that all of the points in the mesh are calculated together means that81

both local refinement and global regularity of the mesh can be treated together,82

leading to potentially very regular meshes. (Indeed it is possible to build a de-83

gree of global regularity directly into the implementation of the method [11].)84

Thirdly, the mesh points can inherit underlying dynamical features of the prob-85

lem such as symmetries and self-similarity. Various methods for implementing86

adaptive mesh redistribution of varying levels of complexity include Geometric87

Conservation Law methods, Harmonic maps, and variational methods. See the88

reviews in [12], and [13]. All of these methods consider adaptivity in at most89

two-dimensions. An alternative method based on Optimal Transport ideas is90

described in [11], [14], [6], [15], and takes a differing approach, coupling equidis-91

tribution to global mesh regularity and calculating an appropriate scalar mesh92

potential from which the mesh can be determined. Optimal transport based93

methods are relatively cheap to implement and have been coupled successfully94

to computations of incompressible flows in two-dimensions [16], and also to large95

scale data assimilation calculations [1, 4]. Objections to adaptive mesh redistri-96

bution methods include the possibilities of mesh tangling and mesh skewness,97

leading to elements with small angles and the loss of balance relationships when98

representing certain fluid motions. Whilst these objections are often valid, it is99

certainly the case that optimally transported meshes can be computed cheaply,100

even in three dimensions, they have provable regularity [11],[16], they do not101

suffer from mesh tangling, the reduction in errors due to improved resolution102

can outweigh the extra errors given by mesh skewness, and skewness can also103

be an advantage if it leads to better alignment of the mesh with the underlying104

solution [17], [13]. Finally the preservation of balance laws can be built into the105

mesh construction through the construction of the monitor function.106

In this paper we show how the optimal transport method, coupled to a simple107

to implement, and robust, relaxation approach, can be implemented practically108

to deal with large three dimensional problems with severe geometric distortion.109

We then test this method on a series of challenging problems including large110

scale meteorological systems, and we study its convergence in each case. In this111

implementation the calculation of a three dimensional meteorological grid with112

21772800 degrees of freedom could be accomplished in under four minutes on a113

laptop computer. In principle these meshes can be coupled to data assimilation114

codes using methods of [1, 4].115

The remainder of this paper is structured as follows. In Section 2 we describe116

some of the underlying theory of r-adaptive mesh redistribution and the optimal117

transport method of doing this, leading to a single equation (the Monge-Ampère118

equation) describing the mesh. In Section 3 we describe a relaxation method119

for solving this equation. In Section 4 we describe a simple, practical and effec-120
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tive method for discretising this equation and calculating a three dimensional121

mesh. In Section 5 we consider various static mesh redistribution problems in-122

cluding some which use meteorological data from the Met Office UK4 forecast123

system. Finally in Section 6 we consider an evolving problem with dynamic124

mesh redistribution.125

2 Adaptive mesh redistribution in three dimen-126

sions127

Adaptive mesh redistribution methods work by keeping the number of mesh
points and the topology of the mesh fixed but redistribute the mesh in space.
For a time evolving problem the mesh can then evolve with the solution of
the underlying problem. The simplest three dimensional mesh TC comprises a
regular subdivision of the unit cube into identical smaller cubes. We denote the
unit cube by ΩC = [0, 1]3, and it represents a reference or computational space.
We can then map the mesh TC into any other logically (or topologically) cuboid
mesh TP occupying a physical space ΩP ⊂ R3, through the map

F(., t) : ΩC → ΩP .

The mesh points in TP are therefore the images of the corners of the cuboids in128

TC and these points redistribute as the time t evolves. For clarity we define a129

point in ΩC by ξ ∈ ΩC = (ξ, η, ζ). Similarly we denote a point x in the physical130

space ΩP by x ∈ ΩP = (x, y, z). An example of a section of mesh TC in ΩC and131

a section of its image TP in ΩP is given in Figure 1.132

(a) A mesh TC in computational space
ΩC , denoted ξ = (ξ, η, ζ)

(b) A mesh TP in physical space ΩP , de-
noted x = (x, y, z)

Figure 1: A mesh TC ∈ ΩC and its image TP ∈ ΩP .

For redistribution to be effective we need to concentrate mesh points so that
they have a high density in certain regions of ΩP . The value of this mesh density
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is taken to be proportional to the size of a monitor function m(x, t) > 0, so that
if A is any set in ΩC (such as a small cube) of fixed volume ε, and if the image
of A in ΩP is the set F (A, t) then regardless of the location and orientation of
A in ΩC we have

ε ≡
∫
A

dξ =

∫
F (A,t)

m(x) dx∫
ΩP

m(x) dx
=

∫
A
m(F(ξ))|J(ξ)| dξ∫

ΩP
m(x) dx

where |J(ξ, t)| is the determinant of the Jacobian of the map from ΩC to ΩP133

given (in 3 dimensions) by134

|J(ξ, t)| =

∣∣∣∣∣∣
xξ xη xζ
yξ yη yζ
zξ zη zζ

∣∣∣∣∣∣ . (1)

As this applies for all sets A it follows that the map must satisfy135

m(x, t) |J(ξ, t)| =
∫

Ωp

m(x, t) dx. (2)

We call this the equidistribution equation. Its performance relies on a suitable136

choice of monitor function, which is often taken to be a measure of the error137

(eg. interpolation error) made when using the mesh in the calculation of the138

numerical approximation of the solution to a problem. In one dimension the139

equidistribution equation uniquely defines the map F and a number of methods140

exploit this, most particularly the moving mesh PDE methods listed in [18]. In141

higher dimensions additional conditions are required to define the map uniquely.142

Noting that for many computations there are signficant advantages to using a143

uniform mesh, it makes initial sense to look for meshes which are close to being144

uniform in some sense. In other words we seek functions F which are close to145

the identity in some measure. A convenient such measure is the Wasserstein146

metric I given by147

I =

∫
ΩC

|F(ξ, t)− ξ|2 dξ (3)

Definition 1. A map F which minimises I is over all invertible mappings148

satisfying (2) called an optimally transported map. The resulting mesh TP is an149

optimally transported mesh.150

Finding such a map is an example of a Monge-Kantorovich problem (see [19]).151

Equation (2) defines two measures on real space with ratio |J |, one of which is152

standard Lebesgue measure L. Then the Monge-Kantorovich problem finds the153

optimal map that pushes forward |J |L to L with the quadratic cost given by (3).154

Although the condition of minimising I appears to be a coarse global restraint155

on the mesh TP , it not only leads to a system which is easy to calculate, but156

also to meshes with provably excellent regularity, good mesh grading and good157
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mesh alignment [11], [16], [15]. We now seek to solve the Monge-Kantorovich158

problem to determine the optimal mesh TP . The key underlying result which159

allows us to compute this mesh is the following160

Theorem 1 (Brenier [19]). There exists a unique optimally transported map161

F(ξ, t) which minimises I, and the Jacobian of which satisfies the equidistribu-162

tion equation (2). This map has the same regularity as the monitor function163

m. Furthermore, F(ξ, t) can be written as the gradient (with respect to ξ) of a164

convex scalar (mesh) potential P (ξ, t), so that165

(x, y, z) ≡ x(ξ, t) = ∇ξP (ξ, t), Hξ(P (ξ, t)) � 0. (4)

Finding the (three dimensional) map F and the associated mesh TP is thus166

reduced to the simpler problem of finding the scalar mesh potential P . As167

x = ∇ξP it follows immediately that J(ξ) = H(P ) where H(P ) is the Hessian168

matrix of P . Hence the Jacobian J(ξ) is a symmetric matrix which imposes169

certain restrictions on F. For example it cannot be a plane rotation. Such170

maps are called Legendre Transformations and play an important role in many171

fields including fluid mechanics and image processing [20] In 3-dimensions the172

determinant of the Hessian of P is given by173

|H(P )| =

∣∣∣∣∣∣
Pξξ Pξη Pξζ
Pηξ Pηη Pηζ
Pζξ Pζη Pζζ

∣∣∣∣∣∣ . (5)

The equidistribution equation (2) then becomes the following equation for P :174

m(∇ξP, t)|H(P )| =
∫

ΩP

m dx (6)

which is a Monge-Ampère equation. To fully specify the mesh we need to impose
boundary conditions on P . Typically we require that the boundary ΓC of ΩC
is mapped to the boundary ΓP of ΩP . If the latter is given implicitly by the
condition

ΓP = {(x, y, z) : G(x, y, z) = 0}

then we have the nonlinear Neumann boundary condition175

G(∇ξP ) = 0 if ξ ∈ ΓP . (7)

Observe that this procedure allocated points to the boundary, but does not176

prescribe their precise location. If ΩP is a cuboid domains so that, for example,177

one face of ΩP is given by the plane x = 0 , then the nonlinear condition (7)178

simplifies to the simpler linear Neumann condition179

Pξ = 0. (8)

For certain problems, for example a number of problems in meteorology, it is180

natural and convenient to use periodic boundary conditions instead. See [16]181

for an example.182
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When calculating a mesh, particularly when using the relaxation methods we183

will introduce presently, it is useful to have a measure of the mesh quality. If we184

assume that an ideal mesh is one which perfectly equidistributes the monitor185

function m then an appropriate such measure is given by the deviation away186

from such an equidistributed state, and is given as follows.187

Definition 2. We define the equidistribution error ε to be188

ε(t) := CV [m(x, t)|J(ξ, t)|] ≡ (Var [m(x, t)|J(ξ, t)|])0.5

[m(x, t)|J(ξ, t)|]
, (9)

where the Coefficient of Variation, CV, is the quotient of the standard deviation189

and the mean taken over all the gridpoints in the domain.190

Note that we use the coefficient of variation as it is a dimensionless quantity,191

and is equivalent to the L2 norm when the monitor function in question has192

been normalised so that
∫

ΩP
m dx = 1. We will use this as a measure of the193

convergence of the relaxation methods. However, we observe at this stage that194

this is a relatively crude measure of the quality of a mesh, and in practice many195

other measures are important such as the skewness and the alignment of the196

mesh [17].197

3 The Parabolic Monge-Ampère formulation198

Equation (6) is a fully non-linear elliptic PDE which is challenging to solve199

exactly. There is a significant literature describing various solution techniques200

both for the equation in its own right [21], as part of a meteorological calcu-201

lation [22, 23] and as part of a mesh generation algorithm [6],[14]. Typically202

these methods use a careful finite difference or finite element discretisation of203

(6) which is then solved using an iterative Newton-type algorithm which is204

terminated when a specified condition is met, for example a measure of the205

equidistribution of the mesh. In [6] a fast multi-grid method is used to perform206

these calculations. In the context of mesh generation, we do not necessarily207

want to invest too much effort in solving (6) as the function of this calculation208

is to generate a mesh which is then used for other calculations. In this context209

an accurate solution of (6) is unnecessary, provided that the resulting mesh is210

sufficiently regular and aligned, and exhibits the correct compression properties211

that we desire. Accordingly, there are certain advantages in the context of mesh212

generation, of using methods to solve (6) which are relatively simple to imple-213

ment, robust, and for which each computational step is relatively cheap. An214

example of such is a simple explicit relaxation method, implemented cheaply215

using a Forward Euler method. Such a relaxation method can be terminated at216

any time when the mesh generated is sufficiently regular for subsequent com-217

putations. In two-dimensions it has been demonstrated [11], [16], that such218

a parabolic relaxation of the Monge-Ampère equation, the Parabolic Monge-219

Ampère equation (PMA), is effective for generating meshes. We now extend220
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this method to higher dimensions and demonstrate that it continues to be effec-221

tive as a mesh generator as well as considering its convergence properties and222

scalability. In this formulation we initially consider the true time t to be fixed223

during the computation of the mesh, and introduce a pseudo-time τ ∈ [0,∞) and224

a corresponding pseudo-time dependent function Q(ξ, τ) so that ∇ξQ → ∇ξP225

as τ →∞ where P solves (6).226

Definition 3 (PMA). The Parabolic Monge-Ampère equation in d−dimensions227

is defined by228

LQτ ≡ (I − γ∆ξ)Qτ = (m̂(∇ξQ)|H(Q)|)
1
d (10)

where γ is a scalar parameter defining the amount of smoothing applied. The229

function m̂ is a filtered version of the monitor m obtained by averaging m230

over several mesh points. (The necessity for such filtering for data assimilation231

problems is carefully illustrated in [1].) Qτ is the pseudo-time derivative of the232

mesh potential Q.233

We will use a discrete approximation to this equation, in both time and space,234

to solve this equation and hence to find the mesh. In this equation the appli-235

cation of L−1 acts as a smoothing preconditioning operator (described first in236

[24]) which leads to more regular meshes. Furthermore the action of L−1 on the237

discrete form of the right hand side of (10) acts to damp out certain (mesh de-238

pendent) chequer-board instabilities [25] and appears to increase the robustness239

of the method. It can be rapidly calculated for cuboid domains by using the240

FFT or the Fast Cosine Transform (depending upon whether we have periodic241

or Neumann boundary conditions). The operator (H(Q))1/d is used on the RHS242

(instead of H(Q)) as it has the property that (H(λQ))1/d = λ(H(Q))1/d. Thus243

both sides of (10) scale linearly. This is useful both to ensure global existence244

of the solutions of (10) and to give it certain desirable scaling properties [11]. It245

is further shown in [11] that the equation (10) is locally stable so that, if ∇ξQ is246

sufficiently close to ∇ξP then ∇ξQ→ ∇ξP as τ →∞. with standard linear247

convergence. Furthermore, during the evolution of (10) both H(P ) and ∇2Q248

are bounded away from zero. This prevents mesh tangling provided that the249

equation (10) has a sufficiently fine discretisation [11], although as we shall see250

in Section 5.5, tangling may occur if too large a temporal step size is used when251

finding an approximate solution to (10), and we will discuss estimates for this252

largest step size in that section.253

The convergence of the above relaxation method can be determined either by254

monitoring the equidistribution error ε(τ) defined in (9), or by monitoring the255

change in ∇Q. Indeed, we can define a convergence measure, r(τ), for the PMA256

equation as the Wasserstein distance between ∇ξQ̃ at two successive timesteps257

τ and τ + δτ . This allows us to measure when ∇ξQ̃ has converged. As r → 0,258

∇ξQ → ∇ξP and hence ε → 0 and so the resulting mesh will satisfy the259

equidistribution equation.260
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The evolutionary system (10) is subject to the same boundary conditions as (6).261

It is convenient when solving the PMA equation, especially when using periodic262

boundary conditions, to consider instead of Q the difference between it and the263

function |ξ|2/2. Consider the displacement of the periodic potential, Q̃, such264

that265

Q̃ = Q− |ξ|
2

2
. (11)

This gives266

∇ξQ̃ = ∇ξQ− ξ (12)

and hence267

x = ∇ξQ̃+ ξ (13)

as x = ∇ξQ. The PMA equation can then be rewritten as268

(I − γ∆ξ)Q̃τ = (m̂(∇ξQ̃+ ξ)|I +H(Q̃)|)
1
d (14)

In the absence of a better initial guess, we use the initial conditions for (14)269

Q̃(0) = 0. In the case of a dynamically evolving monitor function, it is sub-270

stantially more efficient to evolve Q̃ starting from the most recently computed271

value of Q̃. If the monitor function m̂ is known then a corresponding mesh can272

be found by evolving (14) in time, either until a steady state is reached or until273

the resulting mesh is sufficient, in compression and regularity, for solving any274

coupled PDE or data assimilation problem. This latter option results in very275

significant time savings.276

If the mesh is used to solve a time dependent PDE then the monitor function277

m(t) will evolve in the true time t. In this case the mesh is evolved in the278

pseudo-time until it is adapted to the solution of the PDE. The solution of the279

PDE is then interpolated onto the new mesh. The true time is then advanced280

by an appropriate amount and the new solution to the PDE, and hence the new281

value of m is calculated. The process of finding the new mesh by evolution in282

pseudo-time is then repeated. We now consider the practical issues with solving283

(14) forwards in pseudo-time on the assumption that the monitor function is284

known a-priori. In our examples we will consider cases both where m is fixed285

and also where m evolves in time.286

4 Implementation and convergence analysis287

When implementing a discrete version of (14) to find Q̃ and hence the mesh, it288

is essential that the algorithm used is fast and robust as it will typically be part289

of a much larger solution process. For example, the UK4 model, a model with290

4km resolution over the UK used by the Met Office for both numerical weather291

prediction and for data assimilation, has dimension 288 × 360 × 70 = 7257600292

grid points. Each of these has 3 degrees of freedom (latitudinal, longitudinal293
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and vertical) and each degree of freedom is stored in double precision and thus294

requires 8 bytes of storage. Hence to store one grid requires 288 × 360 × 70 ×295

3 × 8 = 174182400bytes = 166.11MB. This shows the scale of the problem296

we are considering and why an efficient implementation of the algorithm to297

redistribute the mesh is essential. However, for mesh generation it need not be298

especially accurate provided that the mesh generated is sufficiently regular for299

computations.300

Accordingly when calculating Q̃, we seek an explicit method where possible, for301

both time and memory considerations. One such method uses a forward Euler302

discretisation of (10) with step size δτ to evolve Q̃ so that303

Q̃(τ + δτ) = Q̃(τ) + δτQ̃τ (τ) (15)

where Q̃τ (τ) is given by304

Q̃τ = L−1(m̂(∇ξQ̃+ ξ)|I +H(Q̃)|)
1
d . (16)

We discuss the choice of δτ and the convergence of this algorithm presently.305

To compute the RHS of (16) we discretise the Hessian operator in (16). This can306

be done most simply by using a finite difference scheme in the computational307

space ΩC . We assume that ΩC is divided into regular cuboids with the values of308

Q̃ given at the vertices of the cuboid. The location (x, y, z) of the mesh in the309

physical space ΩP at these vertices can then be recovered from Q̃ by taking a310

discrete gradient (most simply by using central differences). The d-dimensional311

mesh can then be stored as d d-dimensional arrays, each containing one of the312

degrees of freedom of the mesh. So in a 2-dimensional case, with nx grid points313

in the x-direction and ny grid points in the y-direction, the mesh is stored as 2314

nx × ny arrays. The first of which contains the x coordinates of the grid and315

the second containing the y coordinates. Similarly in the three dimensional case316

there are 3 arrays, x, y and z, each of size nx×ny ×nz where nz is the number317

of grid points in the z-direction. The connectivity of the grid is then implicitly318

defined by the relationship within the d-dimensional array. Algorithms 1 and319

2 outline the steps taken to find a solution of the Monge-Ampère equation (6)320

and determine the corresponding mesh in the static and dynamic situations321

respectively. Due to memory constraints for the meteorological test problem,322

these algorithms to solve the PMA equation were implemented in Fortran95.323

When the monitor function m(t) itself evolves in time (for example if it is324

computed from a time evolving solution to a PDE) then we must augment325

Algorithm 1 (which evolves the mesh in pseudo-time) with an outer loop that326

evolves it in real time. This leads to Algorithm 2.327

Note that Algorithm 1 is the basic one for a static application and Algorithm 2328

is the natural choice for a time-dependent problem.329
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Algorithm 1 The PMA algorithm in 3D for a static monitor function

1: Read initial mesh ξ = (ξ, η, ζ)
2: τ ← 0
3: Initialise Q̃(τ) = Q̃0

4: Store the grid x(τ) = (x(τ), y(τ), z(τ)) as

x(τ)← ξ +
∂Q̃(τ)

∂ξ
, y(τ)← η +

∂Q̃(τ)

∂η
, z(τ)← ζ +

∂Q̃(τ)

∂ζ
.

5: while r > tol & τ < τmax do
6: Compute Q̃τ (τ) via:

• Compute the monitor function at the current grid points m(x(τ)). This
may be analytically defined or interpolated from a given data set

• Filter the monitor function

m̂(x(τ))← m(x(τ))

• Compute the second derivatives of Q̃(τ) in the computational space by
using via finite differences to give discrete approximations to:

Q̃ξξ(τ), Q̃ηη(τ), Q̃ζζ(τ), Q̃ξη(τ), Q̃ξζ(τ), Q̃ηζ(τ)

• Calculate the determinant, ρ(τ), of the Hessian of the mesh potential
Q̃(τ) at every current grid point:

ρ(τ)← |I +H(Q̃(τ))|

• Calculate the smoothing operator L−1 by applying the Fast Cosine
Transform to the 3-dimensional array (m̂(x(τ))ρ(τ))

1
3 , so

Q̃τ ← L−1(m̂(x(τ))ρ(τ))
1
3

7: Take a Forward Euler step

Q̃(τ + δτ) = Q̃(τ) + δτQ̃τ (τ)

8: Compute the finite difference approximations to ∂Q̃(τ)
∂ξ , ∂Q̃(τ)

∂η and ∂Q̃(τ)
∂ζ

9: Store the new grid as

x(τ)← ξ +
∂Q̃(τ)

∂ξ
, y(τ)← η +

∂Q̃(τ)

∂η
, z(τ)← ζ +

∂Q̃(τ)

∂ζ

10: Compute the change in the mesh through the Wasserstein metric

r(τ)← ‖∇ξQ̃(τ + δτ)−∇ξQ̃(τ)‖2N−
1
2

11: τ ← τ + δτ
12: end while
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Algorithm 2 The PMA algorithm in 3D for a dynamic monitor function m(t)

1: t← 0
2: Apply Algorithm 1 with m(x) = m(x, 0), Q̃0 ≡ 0 and τmax =∞
3: while t < tmax do
4: Apply Algorithm 1 with m(x) = m(x, t) and the initial potential Q̃0

given by the final value of Q̃(τ) from the previous iteration of Algorithm 1
5: t← t+ δt
6: end while

Now we elaborate on the details of the algorithms to show both how the PMA
method can be implemented in practice in 3 dimensions and to discuss its re-
liability, convergence and complexity. For all problems we will assume that a
cuboid region ΩC of dimensions [0, 1]3 is mapped to a corresponding cuboid re-
gion ΩP of dimensions [0, 1]3. As described in Section 2 this leads to a problem
with Neumann boundary conditions of the form

Q̃ξ(0, ., .) = Q̃ξ(1, ., .) = Q̃η(., 0, .) = Q̃η(., 1, .) = Q̃ζ(., ., 0) = Q̃ζ(., ., 1) = 0.

For this implementation we assume that ΩC has a regular cubic mesh (although330

in practice any suitable mesh could be used) with, respectively, nξ, nη and nζ331

cubes in the the three coordinate directions, of corresponding side lengths hξ, hη332

and hζ .333

4.1 First order differentiation334

With the mesh potential Q stored in an d-dimensional ordered array, comput-335

ing the first order derivatives is straight forward to implement using a central336

differencing scheme. So for instance in the 3 dimensional case, the derivative337

with respect to ξ is given by338

Q̃ξ(j, :, :) ≈
Q̃(j + 1, :, :)− Q̃(j − 1, :, :)

2hξ
, j = 2 : nξ − 1

At the boundaries we invoke the Neumann boundary conditions so that339

Q̃ξ(1, :, :) = Q̃ξ(nξ, :, :) = 0.

Derivatives with respect to other variables follow similarly.340

4.2 Second order differentiation341

In the interior of the domain, central differences are employed to estimate the342

second derivatives, such that343

Q̃ηη(:, j, :) ≈ Q̃(:, j + 1, :)− 2Q̃(:, j, :) + Q̃(:, j − 1, :)

h2
η

, j = 2 : nη − 1
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and similarly for mixed second derivatives away from the boundary, so that for
example

Q̃ξζ(i, :, k) ≈ 1

4hξhζ
(Q̃(i+ 1, :, k)− Q̃(i− 1, :, k)−

Q̃(i+ 1, :, k − 1) + Q̃(i− 1, :, k − 1))

for all i ∈ {2, . . . , nξ − 1} and k ∈ {2, . . . , nζ − 1}.344

Similar approximations can be used for the other second order derivatives of Q̃.345

On the boundary planes, the Neumann boundary condition satisfied by Q̃ is346

exploited to determine the appropriate discretisation of the Hessian on each of347

the boundaries. This condition implies that certain mixed derivatives on the348

boundary are automatically zero. For example on the boundary plane given by349

η = 0 we have Q̃η = 0 and hence350

Q̃ξη = Q̃ηζ = 0.

The derivatives Q̃ξξ, Q̃ζζ , Q̃ξζ on this boundary away from the edges, can be ap-351

proximated by a standard second order difference scheme, and the final deriva-352

tive, Q̃ηη is then given (exploiting the Neumann boundary condition) by the353

one-sided second order approximation354

Q̃ηη(:, 1, :) ≈ −7Q̃(:, 1, :) + 8Q̃(:, 2, :)− Q̃(:, 3, :)

2h2
η

.

Similar approximations are used at the other interior points on the boundary355

planes.356

Along the boundary edges at the intersection of the planes (and at the corners of357

the domain), slightly more care has to be taken, with one-sided approximations358

to the second derivatives taken in two directions.359

4.3 Filtering of the monitor function360

As described above, some form of filtering of the monitor function is required361

in practice [1], [11] to produces sufficiently smooth meshes in a reasonable time.362

This is typically achieved in numerical weather prediction and other similar ap-363

plications by applying an appropriate low pass filter [11] to the monitor function364

m. For a three dimensional isotropic problem this most conveniently can take365

the form:366

m̂(i, j, k) =

∑1
`1=−1

∑1
`2=−1

∑1
`3=−1m(i+ `1, j + `2, k + `3)β|`1|+|`2|+|`3|∑1

`1=−1

∑1
`2=−1

∑1
`3=−1 β

|`1|+|`2|+|`3|
.

(17)
Here β is a smoothing parameter such that β ∈ [0, 1]. However, this type of367

filtering of the monitor function is not suitable for highly anisotropic cases, for368
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example the highly stratified flows treated in the data assimilation application369

of [1]. However, filtering only within horizontal atmospheric layers retains this370

stratified structure [1]. Thus a filtering operator that is more suitable for the371

data assimilation context that we consider is as follows:372

m̂(i, j, k) =

∑1
`1=−1

∑1
`2=−1m(i+ `1, j + `2, k)β|`1|+|`2|∑1
`1=−1

∑1
`2=−1 β

|`1|+|`2|
(18)

This produces much sharper monitor functions and hence gives better refinement373

of the grid around the structures of interest. With real data this filtering has to374

be applied several times in order to get a monitor function which will produce375

a grid with sufficient regularity.376

4.4 Applying the smoothing operator L−1
377

For the solution of PMA on a domain with purely Neumann boundary condi-378

tions, the Fast Cosine Transform can be employed to calculate L−1 and hence379

to apply the smoothing operator of the left hand side of the PMA equation380

(10) in O(N log(N)) operations. In an d-dimensional problem this transform381

has to be applied d times; once along each dimension of the mesh. The freely382

available software FFTW [26] was used to apply the Fast Cosine transform as it383

has the ability to work on multidimensional arrays in-place. That is to say the384

data structures do not need to be manually altered to perform a Fast Cosine385

Transform along different dimensions. In the 3-dimensional case, the routine386

dfftw plan r2r 3d is used with the option FFTW REDFT10 along each dimen-387

sion to signify the forward fast cosine transform. When the forward transform388

has been applied, the transformed variable is multiplied by the factor389

1/(1 + γ(k2
ξ + k2

η + k2
ζ)). (19)

where the frequency-space coefficients kξ, kη and kζ are 3D vector fields given390

by391

kξ(i, j, k) =
i− 1

nξ − 1
πnξ, kη(i, j, k) =

j − 1

nη − 1
πnη, & kζ(i, j, k) =

k − 1

nζ − 1
πnζ

for all i ∈ {1, . . . , nξ}, j ∈ {1, . . . , nη} and k ∈ {1, . . . , nζ}. Then the inverse392

Fast Cosine Transform is applied via dfftw plan r2r 3d used with the option393

FFTW REDFT01 along each dimension. This whole operation is equivalent to394

applying the operator (I−γ∆)−1 and can be seen to explicitly damp the higher395

order frequency components in the mesh, such as the potential chequer-board396

modes which can arise in the discretisation of the Hessian operator.397

If the number of mesh points is N it follows from the above that the complexity398

of each time step of the PMA algorithm is O(N log(N)).399
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4.5 The overall convergence of the PMA method400

The local convergence of the PMA algorithm is studied in [11]. It is shown in401

this paper that the convergence of ∇Q to the solution ∇P of the Monge-Ampère402

equation is locally exponential. In particular, if ∇Q is sufficiently close to ∇P403

then there are constants A and λ so that to leading order404

‖∇Q−∇P‖2 = Ae−λτ , (20)

where A and λ depend on the structure underlying problem (in particular the405

monitor function) and not on the mesh size N . It follows immediately that if the406

monitor function is calculated exactly that the equidistribution error, measuring407

the coefficient of variation of m(∇Q, t)|H(Q)|, has a similar behaviour, with the408

same decay rate, so that to leading order409

ε(τ) = Be−λτ . (21)

The Wasserstein measure of mesh movement r(τ) defined in Algorithm 1 is given
by

r(τ) = ‖∇Q(τ + δτ)−∇Q(τ)‖2N−
1
2 .

It follows from (20) that to leading order410

r(τ) = Aλδτe−λτ . (22)

The numerical examples calculated presently will give support to the above411

convergence formulae. An immediate consequence of the estimates (20), (21)412

and (22) is that the rate of convergence of the two measures r(τ) and ε(τ) of413

the PMA algorithm are both independent of the mesh size N , which result is414

verified in the numerical examples as will be shown in Figure 2b and Table 2.415

This implies that the overall complexity of the algorithm depends mainly on416

the effort made at each computational step. This complexity will be discussed417

in Section 4.7.418

4.6 Choice of the parameters δτ and γ419

When applying the PMA algorithm we must make decisions on how rapidly420

the mesh must be updated, the degree of convergence at each iteration, and421

the degree of smoothing which must be applied. This requires us to determine422

appropriate values for the two parameters used in the static case (Algorithm423

1), namely δτ and γ. Whilst the continuous PMA algorithm can be proven [11]424

to evolve the mesh without tangling, such behaviour is not necessarily found in425

the discrete implementation of this algorithm unless the time step δτ is taken426

sufficiently small. Indeed, if the time-step δτ is too large, the Hessian matrix H427

will typically become indefinite, leading to mesh crossing and other undesirable428

features, although, as we shall see, the PMA algorithm is actually robust to429

mesh tangling problems provided that δτ is small enough. In contrast, if δτ is430

too small then the whole system becomes overly stiff. The parameter δτ can431
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be controlled adaptively, however it is generally robust to being set at a small432

constant value. To estimate this value we note that the intrinsic time-scale of433

this system is given by
(∫
m dξ

)−1/d
. A choice of time-step is to then take434

δτ = ε

(∫
m dξ

)−1/d

(23)

where ε is a small constant value typically in the range 0.1 ≤ ε ≤ 1. In the435

numerical experiments we present in Section 5, we compare this estimate with436

the maximum value of δτ ≡ δτ∗ that can be taken before mesh tangling is437

observed for a number of different test cases, and will find empirically that a438

value of ε = 2/5 works in these cases. We also note that the choice of δτ given by439

(23) also has certain useful features when scaling symmetries act on the system440

[12], leading to meshes which reproduce self-similar behaviour in the solution.441

We note that this is a fairly crude estimate of the maximum possible value of δτ442

as it does not take into account issues such as mesh skewness which are likely443

to affect mesh tangling. A more precise such estimate is the subject of further444

research.445

The parameter γ appears in the smoothing operator L ≡ (I − γ∆ξ)
−1 as part446

of equation (16) and is applied in (19). Larger values of γ correspond to higher447

smoothing of the calculated mesh. Typically we have found that the smaller the448

value of γ, the faster that PMA converges to an equidistributed mesh. However449

with γ too small mesh tangling can occur. Hence once the step length for the450

Euler method (δτ) has been chosen above then γ is chosen to balance the speed451

of convergence with the robustness of the method. Although the smoothing452

does make an individual step more computationally expensive, the increase in453

the robustness of the method greatly compensates for this. Values of γ in the454

range γ ∈ [0.1, 0.6] are typical and, as above, these could be set adaptively for455

best performance.456

In the case of a dynamically evolving monitor function where we use Algorithm457

2, δt corresponds to the natural time-scale of the model (i.e. the underlying458

solution of the PDE). If the PDE is calculated numerically then it is sensible459

(and usual) to take δt to be the same as the time-step used to evolve the solution460

of the PDE, although occasionally we might interpolate the value of m between461

time steps allowing us to use values of δt which are smaller than the time-step462

in the method. When the initial redistributed mesh has been found in step 2463

of Algorithm 2, it is desirable that the mesh is updated more rapidly than the464

solution of the underlying PDE, so that it can track it effectively, but not much465

more rapidly, so that we are not working too hard to calculate the mesh. For466

the inner loop of Algorithm 2 (step 4), a value of δτ = 0.1 δt is appropriate for467

many applications. In the inner loop of Algorithm 2 it is not always necessary468

to run the pseudotime iterations for a long time, as the mesh remains close to469

equidistribution provided δt is not too large. Instead we set τmax = δt and470

take K iterations of the inner inner loop with time-step of δτ = δt/K. In471

correspondence with the above, a typical value of K may be in the range [1, 10],472
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with larger values necessary if the difference ‖m(x, t+ δt)−m(x, t)‖ is large.473

4.7 Complexity and Scalability of the PMA algorithm474

Assuming that the problem is always posed on a finite domain, then it is clear475

that the finite difference calculations for each step require O(N) operations.476

Similarly the low-pass filter given in Section 4.3 and the calculation of the Hes-477

sian of the mesh potential ρ(τ) are also of O(N) in complexity.478

As described above, the fast cosine transform used in the smoothing precondi-479

tioner, is known to be of complexity O(N logN), and hence the complexity of480

applying the smoothing operator L−1 as given in Section 4.4 is O(N logN). It481

may be possible to implement an optimal solver for this step however we have482

not considered this in this work as the amount of memory available constrained483

our problems before fftw lost efficiency. It should also be noted that the calcu-484

lation of Q̃τ can me made massively parallel. Minimal communication would485

be required for derivative calculations, whereas more would be required for the486

application of the fast cosine transform. However recent work has shown that487

this is possible very efficiently [27]. Thus the efficiency of the PMA method is488

limited only by the number of timesteps taken.489

The total complexity to compute a single explicit Euler step is thus ofO(N logN).490

Hence the complexity to find a redistributed mesh using the PMA method is491

O(CN logN) where C is the number of iterations used in the explicit Euler492

method. This number depends, of course, on the precise stopping criterion that493

we use for this method and the pseudo-timestep δτ . If we use the equidistri-494

bution measure ε(τ) and compute until this reaches a threshold value ε∗ then495

it follows from (21) that the pseudo-time τ∗ required to reach convergence is496

proportional to | log(ε)|/λ and is independent of N . We will see this behaviour497

in the examples given presently. Thus the number of Forward Euler steps is498

given by τ∗/δτ . As we will see in the following section, this constant is typically499

independent of N . Rigorously proving this is the subject of further research, as500

is the optimal choice for the step-size δτ .501

It is interesting to compare this scalability with that of other methods. The502

Newton-Raphson/multigrid method described in [6] scales (both theoretically503

and in the examples presented in their paper) asO(N), and has the rapid conver-504

gence advantages of the Newton method when it works. However, it is necessar-505

ily more complex to implement each step, than the PMA method, and of course506

requires a good initial guess. The PMKP (parabolic Monge-Kantorovich) algo-507

rithm described in [28] has a similar parabolic form to PMA (operating on the508

logarithm of the equidistribution measure) but does not employ the smoothing509

preconditioning operator at each time step, and is therefore of O(CN). How-510

ever, as stated in [28], although each computational step is cheaper than PMA,511

they need to take more such steps. From the timings presented in the paper,512

it appears that C ∝ N resulting in an overall method with O(N2) complex-513

ity. Another method described in [28] (for two-dimensional mesh generation) is514
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the FDMKP (Fluid Dynamics Monge-Kantorovich) method in which the veloc-515

ity of the mesh points is determined through a fluid dynamics formulation of516

the Monge-Kantorovich problem, and this velocity integrated to give the mesh517

point location. This requires solving a minimisation problem to find the velocity518

field, involving solving a three dimensional Poisson equation, and its complexity519

is determined by the method used to perform this latter computation.520

5 Static mesh results521

We now present a series of examples chosen to demonstrate the performance of522

the PMA algorithm on various (large and) challenging problems. In particular523

the examples are chosen to investigate the correspondence of the symmetry and524

regularity of the mesh to that of the underlying monitor function, to demonstrate525

the avoidance of mesh tangling when calculating the meshes in three dimensions526

provided that δτ is chosen carefully, and to demonstrate the convergence and527

complexity of the algorithm. We will show in this section that the way of528

parabolising the Monge-Ampère equation presented in Sections 3 and 4 scales529

well for three dimensional problems. We also to show that the PMA algorithm530

can cope with very large problems for which the monitor function is defined only531

at data points. In this section results are presented for a series of time invariant532

test problems in which m(x, t) ≡ m(x) is taken to be a constant (in time)533

function, and only Algorithm 1 is used, starting from an initial potential Q̃0 = 0.534

We note that simple analytical monitor functions have been used previously535

as test cases for adaptive mesh redistribution in two and three dimensions.536

One such paper [28], applied the PMKP method, which is related to PMA,537

and which seeks to solve a different form of the parabolic Monge-Kantorovich538

problem, as well as the FDMK method. This paper mainly considered numerical539

calculations for two-dimensional examples of varying size and also showed results540

when applied to a single three dimensional mesh with 41× 41× 41 gridpoints;541

two orders of magnitude fewer degrees of freedom than some of the examples542

we consider in this paper and of a relatively simpler geometry.543

The first example is a simple symmetrical case in which we present meshes544

generated by considering a monitor function which is large near the boundary of545

a sphere. This serves to show the symmetry preserving properties of the PMA546

equation and the regularity and alignment of the resulting meshes.547

The second example is a more complicated, but still analytically determined,548

monitor function describing a helical feature. This will show more clearly the549

meshes which it is possible to construct which can represent a complex three550

dimensional geometry.551

Finally in this section we will consider the very large and practical problem of552

generating adapted three-dimensional meshes for the purposes of meteorological553

data assimilation calculations. In this example we use forecast data from the554

Met Office UK4 model to define a monitor function based on an estimate of555
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the potential vorticity, looking at a sequence of different meteorological events.556

This example illustrates the effectiveness of the PMA algorithm to generate a557

mesh when used on a large scale practical three dimensional problem, with a558

monitor function defined by data values rather than an analytic function.559

We will describe each of these examples in turn, and will then also study the560

relation between the largest usable value of δτ and the approximation (23).561

For all of the examples, the codes for the PMA algorithm were executed on a562

laptop with an Intel R© CoreTM2 Duo CPU P9400 @ 2.4Ghz with 4GB RAM run-563

ning a 32-bit Linux OS and were compiled with the gfortran compiler in double564

precision. All reported times are wall-clock times measured using system clock,565

averaged over 3 runs.566

5.1 Simple test cases567

5.1.1 Example 1: A three dimensional shell568

We define the density f(x) of a smooth three dimensional ball with a (graded)569

boundary of width r2 and centred on the point (x0, y0, z0) as follows. Let s be570

the distance of a point in our domain to the centre of the ball given by571

s(x) = s(x, y, z) =
√

(x− x0)2 + (y − y0)2 + (z − z0)2. (24)

We then define the density of the ball via the function572

f(x) = f(x, y, z) =


1 for s(x, y, z) ≤ r1

1
2 cos( (s(x,y,z)−r1)π

r2
) + 1

2 for s(x, y, z) ≤ r1 + r2

0 for s(x, y, z) > r1 + r2

(25)

where r1 and r2 are scalars defining the width of the ball. For this problem573

we will consider generating a mesh which concentrates points close to the shell574

forming the boundary of the ball. This can be achieved by using a monitor575

function which is large when the derivatives of the density function f(x) are576

also large. Accordingly, we define the monitor function m(x, y, z) by577

m(x, y, z) =
√

(1 + c2(fx(x, y, z)2 + fy(x, y, z)2 + fz(x, y, z)2)). (26)

Here c is a regularisation constant, which we set in our examples to be c = 0.75.578

We now consider a three dimensional mesh, constructed within the unit cube,
and adapted to this monitor function in which we set the parameters defining
the width of the ball to be r1 = r2 = 1

6 , and centred in the domain so that

(x0, y0, z0)T = ( 1
2 ,

1
2 ,

1
2 )T .

In the examples shown the computational domain ΩC = [0, 1]3 is split into a grid579

of nξ ×nη ×nζ points, with nξ = nη = nζ = 100 (N = 106) and is mapped into580
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the same physical domain (so that the solution of the PMA equation satisfies581

Neumann boundary conditions).582

The PMA algorithm was applied to this problem with δτ = 0.2 and γ = 0.2. The583

convergence of the mesh to an equidistributed state to a tolerance of ε = 1E−5584

is shown in Figure 2a in which we plot both ε(τ) and r(τ). The calculation ter-585

minated after 41 iterations, taking 34 seconds on the laptop computer described586

earlier. From this figure we can clearly see the rapid, exponential convergence of587

the algorithm as predicted from (21), (22) with both ε(τ) and r(τ) converging588

at the same exponential rate. To determine the complexity of this calculation589

we repeated this calculation with a varying number of spatial mesh points N ,590

keeping δτ fixed and computed until the tolerance threshold was reached. The591

number of iterations was computed and is shown in Figure 2b. We see that,592

as predicted from the analysis at the end of the last section, the number of593

iterations is essentially independent of N . As a consequence the computational594

complexity, and hence the CPU time, varies as N log(N) as can also be seen.595

The resulting mesh is presented in Figure 3. From this simple test problem596

it is possible to see how the solution of the PMA equation is equidistributing597

the monitor function. There are many more grid points in the region where598

the monitor function is high than outside of that region, and the mesh shows599

excellent alignment with the boundary of the sphere. In Figure 3a we plot the600

values of the monitor function in three dimension, with part of the sphere cut601

away to show the variation in value across the shell. In Figure 3b we show a602

plane in the mesh that precisely follows the contours of the monitor function.603

Figures 3c and 3d show the grid from the centre of the computational domain604

projected onto the x–y plane in physical space. Figure 3d shows the regularity605

of the grid that is generated and that the PMA equation aligns the mesh with606

the contours of the monitor function. This elegant behaviour arises because607

symmetries in the monitor function lead to symmetries in the PMA equation608

and hence in the function Q.609

5.1.2 Example 2: A three dimensional helix610

We next consider an analytically defined monitor function that describes a com-611

plex three dimensional helical surface without the symmetries of the shell. This612

problem was chosen as it leads to a very non uniform and twisted mesh, and it613

is thus a major challenge for the algorithm. In particular we might in principle614

expect to see more problems with mesh tangling. Taking x = (x, y, z)T then a615

monitor function m(x) which is large in a neighbourhood of such a helix, and616

regular elsewhere, is given by617

m(x, y, z) = 5 exp(−w1[(x−(w2 cos(4zπ)+0.5))2+(y−(w2 sin(4zπ)+0.5))2])+1
(27)
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(a) Plot of the convergence for the shell problem with nξ = 100. Note the exponential
convergence seen in this example, as predicted by (21).

105 106 107

101

102

N = n3
ξ

C
P

U
ti

m
e

(s
ec

on
d

s)

0

10

20

30

40

50

N
u

m
b

er
of

P
M

A
it

er
a
ti

on
s

CPU time
PMA iterations

(b) The CPU time and number of iterations plotted as a function of the number
of gridpoints N for the shell problem. Note the almost constant number of PMA
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Figure 2: Performance plots for the shell problem.

Here the parameter w1 describes the width of this boundary neighbourhood, and618

the parameter w2 gives the width of the helix. These are set to be w1 = 100619

and w2 = 1
4 . The domain is split into 100× 100× 100 grid points and the three620
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2 3 4 5 6 7

(a) Cut away 3D plot of the monitor func-
tion for m > 1.05. Note that this monitor
function ranges from 1 to 7.14.

(b) 3D view of grid in physical space of
the grid from ζ = 1/3 in computational
space.

(c) Projected view of a plane of the mesh
that was at ζ = 49/99 in computational
space

(d) Zoomed view of projected mesh from
ζ = 49/99 around the high monitor func-
tion.

Figure 3: The monitor function and the resulting sections from the mesh for
the shell test problem.

dimensional values of the monitor function are shown in Figure 4.621

The PMA algorithm was applied to the helical problem with δτ = 0.2 and622

γ = 0.2. For these parameter values it was successful in generating a highly623

non-uniform mesh without any evidence of mesh tangling at any stage of the624

application of the algorithm. The exponential convergence of the mesh to an625

equidistributed state to a tolerance of 1E − 05 is shown in Figure 5. The626
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(a) 3D plot of the helical monitor func-
tion

(b) Cut away plot of 3d monitor func-
tion

1.25 2 3 4 5 6

Figure 4: 3D plots of the helical monitor function showing only those points
with m > 1.25. Note that this monitor function ranges from 1 to 6.

calculation terminated after 24 iterations, taking 20.7 seconds on the laptop627

computer described earlier. In Figure 6 we show the mesh generated by the628

PMA algorithm when applied to the problem taking m as defined in (27). In629

Figure 6b we show where the two horizontal planes in Figure 6a are mapped to630

in physical space. Similarly Figures 6c and 6d show where the vertical planes in631

Figure 6a are mapped to in physical space. These show that the redistributed632

grid is closely following the monitor function and very clearly show the fully 3D633

nature of the problem.634

5.2 Meteorological test problems635

We now consider a large scale meteorological problem for which the monitor636

function is not given as an analytic function, but is instead defined at a set637

of discrete data points. This is a commonly encountered situation both in the638

numerical solution of PDEs or (as in this case) of function approximation where639

the function is only known at discrete points. Note that in this example we are640

not evolving a PDE, but simply redistributing a mesh around data derived from641

the solution of a PDE.642

Data assimilation is the technique of matching noisy data to models of a process643

which also may have error. It is widely, and successfully, used in meteorology644
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Figure 5: Plot of the convergence for the helical problem showing r(τ) and ε(τ).
Again we see exponential convergence in 24 iterations.

to determine an atmospheric state consistent both with observations and with645

the underlying physics of the atmosphere. In order to implement variational646

data assimilation methods effectively, it is important that the underlying co-647

variance matrix of the errors is well represented. This matrix is too large to648

store explicitly. In this context adaptive mesh redistribution can be applied649

to create a simplified and thus manageable representation of the background650

error covariance matrix, and in particular include a reasonable representation651

of the spatially varying structure of the covariances [4, 1]. The Met Office data652

assimilation system already implements a 1D adaptive meshing procedure for653

the vertical component of their grid used for their data assimilation algorithms.654

The improvement in data correlations represented by doing this has resulted655

in a measurable increase in forecasting accuracy [4, 1]. In this paper we con-656

sider the first step of extending this work by considering how to use the PMA657

algorithm to generate a suitable 3D mesh for data assimilation in a variety of658

meteorological conditions. A discussion of the implementation and testing of659

the adapted meshes within the data assimilation system will follow in a later660

paper.661

To be effective within the context of a data assimilation calculation, the mesh662

generation code must be both fast and robust to use, and must also be easily663

linked to the existing data assimilation software. For the Met Office application,664
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(a) Planes in the computational mesh
showing where the meshes in Figures
6b–6d originate in computational space

(b) Location of the two horizontal
planes in the physical space correspond-
ing to the horizontal planes shown in
computational space

(c) Location of the plane in physical
space corresponding to η = 1/3 in com-
putational space

(d) Location of the plane in physical
space corresponding to η = 7/9 in com-
putational space

Figure 6: 3D plots of the mesh generated by the helical monitor function at
various slices.

the goal is to produce a weather forecast after using data assimilation to get a665

best guess for the current state of the atmosphere. This imposes an immediate666

operational time restriction on the time-frame in which the computations can667

be made, as a forecast delivered after the event is useless. This paper consid-668

ers adapting the UK4 grid (4km horizontal spacing local area model over the669
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British Isles) with efficiency a key consideration for any future operational im-670

plementation. As a code for an operational centre, the meshes produced will671

have to run automatically and hence be robust to all weather conditions. Thus672

it is essential to have a monitor function which is well scaled to maintain good673

global resolution while still refining sufficiently around features of interest.674

This specific application of adaptive meshing is as an aide to help calculate the675

background error covariance matrix within the data assimilation algorithm, as676

in [1, 4].677

5.3 Defining a monitor function678

In this example, the physical coordinates x = (x, y, z) correspond to longitude,
latitude and vertical levels respectively. The vertical levels are defined using
a terrain-following coordinate η which is a monotone function of height. It is
plausible to assume that the correlation structure is isotropic in geostrophic and
isentropic coordinates, which implies the use of the semi-geostrophic potential
vorticity as a monitor function [22]. The PV is the Jacobian of the transforma-
tion from physical to geostrophic and isentropic coordinates. This is given in
terms of the primitive variables u, v and θ by

PV =

∣∣∣∣∣∣
f + vx vy vz
−ux f − uy −uz
gθx/θ0 gθy/θ0 gθz/θ0

∣∣∣∣∣∣
where f is the Coriolis parameter (assumed constant), u and v are the wind ve-
locities in the longitudinal and latitudinal directions respectively, g is the force
due to gravity, θ is potential temperature and θ0 a reference potential temper-
ature [22]. Since the PV calculated from real data may not be positive, we use
only the dominant diagonal terms of semigeostrophic potential vorticity to form
the basis for the monitor function which we use to control the adapted mesh.
Each of the diagonal terms is regularised to take account of the typical scale
of the individual terms and ensure positivity. This resulting monitor function
then has the following form

m =

∣∣∣∣∣∣∣∣∣

√
1 + c1(1 + vx

10f )2 0 0

0
√

1 + c2(1− uy

10f )2 0

0 0
√

1 + c3( θzθ0 )2

∣∣∣∣∣∣∣∣∣ .
Note that the wind gradients uy and vx have been rescaled by a factor of 10 to679

remove some of the greater variability in the wind speeds than in the potential680

temperature. The constants c1, c2 and c3 are regularisation parameters which681

allow for different weightings to be given to the different components. With a682

great deal of testing, it was found that all the normalisation parameters equal683

0.75 gave good results. Note that c1 = c2 = 0 reduces this three dimensional684
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monitor function to the one dimensional static stability based monitor function,685

which is currently used operationally [4, 1].686

In the application to atmospheric data assimilation it is important to respect687

the stratified structure of the atmosphere. Though the monitor function should688

be smoothed to avoid computational difficulties caused by rapid grid variations,689

the smoothing should be applied only in the horizontal and not the vertical.690

Thus the filtering operator that is applied is691

m̃i,j,k =

∑1
`1=−1

∑1
`2=−1mi+`1,j+`2,kβ

|`1|+|`2|∑1
`1=−1

∑1
`2=−1 β

|`1|+|`2|
(28)

This produces much sharper monitor functions and hence gives better refinement692

of the grid around the structures of interest.693

5.4 Test cases694

In our calculations we considered three different meteorological data sets to695

test the grid generation capabilities of the 3D PMA algorithm. These data696

sets were actual forecast data provided by the UK Met Office for periods of697

very different weather conditions, in particular: (a) a stable boundary layer, (b)698

scattered showers, and (c) a frontal system. The dimension of this problem is699

288 × 360 × 70 = 7257600 gridpoints and hence 21772800 degrees of freedom.700

Over the scales we are interested in, the atmosphere is shallow, i.e. the vertical701

scale of the domain is much smaller than the horizontal scale. This presents702

computational issues for the solution of the atmospheric dynamics equations.703

However, we rescale the vertical “altitude” component of the physical domain704

into terrain following “level” coordinates. This rescaling removes the compu-705

tational issues associated with the PDEs of atmospheric dynamics and allows706

us to work unhindered on the computational domain [0, 1]3. In keeping with707

the possible operational restrictions on adapted grid generation, all parameters708

used in the subsequent results will be fixed across all cases to show the ro-709

bustness of the method. In all of these calculations, the parameters used were710

δτ = 0.5, γ = 0.5 and the convergence tolerance was set to 1E − 05. The PMA711

algorithm performed very well in each case and the meshes obtained captured712

all the features of the underlying localised systems (identified by the monitor713

function). Consequently we are confident that the resulting meshes should per-714

form very well when used for data assimilation calculations. The table below715

and the plots in Figure 7, shows the convergence results from the three test716

cases.717

Observe from Figure 7, that even in these large data sets, the PMA algorithm718

converges rapidly. Note that the final ε achieved here is greater than for the719

analytically defined monitor functions considered previously. This is a conse-720

quence of interpolation error in sampling the monitor function away from the721

given data points. We now show the resulting meshes in each case. For each fig-722

ure we give the monitor function and the mesh at appropriate sections through723

the domain.724
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Test case Iterations CPU time
(minutes)

Range of m Final ε

Stable boundary layer 21 3.26 1.1–21.8 2.11E − 02
Scattered showers 20 3.14 1.0–18.2 2.02E − 02
Frontal system 20 3.12 1.0–13.8 1.76E − 02

Table 1: Results for the three meteorological test cases
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Figure 7: Plot of the convergence of PMA for the meteorological test cases.
Note that the decay of r is exponential, but that ε decays in a different manner.
This is because the monitor function is evaluated at discrete data points rather
than being defined continuously.

5.4.1 Stable boundary layer725

This test case uses the same UK4 model data described in [1], representing a726

scenario when UK was mainly covered by low-level clouds. The synoptic situa-727

tion over the UK at the time (3rd January 2011 at 00UTC) was characterised728

by a weak flow within a large anticyclone of 1030 hPa surface pressure. Ob-729

served vertical profiles show saturated boundary layer below an inversion of730

850 hPa.There is a warm front in the south-west with some likely enhancements731

from a vorticity anomaly aloft. This is associated with extensive low clouds732

particularly in the south-west. Figure 8 shows a cross section (longitude ver-733

sus levels) of the monitor function described in Section 5.3 for 3 January 2011734
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at 00 UTC and the corresponding mesh. The three dimensional monitor func-735

tion clearly captures the vertical structures in the troposphere which indicates736

the presence of clouds at different levels in agreement with the results showed737

when using the one dimensional static stability monitor function described in738

[1]. The mesh follows the monitor function by moving the vertical height levels739

further together when the monitor function is large and further apart when it740

is small. This is in agreement with the one dimensional results. In addition741

the three dimensional monitor function moves the mesh horizontally capturing742

more realistically local variations of the cloud layering.743

Another cross section is shown in Figure 9. Again the mesh (latitudes versus744

height levels) follows the structure of the corresponding monitor function and745

captures local variability both vertically and horizontally.746
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Figure 8: The monitor function and the resulting mesh for the stable boundary
layer system at a 94th latitude increment ad with increasing longitude. The func-
tion is shown in the vertical plane from (50.68N, 11.51W ) to (50.80N, 4.84E)
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Figure 9: The monitor function and the mesh for the stable boundary layer sys-
tem at a 260th longitude increment. In the vertical plane from (47.91N, 2.89E)
to (60.79N, 4.86E).
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5.4.2 Scattered showers747

The next two cases have been selected to test the capability of the scheme748

to capture two different extremes, i.e. localised convective activity as in the749

scenario of scattered showers and a large scale weather system as in the case of750

a front. The synoptic situation over the UK on the 24 April 2012 at 12UTC was751

characterised by a weak flow within a large scale upper trough with an upper752

filament of vorticity in the south-west of England giving focus to the convective753

activity. The latter gives large values of the (potential vorticity based) monitor754

function. The convective activity over the UK is shown by the radar image in755

Figure 10 in which the intensity of the rain showers shows up in the figure as756

regions of more intense colour. (In this figure the UK and Ireland occupy most757

of the region, with Scotland at the top. The most intense convective activity is758

over the North Sea just to the East of the NE cost of England.) The adaptive759

mesh scheme here needs to pick up very small and localised showers scattered760

over the UK as well as the response to the large scale forcing over SW England.761

Figure 11 shows an horizontal cross section of the monitor function on the left762

and the corresponding mesh on the right for a low height level of the model.763

The monitor function tends to capture local and small scale phenomena. These764

do not coincide with the radar image in Figure 10, this is because the monitor765

function is calculated from a T+3h forecast and not from current observations.766

The monitor function does not respond to the random showers over Ireland,767

but does pick up the area with no showers over central England. The mesh768

follows the monitor function behaviour and clustered mesh points near the high769

values of the monitor function. When the showers are better organised and less770

random, like the filament over North Scotland, the mesh nicely aligns with this771

feature. Figure 12 shows instead a vertical cross section (latitudes versus height772

levels) for the same case. As well as capturing the small scale variations due773

to the showers the monitor function picks up the upper filament of vorticity774

(around level 35) and the lower filament over north Scotland (around level 8).775

The mesh nicely follows the behaviour of the monitor function both horizontally776

and vertically.777
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Figure 10: Radar image of the scattered showers system over the UK and Ireland
showing isolated areas of high convective activity indicated by intense colours.
These colours are areas of high reflectivity which correspond to rainfall.
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Figure 11: The monitor function and the mesh for the scattered shower system
at the 8th vertical level, or 261.7m
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Figure 12: The monitor function and the mesh for the scattered shower sys-
tem at a 135th longitude increment. Vertical plane from (48.04N, 3.81W ) to
(60.96N, 4.29W ).
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5.4.3 A Frontal system778

The last case described in this section follows from the scattered showers weather779

system. The large upper trough described in the previous section extends south780

and by 00UTC on the 25 April 2012 it drives the surface cyclonic system east-781

ward bringing a warm front system into the south-west of UK. The activity on782

the front is strongly enhanced by vorticity forcing at 250 hPa. Figure 13 shows783

the radar image for the frontal system on the 25 April 2012 at 03UTC. Again784

in this figure the UK and Ireland occupy most of the region and a strong front785

can be seen in the South West crossing Devon. The horizontal cross section786

of the monitor function and the corresponding mesh for this case are shown in787

Figure 14. The front is clearly depicted in both pictures and the refinement of788

the mesh is high in correspondence with the front. Figure 15 shows the vertical789

cross section (latitude versus levels) of the monitor function and the resulting790

mesh. It clearly picks up the three dimensional structure of the front (around791

latitude 50N) as a function of height and latitude. The monitor function also792

displays extra vertical structures over the UK. Again the mesh nicely follows793

the behaviour of the monitor function both horizontally and vertically.794

Figure 13: The radar image of the frontal system crossing the South West coast
of the British Isles. The region of high reflectivity indicates the well organised
rain band ahead of the front.
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Figure 14: The monitor function and the mesh of the frontal system at the 23rd

vertical level, or 1911.7m
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Figure 15: Monitor function and mesh of frontal system at 16th longitude in-
crement. Vertical plane from (47.77N, 10.17W ) to (60.60N, 12.94W ).
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5.5 Estimates for the maximum step size max δτ795

As described earlier, whilst in the limit of small δτ we expect to see an absence796

of mesh tangling, it is certainly the case that the PMA algorithm fails, due797

to mesh tangling, at a maximum value max δτ . In each of the test problems798

described in this section we kept N fixed and increased δτ until mesh tangling799

was observed at some stage in the application of the algorithm. This maximum800

value appeared from our experiments to be independent of N , but did depend801

on the example problem. In Figure 16 we show, for all the static examples802

considered in this paper, the numerically estimated largest value of δτ . These803

are all plotted as a function of the estimate of inverse of the monitor function m804

given by m∗ =
(∫
m dξ

)−1/3
as described earlier in (23). We can see from this805

figure that there is a reasonably good correlation between m∗ and max δτ , and806

that m∗ is of the correct magnitude for all of these examples. In these cases,807

max δτ = ε
(∫
m dξ

)−1/3
where ε varies within the range 0.42 to 0.64.808

For the choices of δτ which do converge, our numerical tests strongly imply809

that the constants predicted in (21) and (22) are indeed independent of δτ .810
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Figure 16: Maximum values of δτ as compared to the estimate δτ∗ given in
(23).

6 A moving mesh test problem811

We now consider the performance of the PMA algorithm when used to compute a812

time varying three-dimensional mesh when the monitor function m(x, t) is itself813

a function of time. This situation of course is closer to a typical implementation814

of a mesh redistribution method when it would be used to as part of the solution815
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of a time varying PDE. In this section the example considered is the same as816

that studied by Chacón et al. [6] which also considers calculating a mesh by817

solving the Monge-Ampère equation, but which uses a Newton method coupled818

with a multi-grid solver to do this. To find the mesh in this case we implement819

Algorithm 2 as described earlier.820

The time-varying, analytically defined, monitor function considered is given by:821

m(x, y, z, t) = 1 + 4 exp

(
−r(x, y, z)2

(
cos2(κ(x, y, z, t))

σ2
x

+
sin2(κ(x, y, z, t))

σ2
y

))
(29)

where r(x, y, z) is the distance to the centre of the domain at
(

1
2 ,

1
2 ,

1
2

)
, σx =822 √

0.05, σy =
√

0.001 are scaling factors and823

κ(x, y, z, t) = arctan

(
y − 1

2

x− 1
2

)
+ 1.6 sin(πz) max[( 1

2 − r)r, 0]t. (30)

The goal of this test problem is to find meshes at times t ∈ {0, 1, . . . , 100}. The824

problem of finding the mesh for this time dependent system is then solved in825

two stages in a manner analogous to the MMPDE method described in [13].826

Firstly at time t = 0 Algorithm 2 sets the monitor function m(x, 0) and,827

starting from a uniform mesh, the system (15) is evolved forward in pseudo-time828

using Algorithm 1 with m(x, 0) fixed until the mesh satisfies the equidistribution829

condition to a high tolerance. For this calculation we take δτ = 0.1, γ = 0.2830

and tol = 1E − 05.831

Secondly Algorithm 2 evolves the monitor function in real time, with the value832

of t increased in intervals of δt = 1.0. For each of these outer timesteps, we set833

τmax = δt and δτ = δt/5, ensuring at least 5 pseudo-timesteps per inner loop.834

The initial value of Q at each stage of the inner loop is given by the previously835

converged value for ther last time step.836

The resulting mesh at the final times t = 100 for the case of a 128× 128× 128837

mesh is presented in Figure 17.838

We can see at time t = 100 that the mesh closely follows the contours of the839

monitor function and is very regular with no hint of mesh tangling.840

We next consider the computational cost of calculating these meshes. To do this841

the unit cube is discretised into a grid of N×N×N , where N = 32, 64, 128, 192,842

and we list the number of iterations to converge to the given tolerance in the843

pseudo-time calculation at t = 0 and the total CPU time required to compute844

the 101 meshes until t = 100. These results are presented in Table 2. We note845

that the scaling of the CPU time is fully consistent with an estimated complexity846

of O(N log(N)).847
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1.05 2 3 4 5

Figure 17: The monitor function and the resulting meshes at the time t = 100.
Note that for all t, the monitor function ranges from 1 to 5.
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Grid resolution N DOFs Initial iterations of static PMA CPU(s)
32× 32× 32 98304 42 15.92099
64× 64× 64 786432 42 253.4290
128× 128× 128 6291456 43 2227.012
192× 192× 192 21233664 44 7604.040

Table 2: Timings for the evolution of the mesh to an equidistributed state for
varying spatial discretisations
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(a) Equidistribution error during pseudo-
time convergence to mesh at t = 0
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(b) Equidistribution error during real-
time evolution of mesh

Figure 18: Equidistribution errors ε of the two-step process in redistributing a
mesh for a dynamically evolving monitor function shown for various discretisa-
tion levels. Note the increase in the equidistribution errors in the dynamically
evolving step, due to evolving the monitor function to t+ 1 based on the value
of the monitor function at time t.
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7 Conclusion848

In this paper we have demonstrated that the Parabolic Monge-Ampère algo-849

rithm can be extended from two dimensions to three, and that it is effective850

in generating meshes with good regularity in a short time. In particular it can851

deliver effective meshes for three dimensional meteorological data assimilation852

calculations using large data sets with 21 million degrees of freedom, in times853

commensurate with those required for actual weather forecasting. When applied854

to test problems it shows fast convergence, with meshes rapidly (and without855

any hint of tangling provided that the computational time step is taken suffi-856

ciently small) converging to an equidistributed state. We therefore think that857

this method should be considered seriously, alongside other techniques, as a fast858

and effective method for redistributing a large three dimensional mesh.859

References860

[1] Chiara Piccolo and Mike Cullen. A new implementation of the adaptive861

mesh transform in the Met Office 3D-Var System. Quarterly Journal of the862

Royal Meteorological Society, 138(667):1560–1570, July 2012.863

[2] Jessica Gullbrand and Fotini Katopodes Chow. The effect of numerical864

errors and turbulence models in large-eddy simulations of channel flow,865

with and without explicit filtering. Journal of Fluid Mechanics, 495:323–866

341, November 2003.867

[3] Weizhang Huang and Robert D Russell. A moving collocation method for868

solving time dependent partial differenial equations. Applied Numerical869

Mathematics, 20:101–116, 1996.870

[4] Chiara Piccolo and Mike Cullen. Adaptive mesh method in the Met Of-871

fice variational data assimilation system. Quarterly Journal of the Royal872

Meteorological Society, 137(656):631–640, April 2011.873

[5] C.C. Pain, M.D. Piggott, A.J.H. Goddard, F. Fang, G.J. Gorman, D.P.874

Marshall, M.D. Eaton, P.W. Power, and C.R.E. de Oliveira. Three-875

dimensional unstructured mesh ocean modelling. Ocean Modelling, 10(1-876

2):5–33, January 2005.877

[6] L. Chacón, G.L. Delzanno, and J.M. Finn. Robust, multidimensional mesh-878

motion based on MongeKantorovich equidistribution. Journal of Compu-879

tational Physics, 230(1):87–103, January 2011.880

[7] Jörn Behrens. Atmospheric and ocean modeling with an adaptive finite881

element solver for the shallow-water equations. Applied Numerical Mathe-882

matics, 26(1-2):217–226, January 1998.883

[8] Hilary Weller. Predicting mesh density for adaptive modelling of the global884

atmosphere. Philosophical transactions. Series A, Mathematical, physical,885

and engineering sciences, 367(1907):4523–4542, November 2009.886

40



[9] Mark Ainsworth and Bill Senior. Aspects of an adaptive hp-finite element887

method: Adaptive strategy, conforming approximation and efficient solvers.888

Computer Methods in Applied Mechanics and Engineering, 150(1-4):65–87,889

December 1997.890

[10] Jörn Behrens. Adaptive atmospheric modeling: key techniques in grid891

generation, data structures, and numerical operations with applications.892

Springer, 2006.893

[11] C J Budd and J F Williams. Moving mesh generation using the894

parabolic Monge-Ampère Equation. SIAM Journal on Scientific Comput-895

ing, 31(5):3438–3465, 2009.896

[12] Chris J. Budd, Weizhang Huang, and Robert D. Russell. Adaptivity with897

moving grids. Acta Numerica, 18:1–131, May 2009.898

[13] Weizhang Huang and Robert D Russell. Adaptive moving mesh methods,899

volume 174. Springer, 2011.900

[14] G.L. Delzanno, L. Chacón, J.M. Finn, Y. Chung, and G. Lapenta. An901

optimal robust equidistribution method for two-dimensional grid adapta-902

tion based on MongeKantorovich optimization. Journal of Computational903

Physics, 227(23):9841–9864, December 2008.904

[15] John M Finn, Gian Luca Delzanno, and Luis Chacón. Grid Generation905

and Adaptation by Monge-Kantorovich Optimization in Two and Three906

Dimensions. In Proceedings of the 17th International Meshing Roundtable,907

pages 551–568. Springer, 2008.908

[16] C.J. Budd, M.J.P. Cullen, and E.J. Walsh. Monge-Ampére based moving909
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