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ABSTRACT

Highly heterogeneous mountain snow distributions strongly affect soil moisture patterns; local ecology;

and, ultimately, the timing, magnitude, and chemistry of stream runoff. Capturing these vital heterogeneities

in a physically based distributed snow model requires appropriately scaled model structures. This work looks

at how model scale—particularly the resolutions at which the forcing processes are represented—affects

simulated snow distributions and melt. The research area is in the Reynolds Creek Experimental Watershed

in southwestern Idaho. In this region, where there is a negative correlation between snow accumulation and

melt rates, overall scale degradation pushed simulated melt to earlier in the season. The processes mainly

responsible for snow distribution heterogeneity in this region—wind speed, wind-affected snow accumula-

tions, thermal radiation, and solar radiation—were also independently rescaled to test process-specific spa-

tiotemporal sensitivities. It was found that in order to accurately simulate snowmelt in this catchment, the

snow cover needed to be resolved to 100m. Wind and wind-affected precipitation—the primary influence on

snow distribution—required similar resolution. Thermal radiation scaled with the vegetation structure

(;100m), while solar radiation was adequately modeled with 100–250-m resolution. Spatiotemporal sensitiv-

ities to model scale were found that allowed for further reductions in computational costs through the winter

months with limited losses in accuracy. It was also shown that these modeling-based scale breaks could be

associated with physiographic and vegetation structures to aid a priori modeling decisions.

1. Introduction

In alpine watersheds, large heterogeneities in snow

distribution are often observed over very small distances.

Large snowdrifts can be found on leeward slopes just

downwind from wind-exposed ridges with minimal snow

accumulations (Luce et al. 1998; Winstral and Marks

2002). In forested regions, interception and subsequent

sublimation of snow from forest canopies strongly affect

snow distribution (Pomeroy andGray 1995; Trujillo et al.

2007). Spatially variable energy fluxes—primarily radia-

tion (Elder et al. 1991) and turbulent (Prowse andOwens

1982; Pohl et al. 2006) exchanges—add additional com-

plexity to snow distributions. This heterogeneity of snow

cover strongly affects mountain runoff (Luce et al. 1998;

Winstral and Marks 2002), soil moisture (Seyfried et al.

2009), vegetation cover (Ishikawa 2003), microbial ac-

tivities (Jones 1999), and nutrient cycling (Bowman 1992;

Brooks and Williams 1999). Oftentimes, these heteroge-

neities occur at scales of tens of meters (Deems et al.

2006; Trujillo et al. 2007), which poses a dilemma in large-

scale snow models. Resolving these features requires ei-

ther explicit representations with a high-resolutionmodel

or reliance on a means of statistically capturing the sub-

grid heterogeneity in a lower-resolution solution. The

former comes with extensive computational demands.

The latter is replete with compromises, as it is impossible

to fully capture the spatial complexities and nonlinear

processes that affect snow distributions with statistical

modeling.

Extensive research has been conducted describing the

scaling characteristics of snow distributions. A review of

much of this work follows. However, to our knowledge,

none has directly assessed the scaling characteristics of

the primary processes that ultimately control snow ac-

cumulation and melt. Cline et al. (1998) did evaluate
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how scaling of the energy fluxes affected snow distri-

butions. Their work, however, rescaled all processes

together, and the analysis was limited to the melt period

after peak snow water equivalent (SWE). In this paper,

we examine the sensitivity of modeled accumulation and

melt to variously scaled representations of each of the

primary forcing processes to quantify the consequences

of mismatched model and process scales throughout the

snow season.

A snow cover energy- and mass-balance model

(ISNOBAL; Marks et al. 1999b), which has been exten-

sively applied and tested throughout the world, is used to

perform this model-based analysis. Physically based dis-

tributed and semidistributed snow models are currently

being applied on an operational basis over increasingly

larger regions with widely ranging model resolutions.

These models require distributed meteorological forc-

ings. In most applications, the resolution of both the

forcing processes and model outcomes are consistent.

Computation times and memory requirements for cal-

culating distributed forcings—particularly for the more

physically complex processes such as radiation fluxes and

wind-affected snow accumulations—are similar in mag-

nitude to those of the energy-balance snow model alone.

We propose that not all of the forcing processes require

similar levels of detail at all times to accurately simulate

snow distribution and melt and that substantial re-

ductions in computation times can be achieved with mi-

nor losses in model effectiveness. The results presented

here should be broadly applicable to all physically based,

explicit snow models reliant on spatially distributed

forcings.

We present a direct assessment of how model reso-

lution affects representations of the primary processes

that control accumulation and melt in this research

basin—wind, wind-affected snow accumulations, solar

radiation, and thermal radiation—and how these scale

effects propagate to simulated snow distributions and

surface water inputs. We test a multitude of gridded

model resolutions (10–1500m) covering the range fre-

quently encountered in modeling applications and re-

mote sensing products. The following analysis presents

insights into potential scale-based model biases as well

as potential means for reducing the computational costs

of distributed snow models.

2. Background

Prior studies have addressed the scale behavior of snow

cover variability. Of particular interest has been captur-

ing the length scale or correlation length—the distance at

which the variance does not increase substantially with

increasing distance between measurements. This is

a measure of what is commonly referred to as process-

scale variability. In order for amodel to capture process-

scale variability, either the resolution of the model (i.e.,

model scale) must be finer or the model must contain

a means, usually statistical in nature, of capturing these

subelement processes. These earlier studies provide

context on the level of detail required for representing

snow distributions. The snow observations, however, are

the product of many interacting processes. Prior scaling

analyses by Trujillo et al. (2007) and Deems et al. (2006)

have implicitly associated differences in snow cover

heterogeneity patterns with primary forcing processes

via the similar scaling behaviors of snow fields and

process-associated structural controls (e.g., topographic

and vegetative structure as the controlling factors on

wind redistribution and interception/radiation, re-

spectively). However, to our knowledge, no prior work

has directly addressed the scaling properties of the

forcing processes. The prior scale-related research on

snow distributions provided valuable insights and guid-

ance for this research, and a brief review follows.

Early insights on snow distribution scaling behavior

were based on labor-intensive and costlymanual surveys

that, because of logistics, costs, and potential avalanche

danger, were often limited in some spatial context.

Shook and Gray (1996) found that the transition from

autocorrelated to random behavior, also referred to as

correlation length, occurred at 30m on flat land and

increased with the large-scale topographic variability in

open, exposed, low-relief prairie and arctic environ-

ments. Kuchment and Gelfan (2001) analyzed snow-

depth distributions along long transects (15–20 km) at a

sampling resolution (20m at a minimum), much coarser

than considered by Shook and Gray (1996). Perhaps

because of the lack of fine resolution data, Kuchment

and Gelfan (2001) determined that their data were

entirely self-similar, exhibiting continually increasing

variability at greater length scales. Investigators have

also examined snow course and Snowpack Telemetry

(SNOTEL) data where correlation lengths on the order

of hundreds of kilometers were observed (Ling et al.

1995; Dressler et al. 2006). Snow course and SNOTEL

data, however, are sparsely located, and these sites tend

to have homogeneous site characteristics (i.e., wind-

protected forest openings). Remotely sensed data have

also been used to gain insights on snow cover variability.

Bl€oschl (1999) used snow-covered-area patterns as in-

dicators of SWE and showed that correlation lengths

depended on measurement scales. Bl€oschl (1999) found

that correlation lengths in the K€uhtai catchment (Aus-

tria) were on the order of 100m based on 5-m pixels. In

the Sierra Nevada (United States), however, Bl€oschl

(1999) showed entirely self-similar behavior in an analysis
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of 30-m Landsat Thematic Mapper (TM) data, while a

correlation length of 30 km was estimated from Ad-

vanced Very High Resolution Radiometer (AVHRR)

110-m data.

Many of the aforementioned studies did not contain

sufficient data to adequately represent the finescale

heterogeneities that directly impact mountain hy-

drology and ecosystems. The recent advent of lidar

technology has elucidated these finer scaled details.

Deems et al. (2006) used fractal analysis and found

scale breaks (i.e., important breaks in scale behavior

that can be analogous to correlation length) ranging

from 15.5 to 40.3m at three Colorado (United States)

sites. They concluded that the scaling characteristics of

snow depths were controlled by the spatial distribution

of vegetation topography (i.e., elevation plus vegeta-

tion height) when interception was the main control on

snow distribution.Where redistribution was dominant,

the interaction of winds with terrain features and

vegetation structure controlled the scaling character-

istics. They also surmised, as did Shook and Gray (1996),

that correlation length increased with increasing relief.

Trujillo et al. (2007) analyzed power spectral densities

at five Colorado sites, two of which were part of the

Deems et al. (2006) study. They found scale breaks on

the same order as those published by Deems et al.

(2006), Shook and Gray (1996), and others. In contrast

to Deems et al. (2006), they found no similarities in

the scale behavior of snow depth, topography, or

vegetation topography. They did conclude that simi-

larities in scale behavior existed between snow depth

and vegetation height at nonredistribution sites and

that breaks in scale occurred at larger lengths than

vegetation height-scale breaks when redistribution

was prevalent.

Distributed mass and energy-balance snow models

and computing resources have advanced to the stage

where it is now possible to provide near-real-time prod-

ucts to operational forecasters covering large areas

with millions of model elements. The Snow Data As-

similation System (SNODAS) is the National Weather

Service’s 1-km gridded physically based mass- and

energy-balance snow model with data assimilation

capabilities run at an hourly time step across the en-

tire United States (Barrett 2003; Carroll et al. 2001).

ISNOBAL, a two-layer distributed snow model, has

been used recently to provide high-resolution (50- and

100-m grids) SWE products to water managers in

two western U.S. river basins (Winstral and Marks

2013). The Swiss Federal Institute for Forest, Snow

and Landscape Research runs an operational snow-

hydrological service with short-term melt forecasts

based on data assimilation and a distributed snowmelt

model at 1-km resolution for all of Switzerland

(T. Jonas 2013, personal communication).

Distributed snow models all require distributed forc-

ing data. Computational demands in terms of both time

and storage capacities for deriving the distributed forc-

ing data are generally greater than those of running the

snow model. Most applications have applied a single

spatial model scale throughout the model run from

forcings to outcomes. Scale choices are often a function

of data availability and the balance between computa-

tional costs and resources. This work addresses not only

how these choices affect and potentially bias results but

also presents means of limiting computational costs via

optimized scaling decisions related to the primary forc-

ings. Furthermore, whereas all of the earlier observa-

tional studies provided scaling snapshots for single

moments in time, this modeling exercise will shed light

on the temporal dependencies of scale behavior.

3. Study area

Dobson Creek is a headwater catchment in the

Reynolds Creek Experimental Watershed (RCEW) in

southwestern Idaho (United States). This study focuses

on the upper portion of the Dobson Creek catchment,

where snow dominates the winter landscape (Fig. 1).

The lower elevations in Dobson Creek have an ephem-

eral snowpack throughout the winter. The research area

of upper Dobson Creek has an elevation range of 1760–

2244m MSL and covers an area of 6.2 km2. The catch-

ment has a predominance of sagebrush and shrubs (55%)

on south-facing and wind-exposed slopes, with fir (20%)

and quaking aspen (25%) dominant on north-facing

slopes. Prevailing winds out of the west-southwest pro-

duce large snowdrifts on east- and northeast-facing slopes

while scouring wind-exposed slopes. Snow heterogeneity

is very high in large part because of the strongly wind-

affected patterns. Patterns in upper Dobson Creek are

similar to those found in the nearby Reynolds Mountain

East and Upper Sheep Creek catchments, where it has

been extensively detailed that, in order to accurately

predict streamflow patterns, the heterogeneity in snow

distributions must be accounted for (Kumar et al. 2013;

Luce et al. 1998; Winstral andMarks 2002; Winstral et al.

2013).

Data from twometeorological stations (Fig. 1) located

near the bottom (1817mMSL) and top (2170mMSL) of

the research area were used to derive the ISNOBAL

forcings. Precipitation, wind speed and direction, air

temperature, relative humidity, and incoming solar

radiation measured at each site were used in this ap-

plication. The precipitation data were undercatch-

corrected using the dual-gauge correction method
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(Hanson et al. 2004). Simulations took place over the

course of the 2005/06 snow season, which was wetter

than average and featured a large rain-on-snow event in

late December, detailed in Marks et al. (2013).

4. Methods

Based on the prior snow distribution work and

extensive snow modeling in two adjacent RCEW

watersheds—Reynolds Mountain East (e.g., Winstral

and Marks 2002; Winstral et al. 2013) and Upper Sheep

Creek (e.g., Luce et al. 1998; Prasad et al. 2001; Winstral

et al. 2013)—10-m grid elements were used as the basis

for comparisons. It has been shown that the 10-m grid

scale sufficiently captured the hydrologically relevant

heterogeneities of snowmelt in these two basins (Winstral

and Marks 2002; Winstral et al. 2013). Snow distribu-

tions in both basins, similar to those in upper Dobson

Creek, are strongly influenced bywinds and exhibit a high

degree of variability. The 10-m grid scale is also finer than

the scale breaks observed in prior snow-depth studies,

where it has been suggested that model scales must be

lower than the observed scale breaks in order to explicitly

resolve the distributions (e.g., Deems et al. 2006).

The distributed mass- and energy-balance snow

model used to investigate scale effects in this study was

ISNOBAL (Marks et al. 1999a,b), a two-layer snow

model designed for applications over digital elevation

model (DEM) grids. Based on the work of Anderson

(1976), ISNOBAL uses site-specific topographic and

vegetation structure, with climate and precipitation data

to solve the energy balance, calculate the mass balance,

and track the energy state of the snow cover at each grid

cell. ISNOBAL is forced with distributed fields of net

solar radiation, incoming thermal radiation, air tem-

perature, vapor pressure, soil temperature, wind speed,

and precipitation. Clear sky solar radiation was cal-

culated based on the topographically corrected solar

radiation over snow (STOPORAD) model, which is

the snow-covered version of the topographically-

corrected solar radiation (TOPORAD) model (Dozier

1980; Dozier and Frew 1981; Dubayah 1994). Clear sky

thermal radiation was calculated based on Marks and

Dozier (1979). Both solar and thermal clear sky values

were adjusted for cloud cover using techniques described

in Garen and Marks (2005) and for canopy effects based

on Link and Marks (1999). Solar albedos were a function

of grain growth and sun angle (Marshall and Warren

FIG. 1. Vegetation and topography in upper Dobson Creek. Fir and aspen predominate on lee

and north-facing slopes; sagebrush prevails on drier, sun-exposed slopes.

AUGUST 2014 W IN S TRAL ET AL . 1369



1987; Warren and Wiscombe 1980; Wiscombe and

Warren 1980), further reduced for late season litter

accumulations (Hardy et al. 2000; Melloh et al. 2001)

using a method similar to Garen and Marks (2005).

Observed air temperatures and relative humidities were

distributed using hourly observed lapse rates from the

two weather stations to obtain distributed temperatures

and vapor pressures. Distributed wind speeds were de-

rived using the Sx terrain variable as described inWinstral

et al. (2009). Wind-affected snow accumulations were

accounted for in the precipitation forcing fields using both

the Sx and Sb terrain variables as described in Winstral

et al. (2013). Both the wind and wind-affected pre-

cipitation routines were developed at RCEW. Surface

water input (SWI), which includes snowmelt, rain passing

through an isothermal snow cover, and rain falling on bare

ground, was simulated at each grid cell. Lateral flow

within the snowpack is not considered in the model.

ISNOBAL was run at a 1-h time step with daily outputs.

All of the initialmodelingwas conductedwith a 10-mgrid-

scaleDEMderived from standardU.S.Geological Survey

contours by a commercial company (Peerless Manage-

ment Systems, Springfield, Oregon). Comprehensive

descriptions and further details of ISNOBAL can be

found in Marks et al. (1999a,b).

ISNOBAL model runs were conducted over the en-

tire Dobson Creek catchment (14.4 km2) in the 2005/06

and 2006/07 snow seasons. Comprehensive validation

data for both model runs can be found in Winstral

(2011). Validation data for the 2005/06 season—selected

for this research because of its higher snow volume—can

also be found in Winstral et al. (2013). The 2005/06

simulations were validated with continuous snow depths

at six meteorological stations (RMSE5 11:4 cm) and

twicemonthly,manually sampled SWE(RMSE5 55:8mm)

at six snow courses in and around the Dobson Creek

catchment. Nash–Sutcliffe efficiency coefficients for the

snow depth and SWE time series were generally greater

than 0.80 at the monitored sites. There was also excel-

lent correspondence between the snow cover pattern

simulated on 10 May 2006 and observations derived

from Landsat TM satellite imagery acquired on the

same date.

In the first part of this analysis, the sensitivity of sim-

ulated SWI over the entire snow season to forcing pro-

cess model resolutions was evaluated. SWI consisted of

the daily averaged SWI from all pixels in the basin.

Initially, the model scales of all forcing processes were

simultaneously rescaled, akin to Cline et al. (1998). The

initial 10-m grid scale was sequentially degraded to 30,

100, 250, 500, 750, 1000, and 1500m. Coarser grid reso-

lutions consisted of the average of all 10-m cells envel-

oped by the larger cell. Next, the sensitivity of SWI to

the scaling of singular processes was evaluated. The

primary processes affecting accumulation and melt—

solar and thermal radiation, wind, and wind-affected

snow accumulations—were altered independently while

all other processes were kept at the base model resolu-

tion of 10m. Since ISNOBAL requires a single model

scale for all inputs, the coarser-resolution products were

resampled back to the base model scale of 10-m. All

10-m grid elements occurring within a scale-degraded

cell received the same value (i.e., the mean of all 10-m

cells within the larger cell) in order to maintain the in-

tended scale degradations. Simulations were initiated on

1 October 2005 with no snow on the ground and con-

tinued through complete meltout.

Snowmelt dynamics throughout the winter and spring

were evaluated for the variously scaled scenarios. The

focus of this work is on the effects of model scale on

basinwide SWI. In small basins such as upper Dobson

Creek, SWI inputs are closely correlated to stream re-

sponses, especially during spring runoff when soils are

relatively moist (e.g., Winstral andMarks 2002;Winstral

et al. 2013). For purposes of evaluating basinwide SWI,

the larger-scaled simulations were clipped back to the

10-m grid-defined catchment boundary to preserve the

catchment area across comparisons. Basin-averaged

values such as these, however, can often mask un-

derlying, compensating errors. Analyses of the spatio-

temporal differences in accumulation and melt at the

root of the basinwide SWI results are presented, but

only to add depth to the basin-averaged observations.

Readers are guided to Winstral (2011) for further in-

sights into the spatiotemporal dynamics of scale-based

influences on snow distributions and melt in this catch-

ment. A discussion section follows the results in which

scale sensitivities identified in the model analysis are

1) compared to the scaling characteristics of physio-

graphic and vegetative features in the catchment and

2) used to test variably scaled models designed to opti-

mize accuracy and computational efficiency.

5. Results

a. Solar radiation

First, the effects of solar radiation model scale were

assessed. Not surprisingly, the scaled representations of

solar fluxes had very little effect on simulated SWI

throughout the winter, when sun angles were low

(Fig. 2a). Biases and errors attributable to scale became

evident in mid-March as sun angles increased and the

role of solar energy on net energy exchanges corre-

spondingly increased. As the solar radiation resolution

was coarsened, simulations had increasingly positive

SWI biases through the first half of the primary spring
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snowmelt period (i.e., melt production greater than the

10-m simulation) as overestimated solar inputs in

shaded locations produced earlier melt. The 30-m

through 250-m simulations produced only small, brief

increases in SWI bias at the onset of springmelt prior to

becoming negligible to slightly negative in early April.

On the other hand, positive errors continued for the

500–1500-m resolutions through late April. Precipi-

tation fluxes remained constant across all scales, pro-

ducing consequent negative biases on the falling limb

of the main snowmelt period in response to the scale-

induced shifts to earlier snowmelt. The positive–negative

cycle was repeated, albeit to a much smaller degree, in

mid- to late May.

A 9-day period on the rising limb (19–27 April) and

a 17-day span on the falling limb (28 April to 14 May) of

the main spring snowmelt period were chosen to gauge

the magnitude of scale-induced errors compared to total

SWI production. These periods were roughly when

scale-induced errors were the greatest. On the rising

limb, errors/biases relative to the 10-m simulated SWI

were less than 1% for the 30–250-m simulations (Table 1).

Biases were 3%–6% for the 500–1000-m simulations and

10.3% for the 1500-m simulation. Negative bias per-

centages were of greater magnitude on the falling limb

than the positive percentages on the rising limb (Table 2).

Whereas little difference in basin-averaged simulated

SWI was seen between the 100- and 250-m resolutions on

FIG. 2. (a)–(e) Cumulative SWI errors/biases for each of the degraded forcing scenarios. The 5-day averaged 10-m

all-forcings SWI output is also included in (a) so that errors can be associated with the timing of runoff events.
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the rising limb, slight differences were evident on the

falling limb.

Since basin-averaged statistics can conceal underlying

errors, SWE and SWI distributions were also assessed.

A summary of distributed SWE errors from 24 April,

near the apex of spring snowmelt production, is pre-

sented in Table 3. The mean errors and mean absolute

errors presented in Table 3 are based on comparisons to

the 10-m product. Though only one value of SWE ex-

isted in the larger pixels, the error grid had varying er-

rors at every 10-m pixel contained in the larger pixel

based on the various 10-m values differenced from the

larger pixel value. While mean errors are reflective of

the basin-averaged results, absolute errors provide a

means of quickly assessing the role that increasing yet

counteracting spatial errors may have on the basin-

averaged analyses. In cases with similar basin-averaged

errors, the presence of higher mean absolute errors

(MAEs) is indicative of modeling weaknesses.

In the solar radiation scenarios, negative SWE biases

corresponding to the positive SWI biases observed on

the rising limb ofmelt production predominate (Table 3).

Though the absolute SWE errors at peak accumulation

leveled off as grid size increased, the basin snow volume

continued to decrease in response to the scale-induced

increases in SWI prior to peak accumulation. Decreases

in snow volume reached 7% in the 1000-m simulation and

9% in the 1500-m simulation. A precursor to the differ-

ences between the 100- and 250-m simulations that only

became apparent on the falling limb of SWI production

can be seen in their differing SWE biases.

Figure 3a presents the spatial distribution of SWI errors

for the entire month of April for the 1000-m solar simu-

lation. In the upper basin, positive SWI errors were as-

sociated with tree stands. Because of the semiarid nature

of this catchment, these tree stands are also on pre-

dominantly solar-shaded slopes. Increasingly coarser

model resolutions encompassed more south-facing, tree-

less slopes into the solar flux calculations. Smoothing in-

creased simulated fluxes in these solar-shaded domains. In

combination with the thermal enhancing forest cover still

modeled with 10-m resolution, melt rates substantially

increased in these areas. The greater the fraction of south-

facing, treeless slopes within the larger pixel was, the

greater the solar enhancement was also. These conditions

were apparent in the southwestern-most pixel in Fig. 3a.

TABLE 1. Basin-averaged SWI biases/errors on the rising limb of spring snowmelt for scaled inputs. Model scale is in the top row, the

rescaled processes are in the left column, and the period analyzed is in parentheses. Biases/errors are in millimeters and are expressed as

a percentage of cumulative totals over time period.

30m 100m 250m 500m 750m 1000m 1500m

Solar (19–27 Apr) 20.6 0.6 0.0 4.3 3.1 4.9 8.8

20.1% 20.1% 0.0% 5.0% 3.6% 5.7% 10.3%

Thermal (19–27 Apr) 20.8 22.2 25.5 28.4 28.5 29.3 211.7

20.1% 22.6% 26.4% 29.7% 29.8% 210.1% 213.6%

Wind (13–16 Apr) 0.1 0.6 2.9 4.4 5.2 4.5 4.8

0.1% 0.9% 4.5% 6.9% 8.2% 7.1% 7.5%

Precipitation and wind (13–16 Apr) 0.0 0.8 4.6 6.4 9.1 9.5 11.5

0.0% 1.2% 7.2% 10.1% 14.4% 15.0% 18.2%

All forcings (13–16 Apr) 0.8 2.1 7.4 11.6 13.6 12.2 14.8

1.2% 3.3% 11.7% 18.4% 21.5% 19.2% 23.4%

TABLE 2. Basin-averaged SWI biases/errors on the falling limb of spring snowmelt for scaled inputs. Model scale is in the top row, the

rescaled processes are in the left column, and the period analyzed is in parentheses. Biases/errors are in millimeters and are expressed as

a percentage of cumulative totals over time period.

30m 100m 250m 500m 750m 1000m 1500m

Solar (28 Apr to 14 May) 23.1 25.3 28.0 214.0 215.9 217.3 221.7

21.7% 22.9% 24.4% 27.7% 28.8% 29.5% 211.9%

Thermal (10–22 May) 1.0 2.1 5.1 11.9 14.5 16.7 24.7

1.0% 2.1% 5.1% 11.8% 14.4% 16.6% 24.5%

Wind (23 Apr to 13 May) 20.0 20.8 23.2 28.8 214.6 220.1 218.7

0.0% 20.4% 21.4% 23.9% 26.4% 28.9% 28.3%

Precipitation and wind (23 Apr to 13 May) 0.3 1.1 21.4 212.5 222.6 229.1 236.5

0.1% 0.5% 20.6% 25.5% 210.0% 212.8% 216.1%

All forcings (9–26 May) 21.2 24.8 222.0 230.7 249.1 258.1 249.2

21.0% 23.8% 217.5% 224.4% 239.1% 246.3% 239.1%
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Though not fully visible in the figure, this 1000-m pixel

included numerous south-facing, treeless features from the

southwest, windward side of the divide. The positive biases

in this pixel directly correspond with the vegetation cov-

erage. The opposite effect, negative SWI biases, occurred

on canopy-free, south-facing slopes in the upper basin

because of scale-induced decreases in solar radiation.

At the lower elevations, there was a reversal of the

trends observed at the upper elevations—slightly negative

biases on north-facing treed slopes and slightly posi-

tive biases on south-facing open slopes were present in

April. Biases at the lower elevations are a response to the

prior scale-induced biases. Where there had been biases to-

ward earlier melt (e.g., in the forest stands) snow resources

became depleted earlier, resulting in lower simulated SWIs

later. These are the reasons for the positive–negative cycles

present in Fig. 2. The first cycle corresponds to the main

melt period, and the second corresponds to the melt out

of the drifts. The lower elevations were predominantly

snow-free by late April (Fig. 3f). The April SWI biases

in Fig. 3 illustrate a catchment in transition. At the upper

elevations, melt is still predominantly energy-limited,

whereas the lower elevations have transitioned to a

mass-limited SWI condition.

b. Thermal radiation

The responses of basin-averaged SWI to coarsermodel

resolutions of the thermal radiation forcings were oppo-

site in sign and greater in magnitude to those associated

with the solar radiation forcings (Fig. 2b). As resolution

coarsened, simulated SWI was lower throughout the

winter upuntil themidpoint of spring snowmelt, when the

corresponding positive rebound occurred. The rebound

occurred later in this case as opposed to the former be-

cause of the decrease, rather than increase, of winter and

early spring melt contributions (i.e., SWI). A slight bias

associated with the December rain-on-snow events was

evident.

Biases increased in magnitude with increasing scale.

During the same 9-day period on the rising limb assessed

in the solar radiation scale experiment, negative SWI

biases were below 3% for the 100-m representation

increased to approximately 10% at 500-m resolution,

leveled off through the 1000-m simulation, and in-

creased again to almost 14% for the 1500-m simu-

lation (Table 1). Positive biases on the falling limb

(10–22 May) were similar in magnitude to the rising

limb percentages for the 30–250-m model scales but

were increasingly larger with further coarsening of

model resolution (Table 2). Consistently increasing

errors with decreasing model resolution across the

entire season were clearly evident in Fig. 2b and in the

SWE errors (Table 3).

The spatial sensitivities of simulated SWI to thermal

radiation scales were also greater and nearly opposite

those attributable to solar radiation scaling. The MAE

of the 1000-m-scaled SWE product was 104mm (40% of

mean basin SWE). The April SWI deficits were due to

lower contributions from the upper-elevation treed re-

gions (Fig. 3b). Themain energy inputs on these forested

slopes are thermal enhancement from the overlying

trees. When averaged over large pixels, incoming ther-

mal radiation is increased over the open slopes and

lessened beneath the trees. Positive/negative SWI biases

are spatially concentrated in pixels containing large/

small percentages of canopy cover. At the lower eleva-

tions the ‘‘rebound’’ from an energy-limited system to

a mass-limited system, as was seen with the solar radia-

tion scale experiment, is again evident. The low-elevation

forested areas, where greater amounts of snow were

preserved because of depressed energy fluxes, now have

positive SWI biases. The open slopes that had enhanced

energy fluxes in the larger pixel solutions have less snow

available and negative SWI biases.

c. Wind

Wind speeds affect turbulent and mass fluxes. In this

analysis, the mass fluxes were kept consistent with the

base 10-m simulation to isolate scale effects on simu-

lated turbulent fluxes. In wind-affected regions, the

TABLE 3. Basin-averaged SWEbiases/errors on 24April (SWE5 259mm), near the apex of springmelt contributions. The first number

is the error and represents the cumulative model bias across the entire catchment. The number in parentheses is the MAE, which is

representative of the average magnitude of errors at each 10-m pixel. All values expressed in millimeters.

Solar Thermal Wind Precipitation/wind All

30m 0.3 (14.5) 2.0 (28.5) 20.4 (7.3) 20.8 (33.0) 22.6 (39.8)

100m 20.8 (23.8) 5.8 (48.5) 23.4 (20.3) 27.5 (76.6) 210.7 (78.4)

250m 24.4 (35.0) 12.9 (70.9) 210.9 (40.7) 221.4 (118.3) 229.4 (109.7)

500m 210.5 (44.6) 20.5 (84.9) 217.5 (55.9) 235.8 (143.2) 238.9 (129.1)

750m 212.5 (47.3) 26.2 (97.4) 223.0 (64.2) 250.0 (152.3) 252.1 (140.3)

1000m 217.1 (52.1) 32.3 (104.0) 220.4 (72.0) 252.4 (165.8) 247.6 (152.8)

1500m 223.7 (52.1) 42.3 (105.2) 223.4 (69.1) 270.3 (169.6) 249.1 (164.5)
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resolution of effective precipitation rates is limited by

wind field resolution. However, in areas where wind has

little effect on snow accumulations, precipitation rates

can often be resolved with greater detail than can wind

fields. This is due to the fact that wind observations are

frequently sparser than precipitation observations and

often fail to capture the gradient of variability. The

following analysis addresses these situations. Isolation

of the turbulent flux scale effects will also aid in inter-

preting the subsequent analysis in which wind and pre-

cipitation scalings are jointly considered.

Similar to the solar radiation scaling effect on basin-

wide SWI, simulated SWIs forced by coarsened wind

fields were positively biased through the season until the

system became mass limited (Fig. 2c). The changeover

occurred slightly earlier than in the case of solar energy

because of the stronger role turbulent exchanges have in

affecting melt during the winter months. Model resolu-

tion did play a slight role in affecting simulated SWI

during the December rain-on-snow events. Biases dur-

ing the rain-on-snow events, however, were small com-

pared to runoff magnitudes. At the basin scale, the 30-m

simulation produced nearly identical results to the 10-m

solution. The 100-m simulation was also very close to

the 10-m product. Bias and errors noticeably increased

as scale increased to 750m. The 750- and 1000-m

FIG. 3. (a)–(e) Distribution of April SWI errors and (f) the 10-m simulated SWE distribution on 24 April. The errors reflect the

sensitivity of SWI to 1000-m model-scaled forcings for the respectively titled forcing(s). The outlined boxes are the 1000-m pixels. Errors

were calculated on the 10-m grid.
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simulations were nearly identical at the basin scale until

errors became more pronounced at the 1000-m resolu-

tion on the falling limb of melt production. In fact, dis-

similarities in the 750–1500-m products were small

(Tables 1–3), with different configurations performing

better/worse at different times in the season (Fig. 2c).

Errors on the rising limb of spring snowmelt (13–

16 April) were less than 5% for the 30–250-m model

scales and less than 9% for the coarser resolutions

(Table 1). Similar errors were found on the falling limb

(23 April to 13 May)—less than 5% for the 30–500-m

model scales and less than 9% for the coarser resolutions

(Table 2). SWE biases, similar to the SWI trends, were

increasingly negative as model resolution coarsened to

750m and then leveled off (Table 3).

Similar to the prior analyses, distributed cumulative

SWI errors in April depict energy-limited conditions at

the upper elevations and mass-limited conditions at the

lower elevations (Fig. 3c). In the upper basin, positive

SWI biases can still be observed on wind-sheltered lee

slopes and forested locations where simulated wind

speeds increased with decreasing model resolution. The

opposite effects were present on wind-exposed slopes.

Positive biases are accentuated on the predominant lee

slope in the southwestern part of the catchment. The

majority of terrain covered by this particular pixel con-

sists of wind-exposed terrain (upwind of the Dobson

Creek catchment and not visible in the figure), causing

a sharp increase in simulated wind speeds and earlier

melt. DuringApril, themidelevations were transitioning

to a mass-limited system, whereas the lower elevations

are already showing evidence of the crossover. At the

lower elevations, negative biases were found on leeward

slopes and positive biases were found on windward

slopes.

d. Precipitation and wind

In this scenario, wind speeds and effective precipi-

tation forcings (including wind effects on snow accu-

mulations) were simultaneously degraded with all other

forcings maintained at 10-m resolution. These two pro-

cesses were considered together based on the reasoning

that wind speed resolution ultimately determines the

degree to which wind-affected snow accumulations can

be resolved.

It should be noted that in this scenario, precipitation

mass was not conserved. The upper Dobson Creek

catchment is predominantly east facing and therefore

lee slopes predominate. As pixel sizes increased, pixels

overlapped the westernmost catchment boundary. Lee

slope drift areas in this region became subpixel features

alongwith the windward slopes upwind of the catchment

boundary. The pixel-averaged effective precipitation

values were correspondingly lower, resulting in lower

effective precipitation rates and SWI. This effect was

more pronounced as scale increased to include in-

creasing amounts of wind-exposed terrain in the effec-

tive precipitation calculations. These effects can be seen

in the resultant negative SWI biases at the end of the

simulations (Fig. 2d).

The pattern of positive SWI biases through the ap-

proximate halfway point of spring meltout followed by

the consequent response toward negative biases was

again evident (Fig. 2d). Throughout the winter until the

onset of spring melt, the temporal traces of SWI biases

for all but the 1500-m solution were nearly identical

to the wind-only simulations (Fig. 2c). The 1500-m

precipitation–wind simulation retained a similar shape

to wind-only simulation but had slightly greater errors.

Subsequent to the onset of spring melt, errors were ac-

centuated in the wind–precipitation scenarios compared

to the wind-only ones. During the energy-limited phase,

SWI was more sensitive to wind scale and, as the transi-

tion to amass-limited system took place, the scaling of the

precipitation inputs took precedence.

At the basin scale, SWI biases attributable to the 30-

and 100-m wind–precipitation products were very low.

There was a slight loss in the ability to resolve drifts in

the 100-m simulation as evidenced by the slight drop in

seasonal SWI. As mentioned, biases prior to the spring

melt peak were similar to the wind-only scenarios for all

but the 1500-m model. Biases consistently increased

with coarsening model resolution on the falling limb

as modeling capabilities of resolving drift zones di-

minished. This can be seen in the increasingly negative

end-of-season SWI biases (Fig. 2d). Though seasonal

mass deficits were minor compared to seasonal inputs

(e.g., 3% loss for the 1500-m simulation), the inability to

resolve the drift zones strongly affected SWI biases from

late April through early June.

During a 4-day period (13–16 April) when positive

biases were highest, basinwide SWI errors for the 30–

500-m resolutions ranged from 0.0% to 10.1% (Table 1).

Errors on this rising limb were 14.4%–18.2% for the

750–1500-m model scales. Though there were many

similarities in the basin-scaled SWI traces for the

wind-only and wind–precipitation scenarios prior to

spring snowmelt, rising limb SWI errors for the wind–

precipitation scenarios were all greater over this 4-day

period. The 1000- and 1500-m simulations had a greater

than twofold increase in errors compared to the wind-

only scenarios. On the falling limb (23 April to 13 May),

errors were negligible for the 30–250-m forcings (,1.0%)

and increased in magnitude as grid sizes increased be-

yond 250m to 16.1% for the 1500-m product (Table 2).

The poor performance in late spring of the coarser
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resolutions is clearly foretold in the 24April SWE errors

(Table 3). Mean SWE errors were 219%, 220%, and

227% for the 750-, 1000-, and 1500-m resolutions,

respectively.

The main impact of the rescaling of the effective

precipitation forcings was a smoothing of the snow

distribution. This is apparent in the lower elevations

experiencing mass-limited conditions in April. SWI

inputs inApril weremuch higher in the degraded wind–

precipitation scenarios than the 10-m run on lower-

elevation, wind-exposed slopes (Fig. 3e). These slopes,

which typically accumulate very little snow, received

greater amounts of snow as the process scale was ex-

ceeded. When energy fluxes increased in spring, more

snow was available to melt. The inverse, negative

SWI biases are apparent on lee slopes in the lower

catchment. In April, the upper elevations were pre-

dominantly in an energy-limited stage. The high simi-

larity in SWI biases at the upper elevations depicted in

Fig. 2c (wind only) and Fig. 2d (wind–precipitation)

show that in April the main scale-induced influence on

SWI in this region was due to wind-scale-affected tur-

bulent energy fluxes. Though not depicted here, the

positive SWI biases on wind-exposed slopes and neg-

ative SWI biases on wind-sheltered slopes observed at

the lower elevations in April were observed in May at

the upper elevations when that region transitioned to

a mass-limited system. Precipitation and wind-based

scale effects were spatially consistent, and their com-

bination strongly influenced simulated SWI and dis-

tributed SWE. The 24 April mean and mean absolute

SWE errors were generally 2–3 times greater in the

precipitation–wind scenarios than in the wind-only

scenarios (Table 3).

When model resolution is no longer capable of re-

solving process-based heterogeneity, model perfor-

mance is diminished. Judging from the results, there was

some evidence of a loss of snowdrift information oc-

curring at the 100-m scale, as evidenced by the small

end-of-season bias. Basin-averaged SWI errors for the

100-m simulation, however, were very small (,2%)

throughout the peak snowmelt period. Substantial dif-

ferences between the 100- and 250-m solutions, though

not observed so much on the falling limb, were observed

throughout the rest of the season. Mean SWE errors

were 27.5mm for the 100-m simulation and 221.4mm

for the 250-m simulation. Negative SWI biases in mid-

May for the 250- and 500-m scaled solutions were lim-

ited (e.g., the less dramatic slopes in Fig. 2d), indicating

that some drift information was maintained at these

resolutions. Once the model scale extended to 750m

and beyond, there was little, if any, drift information

remaining.

e. All forcings

In this evaluation, all of the ISNOBAL forcings—net

solar radiation, downwelling thermal radiation, wind

speed, effective precipitation, air temperature, vapor

pressure, and soil temperature—were simultaneously

degraded. In general, this is the most common situation

encountered in applied modeling. As was evident in all

of the prior independent process analyses except for

thermal radiation, scale degradation again produced

basin-averaged SWI that had a positive bias throughout

the winter up until approximately the springtime peak of

snowmelt-produced SWI (Fig. 2e). The positive bias

noticeably increased as model scale increased through

500m. Differences between the 500–1500-m simulations

were less pronounced and exhibited inconsistencies

during the spring melt period. The inconsistencies are

probably an effect of themany interacting scale-affected

processes. After the peak, there was a consequent neg-

ative bias in simulated SWI due to the lack of available

snow volume caused by the prior accentuated melt.

The positive biases were accentuated during the rain-

on-snow events in late December and again during the

onset of the spring melt period. Large differences were

observed between the 100-, 250-, and 500-m simulations.

During a 4-day period on the rising limb of spring melt

(13–16 April, the same as evaluated in the precipitation

and wind scenarios), there was only a 3.3% bias for the

100-m simulation, which rose to 11.7% for the 250-m

simulation and 18.4% for the 500-m simulation (Table 1).

Errors were all in the 20% range for the 500–1500-m

simulations. During an 18-day period on the falling spring

snowmelt limb (9–26 May), the biases had greater mag-

nitudes with SWI shortages near 40% for the 750- and

1500-m simulations and over 45% for the 1000-m simula-

tion (Table 2). The 100-m simulation remained within 4%

of the 10-m simulation while the 250- and 500-m simula-

tions had respective differences of 17.5% and 24.4%.

Distributed SWE errors were expectantly high, yet

comparable to and sometimes less than the precipitation–

wind scenarios (Table 3). The 24 April SWE errors are

comparable because of the offsetting effects of the de-

graded thermal (less winter melt), solar (more), and wind

(more) forcings during the preceding period. As the

solar fluxes started to dominate the radiation balance,

scale-induced radiation effects reinforce the precipitation–

wind biases and errors increased in magnitude through-

out the spring in the all-forcings scenarios.

The positive SWI biases in April were concentrated

on wind-exposed, treeless slopes in the lower basin and

on the lee slopes at the head of the catchment (Fig. 3e).

On wind-exposed slopes, coarsening model resolutions

caused simulated snow accumulations to increase, wind
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speeds to decrease, and thermal radiation to increase

when tree stands were also present in the pixel. The

effect of the increased snow accumulations can be

readily seen in the mass-limited conditions at the lower

elevations. The only complete 1000-m pixel depicted in

Fig. 3e shows these effects just starting to influence SWI

higher up in the basin. In the energy-limited environ-

ment at the upper elevations, increased thermal fluxes

on open slopes and increased turbulent fluxes on lee

slopes produced positively biased SWI. Negative SWI

biases in April occurred in directly contrasting condi-

tions but were not as widespread. Low-elevation lee

slopes had negative biases due to scale-induced de-

creases in snow accumulations while canopy stands at

the higher elevations had negative biases due to scale-

induced decreases in downwelling thermal radiation.

Comparisons of Figs. 3a–e provide interesting insights

into the complexities of how the scale-affected control-

ling processes ultimately affected snowmelt patterns.

6. Discussion

Prevailing winds during storms in this catchment, as

they are throughout most of the western United States,

are out of the southwest. These winds accentuate snow

deposition on north-facing, solar-shaded slopes while

reducing accumulations on south-facing, solar-exposed

slopes. This establishes a snow environment where ac-

cumulations and energy fluxes are negatively correlated.

Snow preferentially accumulates on slopes with low net

energy inputs while less snow accumulates on slopes

with high net energy inputs. The latter areas have

a greater likelihood of producing melt throughout the

winter and early spring. Relatively warmer snowpacks,

susceptible to producing melt in response to additional

energy inputs, are also present beneath the forest can-

opy. There, the additional thermal radiation emitted by

the forest canopy effectively constrains nighttime radi-

ational cooling.

Model performance was most sensitive to the model

scale of the effective precipitation inputs. The scale-

induced smoothing put more snow on slopes with high

energy fluxes and less snow in low-energy zones. Clow

et al. (2012) came to similar conclusions that SNODAS,

a 1000-m grid scale model developed by the U.S. Na-

tional Weather Service, had difficulties simulating SWE

on wind-affected slopes. The smoothed mass fluxes led

to earlier simulated melt and a higher spring snowmelt

peak. The scale-induced reduction of snow in enhanced

accumulation zones led to reductions in simulated SWE

and SWI after the spring snowmelt peak. While scale-

induced smoothing of the energy inputs produced both

earlier (e.g., solar radiation and turbulent fluxes) and

later melt (e.g., thermal radiation), the net effect of in-

creasing model scales was dominated by precipitation

distributions which shifted the system toward earlier

melt. The shifts toward earlier melt were due to the

negative correlation of mass and energy fluxes. In regions

with similar accumulation heterogeneities and posi-

tively correlated mass and energy fluxes, scale-induced

smoothing would be expected to delay snowmelt as

greater mass is shifted into low-energy areas. In regions

with lower accumulation heterogeneities, shifts might not

be as straightforward as scale-induced biases attributable

to the energy fluxes become more prominent.

Semivariogram analyses were conducted to assess

1) how the modeled snow variability and scale behavior

in this study compared to observations from other

mountain sites and 2) if the observed sensitivities to

forcing data resolution could be related to physiographic

properties. The latter assessment provides a foundation

for the results presented here and as a potential guide for

making a priori scaling decisions in other catchments.

The presented analysis is akin to, but less extensive than,

that presented by Deems et al. (2006). Omnidirectional

log–log semivariogram plots were evaluated to broadly

estimate scale breaks and fractal dimensions D. Fol-

lowing the protocols laid out in Deems et al. (2006),

nonstationarity in the data was not removed and log-

width bins were used to improve definition of scale be-

havior at short lag distances. Scale breaks, indicative of

distinct changes in process behavior and its spatial or-

ganization, were identified by visual disparities in the

linear (power law) response of semivariance to scale.

Where appropriate for interstudy comparisons, D was

estimated from the slope of the linear segments (D5 32
b/2, where b is the slope). In this three-dimensional space,

D will vary between 2 (an unvarying flat surface) and 3

(completely random, highly heterogenic structure).

The semivariogram for modeled SWE at upper

Dobson Creek on 18 March is depicted in Fig. 4a. This

date was selected because it had the maximum basin-

wide SWE prior to the onset of spring melt with 99% of

the catchment area snow covered. The presented anal-

ysis covers lag distances of up to 1200m (117 bins)—

approximately half of the maximum cross-stream width

of the basin—to concentrate on the scale issues relevant

to the already presented findings. A scale break, in-

dicated by the break in power-law fits (the linear seg-

ments in the log–log plot) between 50 and 100m was

inferred from this plot with a short-range D of 2.55 and

a long-rangeD of 2.88 (Fig. 4a). Deems et al. (2006) and

Trujillo et al. (2007) respectively determined scale

breaks from high-resolution lidar snow-depth data of

15–40m and 7–45m at several 1 km2 Colorado research

sites. The longer scale break found in this study is
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indicative of similarities existing over greater distances.

This observation, however, may in fact be related to the

differences in the spacing of observations (10-m model

elements and nominal 1.5-m lidar spacing) rather than

differences in the snow distributions. There is in-

sufficient data in the 10-m product to adequately resolve

scale breaks of less than 30m (e.g., Fassnacht and

Deems 2006). Snow-depth fractal dimensions approxi-

mated by Deems et al. (2006) varied between 2.47 and

2.48 for the short-range D (i.e., shorter than the scale

break) and between 2.91 and 2.97 for the long-range D

(i.e., longer than the scale break). Given similar snow

distributions and similarly scaled observations, fractal

dimensions for SWE, however, should be lower than

depth fractal dimensions because of the greater spatial

coherence of snow density (Elder et al. 1991). The

higher short-range D found in this analysis of SWE

might also be related to the differing observation scales.

While these direct quantitative comparisons are obvi-

ously affected by the differing observation scales, it can

still be generally stated that the scaling characteristics of

the modeled snow distribution are comparable to ob-

servations from similar wind-affected sites.

There were considerable shifts in simulated SWI and

SWE observed across varying scales for the analyzed

processes in the presented results. As process resolution

coarsened, the earliest notable upticks in SWI and SWE

errors are the most likely points where model and pro-

cess scales first becamemismatched. Precipitation, wind,

and thermal radiation displayed substantial upticks in

errors and biases between the 100- and 250-m solutions,

as did the all-forcings scenario. SWI and SWE sensitivity

to solar radiation model scales escalated between the

250- and 500-m solutions, with some differences be-

tween the 100- and 250-m solutions becoming apparent

after the spring melt peak. Precipitation and wind

FIG. 4. (a) Log–log semivariograms for ISNOBAL-simulated SWE on 24 April, (b) the Sx terrain parameter

focused on the prevailing wind direction of 2358, (c) canopy heights derived from lidar point clouds, and (d) cu-

mulative modeled April net radiation fluxes to the snowpack. Lines are linear least squares fits to visually delineated

segments.
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forcings were both dependent on the Sx terrain variable

(Winstral et al. 2009, 2013). The semivariogram for Sx

derived for the prevailing wind direction of 2358 in-

dicated a scale break between 100 and 250m (Fig. 4b).

This break directly corresponds to the model-determined

scale break for wind but was slightly greater than the

model-determined SWE scale break. Whereas winds are

100% reliant on the Sx variable, effective precipitation is

also influenced by the Sb terrain variable (Winstral et al.

2013). The variable Sb is a binary variable that delineates

drift regions that highly influenced the effective precipi-

tation distributions in this catchment. A better, though

more comprehensive, means of delineating the model-

based break in SWE distribution would be an analysis of

the cumulative precipitation forcings. These latter data,

however, are not available a priori. Prior distributions

can be an effective tool when snow distributions exhibit

interannual consistency (e.g., Deems et al. 2008), but

may be prone to errors when distributions exhibit non-

stationarity (e.g., Pomeroy et al. 2006).

A semivariogram of tree heights was constructed from

recently acquired lidar data (Fig. 4c) coarsened to 10m

to match the base model scale. The initial scale break

appears to occur between 100 and 180m. A more dis-

tinct break can be seen at approximately 600m. Model

sensitivity to scaling of the thermal radiation inputs,

which are heavily influenced by canopy cover, similarly

exhibited a break in scaling behavior between 100 and

250m. No particular changes in model behavior were

evident around the larger-scale break. In the case of

solar scaling, semivariograms of northness and cumula-

tive solar loadings were analyzed. The first break in scale

for northness occurred around 500m (not shown),

whereas the modeling sensitivity indicated potential

breaks between 100, 250, and 500m. The semivariogram

of cumulative solar loadings through 1 April (Fig. 4d)

did exhibit a scale break between 200 and 240m com-

mensurate with the modeling results. The solar loadings

also had scale breaks at 600 (probably associated with

the vegetation distribution) and 1000m. Breaks at 95

and 480m were apparent, but not as clear cut. The oc-

currence of numerous scale breaks is most likely due to

the various factors (e.g., canopy cover, terrain, sun an-

gle, and cloudiness) and their stochastic interactions that

ultimately control solar radiation fluxes.

One conclusion that can be drawn from this work is

that if a single model scale were chosen to best predict

basin runoff in this catchment while conserving com-

putation times, it would be 100m. Though it was shown

that SWE distributions were compromised at this reso-

lution, there was very little change in the timing and

magnitudes of SWI production. This was due to the fact

that both positive and negative SWE errors occurred in

close proximity to one other. Whereas the SWE distri-

bution on 24April had anMAE of 78.4mm in the 100-m

all-process model run, MAE was reduced by over 75%

to 18.6mm when all errors within 100m of each 10-m

pixel were averaged. The proximity of surpluses and

deficits indicates that these SWE errors probably oc-

curred in zones with similar energy fluxes and stream

connectivity that limited effects on basin runoff. In re-

gions with more or less complex snow and vegetation

distributions, further analysis would be required before

selecting an appropriate and optimal model scale.

Based on the prior results, models with varying scales

were designed in an effort to further reduce computa-

tional costs from the all-forcings 100-m simulation. Since

all of the process sensitivities had substantial accuracy

losses when model resolution was increased from 100 to

250m during the spring snowmelt period, the effort was

focused on the effects of degraded winter model reso-

lutions. Effective precipitation and associated wind

speeds and vapor pressures that were used to determine

precipitation type (Marks et al. 2013) and thus wind-

affected snow accumulations were kept at 100-m reso-

lution throughout the season. Radiation fluxes were

modeled with 250-, 500-, and 1000-m resolution through

1 March. After 1 March, all forcing model resolutions

were set to 100m to best capture energy fluxes during

the spring melt period. These three scenarios are re-

spectively labeled 250m/100m (winter/spring resolu-

tions), 500m/100m, and 1000m/100m in the associated

figures and table.

In terms of basin-averaged SWI, the 250- (labeled

250m/100m in Fig. 5) and 500-m (labeled 500m/100m)

winter model resolutions actually outperformed the

100-m (labeled 100m/100m) simulation during the win-

ter but had slightly higher spring SWI on the rising limb.

Rising limb (4 April to 11 May) cumulative SWI for the

250-m winter simulation was only 0.5mm greater than

the 100-m all-forcings SWI (cumulative SWI during

period was 377mm), while the 500-m winter simulation

was 1.3mm higher and the 1000-m winter (labeled

1000m/100m) was 10.0mm higher (Table 4). Basin-

averaged SWI in the 1000-m winter simulation was bi-

ased toward later melt through the winter leading to the

greater rising limb SWI errors. All three models were

heavily influenced by the scale of the thermal radiation

forcings. Winter SWI production had greater sensitivity

to the scaling of thermal radiation inputs than to that of

solar radiation forcings (Figs. 2a,b). Negative biases

associated with the 250- and 500-m scaled thermal ra-

diation compensated for scale-induced positive biases

associated with all the other processes. At 1000m the

increasingly negative thermal bias became the dominant

flux. Though basin-averaged SWE and SWI errors were
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improved with the 250- and 500-m winter forcings, dis-

tributed SWE errors on 24 April increased (Table 4).

Compared to the 100-m all-forcings simulation, all SWE

MAEs for the rescaled winter forcings increased. These

increases however, were all less than 15mm.

The 250- and 500-m winter forcings were retained in

the following scenarios. Instead of 100-m springtime

radiation fluxes, this time 250-m forcings were used

(labeled 250/250 and 500/250, respectively, in Fig. 5). In

both these latter cases, basin-averaged SWI performed

slightly better, but SWE errors slightly increased (Table

4; Fig. 5). The next step was to pair the 250-m winter

forcings with 250-m solar radiation fluxes and 100-m

thermal radiation fluxes after 1 March to isolate the

solar influences on snowmelt (labeled 250/100m solar1
250m thermal). The higher-resolution springtime solar

forcings (100m) actually decreased model performance

on the rising limb compared to the 250-m resolution

solar forcings (Fig. 5), despite the fact that the latter

introduced greater bias in the earlier sensitivity analysis

(Fig. 2a; Tables 2, 3). The degradation of the represen-

tation of solar fluxes, however, can be masked at the

basin scale by similar degradation of processes that in-

troduce a compensating bias. This points out the im-

portance of acutely assessing scale-related biases and

impacts before broad-scaled assumptions are made.

Computational savings can be garnered through the

winter; however, prudence is advised in using model

scales greater than 100m for any of the forcing pro-

cesses during the spring melt period in catchments such

as these.

Before concluding this work, it is important to make

several points. All of the rescaling in this work was

based on an averaging of 10-m pixels. As a result, there

was some retention of information from the higher-

resolution solutions within the rescaled products. Scale-

induced biases and errors would in all likelihood be

greater when starting with lower-resolution data such as

a 100-m DEM. Snow interception losses, an important

control on snow accumulations in many other environ-

ments, were not addressed in this study. The sensitivities

to air temperature were also not directly addressed.

Rescaling of air temperatures would have necessitated

recalculating thermal radiation fluxes and precipitation

phase at every rescaling step, which was not possible

within the time constraints of this project. Air temper-

atures rescaled independently of their effect on thermal

radiation fluxes and precipitation phase were shown to

have very little effect on runoff production in a more

extensive analysis conducted in this basin (Winstral

2011). In that study, it was shown that during spring

snowmelt large grid cells containing a large range of

elevations were biased toward lower melt at the lower

elevations and higher melt at the upper elevations. This

could be a larger issue at the even larger grid resolutions

associated with regional- and continental-scale model-

ing. This analysis was conducted over a relatively small,

first-order watershed where snow distribution and melt

fluxes are highly heterogeneous and strongly connected

to runoff. While these characteristics are often encoun-

tered throughout the Great Basin region of the western

TABLE 4. Rising limb SWI (4 Apr to 11May) and SWE (24 Apr)

errors for the optimized simulations (roman) with reference to the

earlier presented 100- and 250-m all-forcings simulations (itali-

cized). In the optimized versions, only the winter (before 1 Mar)

and spring (after 1 Mar) thermal and solar radiation scales were

adjusted as outlined in the first column.

Winter/spring radiation

resolutions

SWI error

(mm)

SWE error

(mm)

SWE MAE

(mm)

100m/100m 6.8 210.7 78.4

250m/250m 20.7 229.4 109.7

250m/100m 7.3 29.7 87.5

250m/250m 5.1 29.2 94.7

250m/100m solar 1 250m

thermal

11.0 213.1 84.1

500m/100m 8.1 26.7 92.7

500m/250m 6.0 26.2 99.3

1000m/100m 16.8 23.4 92.1
FIG. 5. Cumulative SWI error plots for the optimized, variously

scaled radiation forcings. The numbers before the slash represent

grid resolutions for the solar and thermal radiation forcings prior to

1 March; the numbers after the slash represent the radiation forc-

ings for the subsequent period. The 100m/100m plot is repeated

from Fig. 2 for comparative purposes. The 250-m all-season solar

and thermal fluxes actually reduced SWI errors compared to the

100-m all-season and 250m/100m scenarios and were much better

than the combined 250m/100m solar 1 250m thermal simulation.

As model scale increased beyond the process scale for the thermal

fluxes, negative SWI biases increased, which compensated for the

positive errors introduced by increased model scaling of the solar

radiation flux.
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United States, vastly different environments will in all

likelihood exhibit dissimilar characteristics. The relative

impacts of the process-based model scales on catchment-

wide snowmelt and streamflow are also likely to be dif-

ferent when evaluated over larger domains.

7. Conclusions

Mismatched model and process scales had a pro-

nounced impact on distributed mass- and energy-balance

snow simulations. At this study site, where mass and en-

ergy fluxes are negatively correlated, there was an overall

trend toward earlier melt when model resolution excee-

ded process-scale heterogeneity. As increasing pixel sizes

further smoothed natural heterogeneities, the dominant

effect was greater amounts of snow in high-energy zones,

less snow in low-energy zones, and consequent earlier

melt and late season water deficits. Simulations run with

all processes modeled at 30m were nearly identical to

10-m realizations. Though there was some loss of ac-

curacy at 100-m resolution, the simulations maintained

the hydrologically relevant features of the SWE dis-

tribution with errors on the rising and falling limb of the

spring snowmelt period less than 4% MAE. As model

scale increased to 250-m and larger, errors increased.

The 1000-m simulation overpredicted the rising limb by

19% and underpredicted the falling limb by 46%.

The sensitivity of snow simulations to the resolution of

the primary forcing processes affecting accumulation and

melt in this basin—wind-affected snow accumulations,

wind speeds, solar radiation, and thermal radiation—

varied by process and time of year. These are important

considerations for designing models, interpreting re-

sults when scale mismatches are unavoidable, and for

reducing computational costs. Model scales for the

dominant controls on accumulation in this basin—wind

and effective precipitation—needed to be maintained

at 100m to preserve hydrologically relevant features.

Snow simulations were less sensitive to the scaling of

the solar (scale-biased toward earlier melt) and ther-

mal (scale-biased toward later melt) forcings especially

through the winter. The radiation fluxes could be fur-

ther degraded through the winter months (October–

March) with onlyminor effects on accumulation andmelt

patterns. During the spring melt period simulations

forced with 100-m grid resolutions across all forcings

were consistent with the 10-m product with daily vol-

umes estimated to within 4%. It was shown that further

coarsening of model resolution, beyond which process

representations were shown to degrade, could actually

improve basin-averaged simulations as thermal and solar

radiation biases balanced one another. This highlights the

importance of rigorously assessing scale-related biases

and impacts in all complex, physically based model ap-

plications. Process-level inadequacies can be masked in

broader analyses. Furthermore, biases and errors can

have spatiotemporal tendencies such that the findings

presented here may not apply in different environments.

The model-based sensitivities to scale are likely re-

lated in some degree to physiographic and vegetative

structures. These relationships could facilitate modeling

choices in other regions. The distribution of a terrain

variable used in the wind distributions captured the

model-discerned scale break associated with the wind

forcings. Canopy structure, because of its patchy distri-

bution, has a strong influence on the radiation budget. A

semivariogram of tree heights pointed out a scale break

at the same lag distance observed in the thermal radia-

tion scaling analysis. A priori discernment of the effec-

tive precipitation and solar scale breaks proved a little

more difficult. A priori scale decisions for these latter

processes could come from snow observations and

modeling solutions.

This work illuminates many details of the underlying

sensitivities of model performance to the commonly

applied model scales associated with small watershed to

river basin hydrologic modeling—scales imposed by

available data sources and computational requirements.

It was found that though some analyses were straight-

forward, the complex and dynamic nature of process

interactions that affect snow distribution and melt can

also lead to improved results for the wrong reasons. This

was a complex analysis of processes and scales in one

small catchment. Future work will assess scale depen-

dencies in other environments. There are several ques-

tions to be answered: 1) How are observed scale breaks

related to topographic gradients?; 2) How are observed

scale breaks related to vegetation structure?; and 3) How

are observed scale breaks related to the dominant con-

trols on accumulation and melt? In regards to snow dis-

tributions, there have been both similar observations on

the effect of topographic gradients (Deems et al. 2006;

Shook and Gray 1996) and dissimilar observations on the

role of vegetation and topography (Deems et al. 2006;

Trujillo et al. 2007). Another important aspect is to as-

certain the importance of these process-based scale as-

sessments in larger regional to continental models. Future

work will look at these issues from amodeling perspective

to further guide model applications and interpretation

across a wide range of environments.
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