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Abstract. Flood forecasting increasingly relies on numeri-
cal weather prediction forecasts to achieve longer lead times.
One of the key difficulties that is emerging in constructing
a decision framework for these flood forecasts is what to
dowhen consecutive forecasts are so different that they lead
to different conclusions regarding the issuing of warnings or
triggering other action. In this opinion paper we explore
some of the issues surrounding such forecast inconsistency
(also known as “Jumpiness”, “Turning points”, “Continu-
ity” or number of “Swings”). In thsi opinion paper we de-
fine forecast inconsistency; discuss the reasons why forecasts
might be inconsistent; how we should analyse inconsistency;
and what we should do about it; how we should communicate
it and whether it is a totally undesirable property. The prop-
erty of consistency is increasingly emerging as a hot topic in
many forecasting environments.

1 Introduction

Flood forecasting increasingly relies on numerical weather
prediction (NWP) forecasts to achieve longer lead times (see
Cloke et al., 2009 and Cloke and Pappenberger, 2009). One
of the key difficulties that is emerging in constructing a de-
cision framework for these flood forecasts is what to do
when consecutive forecasts are so different that they lead
to different conclusions regarding the issuing of warnings
or triggering other action. In this opinion paper we explore

Correspondence to:F. Pappenberger
(florian.pappenberger@ecmwf.int)

some of the issues surrounding such forecast inconsistency
(also known as “Jumpiness”, “Turning points”, “Continu-
ity” or number of “Swings”; Zsoter et al., 2009; Mills and
Pepper, 1999; Lashley et al., 2008). We begin by defin-
ing forecast inconsistency; discuss the reasons why forecasts
might be inconsistent; how we should analyse inconsistency;
and what we should do about it; how we should communi-
cate it and whether it is a totally undesirable property. The
property of consistency is increasingly emerging as a hot
topic in many forecasting environments (e.g. for a discus-
sion on NWP inconsistency see Persson, 2011). However,
in this opinion paper we restrict the discussion to a hydro-
meteorological forecasting chain in which river discharge
forecasts are produced using inputs from NWP. In this area
of research (in)consistency is receiving recent interest and
application (see e.g. Bartholmes et al., 2008).

1.1 What is (in)consistency?

Forecast consistency refers to the degree to which two fore-
casts agree about the magnitude, onset, duration, location
or spatial extent of a given event. In hydrological forecast-
ing we are typically interested in comparing the degree of
consistency between consecutive point or grid based fore-
casts of river discharge from the same model issued at dif-
ferent times. However with the emergence of ensemble and
grand-ensemble techniques (Pappenberger et al., 2008), this
involves assessing the consistency between forecasts made
for the same location and time for different model set-ups and
iterations, though as we discuss below, ensemble methods
lead to further complications. If forecast consistency is the
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Fig. 1. Four different forecasts are shown issued on the (i) 24, (ii) 25,(iii) 26 and (iv) 27 March for a station along the river Severn
(hypothetical case). The dashed line indicates the observations. The solid area represents a warning threshold. A flood alert would be issued
in case (i) and (ii).

degree of agreement between two different forecasts made
for the same future point in time, forecast inconsistency oc-
curs when sequences of (temporally) consecutive forecasts
of a variable develop differently and so exhibit a change in
behaviour in some way from one another about their predic-
tions of what is going to happen.

1.2 Deterministic flood forecasts

In Fig. 1 this is illustrated for a (deterministic) forecast show-
ing inconsistency in the magnitude of forecasted peak dis-
charge for a hypothetical case. These forecasts are from the
same model with the same structure and equations. The fig-
ure shows four different forecasts for station X issued on the
24, 25, 26 and 27 March. The dashed line indicates the ob-
servations and the solid area represents a warning threshold.
The first forecast (i) indicates a possibility of a flood on the
30 March and has a very clear signal, in terms of threshold
exceedance, on 1 April. In the next forecast (ii), issued on
25 March, the threshold exceedance signal has disappeared.

Forecasted river levels exceed warning levels again in the
forecast issued on 26 March (iii), but one/two days later,
while the forecast (iv) issued on 27 March does not predict
flooding. As is typical for many flood forecasting systems,
in our case a flood warning is issued depending on whether
(or not) a river discharge is exceeded (see Fig. 2).

Table 1 shows a typical forecast overview diagram for our
hypothetical case. The rows indicate the date and time that
the forecast was issued and the columns indicate the date for
which the forecast was issued. As the table clearly shows
there is inconsistency between the forecasts, and river dis-
charge threshold exceedance is variously forecast to occur on
both 30 March and 1 April, on either date or neither. Hence
inconsistency is demonstrated in the timing of the flood event
as well as whether the event happens at all.

While this kind of (in)consistency in forecasts of threshold
exceedance might be dismissed merely as a statistical artefact
of translating continuous forecasts into binary yes/no cate-
gories for given dates and times, it is one that operational
forecasters are acutely conscious of, both because threshold

Hydrol. Earth Syst. Sci., 15, 2391–2400, 2011 www.hydrol-earth-syst-sci.net/15/2391/2011/
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Table 1. Inconsistent threshold exceedance according to Fig. 1. The rows indicate the date and time that the forecast was issued and the
columns indicate the date for which the forecast was issued.

Forest day 23 24 25 26 27 28 29 30 31 1 2 3 4

22 March

23 March X X

24 March X

25 March

26 March X X

27 March

28 March X X

29 March

30 March X

31 March X
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Fig. 2. Threshold exceedance on the example of a forecast issued
by the European Flood Alert System. In the top figure, the blue
line represents a single deterministic forecast. The plot shows three
different warning levels (green, yellow and red). The threshold ex-
ceedance of the green level is shown in the table plot underneath.
When an ensemble of forecasts is used (rather than just one deter-
ministic forecast) the number of ensemble members exceeding the
threshold level would be also shown in the table plot.

exceedance is the primary basis by which skill scores and
the operational performance of the forecasting centre are as-
sessed and because threshold exceedance also serves as trig-
gers for warnings and other management responses to flood
forecasts. Thus (in)consistency in forecasts of threshold ex-
ceedance is an issue of real concern for forecasters. However,
it is not the only kind of (in)consistency that might be of in-
terest. Though less commonly considered, (in)consistency
could also be related to other hydrograph properties such
as the length of time the water level stays above (or be-
low) the threshold or the magnitude by which some threshold
is exceeded.

1.3 Ensemble flood forecasts

Further complexity is added by the combination of various
forecasts into ensemble forecasting systems. Many mod-
ern flood forecasting systems rely not only on deterministic
forecasts, but also on ensemble forecasts (and a combination
thereof). In this situation, in addition to the above mentioned
definitions, it is necessary to define inconsistency thresholds
based on the number of ensemble members1 (either in the
form of frequency or probability) over a warning discharge
threshold for a given location.

Consider the example of an alert chart from the European
Flood Alert System (Table 2). As in Table 1, the rows in-
dicate the date and time that the forecast was issued and the
columns indicate the date for which the forecast was issued.
However, this time the table shows the number of ensem-
bles (out of 51) exceeding a high alert level (Thielen et al.,
2009a,b; Pappenberger et al., 2011a). For a series of ensem-
ble forecasts of this sort there are different ways in which
it is possible to define (in)consistency between consecutive
ensembles (represented by rows in the table):

1. In terms of the number of ensemble members exceed-
ing various discharge thresholds: in this case, the dif-
ferences for consecutive forecasts range from 0 to 35
between different forecasts. A difference of 35 can be
observed between the midnight and noon forecasts is-
sued on 10–14 for day 15.

1Ensemble members could here be several lagged determinis-
tic forecasts or an ensemble forecast or a combination thereof –
the way an ensemble is created will have an impact on its level of
consistency.

www.hydrol-earth-syst-sci.net/15/2391/2011/ Hydrol. Earth Syst. Sci., 15, 2391–2400, 2011
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Table 2. Number of Ensemble members (out of 51) exceeding a high alert level. The rows indicate the date and time that the forecast was
issued and the columns indicate the date for which the forecast was issued.

Forecast day 11 12 13 14 15 16 17 18 19 20 21 22 23

11 October, 00:00 5 11 5 1 1

11 October, 12:00 6 33 25 5 5 2

12 October, 00:00 45 50

12 October, 12:00 14 47 21 21 1 1 1

13 October, 00:00 2 41 31 5 10 12

13 October, 12:00 30 45 7 7 7 7

14 October, 00:00 51 28 21 12

14 October, 12:00 5 35 11 20 11 1

2. The onset of the flood varies between the 14/15 and 16.

3. The flood lasts from anything between 4 days to 2 days.

4. It exhibits a single or double peak.

2 Why are forecasts inconsistent?

Forecast inconsistency comes from various imperfections in
the forecasting chain. In medium range NWP the most sig-
nificant cause of inconsistency is errors in the specification of
initial conditions for a non-linear dynamic model so that even
with a “perfect” model (that is one with a perfect representa-
tion of the physics of atmospheric processes, if that can ex-
ist), and thus inconsistency between forecasts is unavoidable.
NWP models were more consistent 20–30 years ago because
the poverty of their representations of atmospheric processes
and their low spatio-temporal resolutions made them less
sensitive to variance in the specification of initial conditions.
Thus reducing the quality of the NWP model with respect to
variability, for example by reducing the resolution or putting
in diffusion, would improve consistency, but reduce overall
predictive skill (Simmons et al., 1995). In general increases
in model complexity will generally lead to a decreased bias in
calibration mode and to increased uncertainty. This may not
be the case in forecasting (where higher complexity will also
lead often to an increased bias). There is an interesting philo-
sophical question here of what model “quality” might mean
and whether the atmospheric modelling community has re-
spected the principle of parsimony. That is a very important
discussion, but it goes far beyond the immediate focus of this
opinion paper.

At the end of the hydro-meteorological forecasting chain,
inconsistency is complicated by the nonlinear interaction be-
tween all imperfections (including initial conditions, forcing,
model parameterization, observations etc.; note we assume

that every forecast system is always imperfect due to hydro-
logical uncertainty, see Beven, 2006). As a result, the relative
importance of different sources of uncertainty for forecast
consistency will depend on exactly which aspect of forecast
inconsistency (i.e. the timing or magnitude of the flood peak,
its spatial extent or temporal duration) one is concerned with.
In the case of convective flash flooding, for example, fore-
casts are typically less consistent than largely synoptic scale
driven floods partially because of the high uncertainties in-
volved in modelling convective rainfall location and timing
at high resolution (Gupta et al., 2002). Indeed for flash flood
forecasts inconsistency about the predicted location of flood-
ing is common and the tendency is to remain on flood alert
while the possibility of a flash flood exists even if the uncer-
tainty about its exact location is high. Inconsistency here, is
clearly defined as shifts in location and from a hydrological
standpoint these shifts can have very dramatic effects if there
are several flash flood prone catchments in the region or if
shifts in the localization of convective rainfall simply means
that the rain is falling on the ‘non flash-flood producing side’
of the valley.

The problem of forecast inconsistency is some way eased
through ensemble forecasting as the ensemble will intrinsi-
cally “blend out” individual jumpy forecasts as well as pro-
viding a better characterization of initial condition/model un-
certainty. On the other hand, however, it also makes the con-
ceptual problem of defining in just what sense one set of
model runs (individual ensemble members) might be “con-
sistent” with the next more, not less, difficult. Inconsis-
tency exists mainly due to the imperfection of the actual en-
semble design e.g. limited number of members and under-
dispersivity and thus remains a significant challenge to the
forecaster.

Hydrol. Earth Syst. Sci., 15, 2391–2400, 2011 www.hydrol-earth-syst-sci.net/15/2391/2011/
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3 Quantifying inconsistency

Quantifying inconsistency can be useful but only when it
is accompanied by an understanding of why the inconsis-
tency occurred. Here we make a (unrealistic) binary di-
vide between expert users, such as those involved in produc-
ing hydro-meteorological forecasts, and non-experts users of
hydro-meteorological forecasts among the general public in
order to illustrate extreme positions. We note that in reality
there is less differentiation between these groups (Nobert and
Demeritt, 2011; de Roo et al., 2011).

It is important forexpert usersto find robust ways to iden-
tify inconsistency and express it numerically in order to aid
their decision making, clarify system limitations or assess the
performance of different forecast systems and aid their oper-
ational decision making. Examples of evaluation measures
include regression, root mean squared error and bias based
approaches (Nordhaus, 1987; Clements, 1997; Clements and
Taylor, 2001; Mills and Pepper, 1999; Bakhshi et al., 2005)
and pseudo-maximum likelihood estimators (Clements and
Taylor, 2001). In weather forecasting a latitude weighted
root mean squared error (Zsoter et al., 2009), the Ruth-Glahn
forecast convergence score (Ruth et al., 2009) and the Con-
vergence Index (Ehret, 2010) have also been used. Pappen-
berger et al. (2011b) have applied the latter to probabilis-
tic hydro-meteorological forecasts. The number of different
ways in which it is possible to quantify inconsistency intro-
duces its own level of uncertainty to the evaluation, but it
remains essential to quantify it in some (or many) numeri-
cal ways and understand these relationships (similar to other
skill scores see Cloke and Pappenberger, 2008).

In contrastnon-expert usersmay not necessarily ben-
efit from such quantitative measures of forecast inconsis-
tency, as they would be able to see for themselves that the
forecast has changed. Inconsistency in these circumstances
has to be accompanied by an explanation of why it occurs
as well as an analysis that is understandable in lay terms,
which might well involve verbal qualitative (rather than a
numerical) description, though it would, of course, be based
on a numerically computed evaluation for and by the expert
user.

4 Consistency and uncertainty

It could be argued that inconsistency is simply another term
for uncertainty. Uncertainty itself is a difficult term to define
and quantify (see Montanari, 2007) and therefore any explo-
ration of the numerical relationship requires some more con-
crete case studies of particular models and their applications,
which is beyond the scope of this opinion paper. While we
would acknowledge that (in)consistency is a manifestation of
underlying uncertainties, we would insist that it is important
to understand in its own right. First, the different types of
heretofore poorly defined (in)consistency may help improve

the understanding of different kinds and causes of forecast
uncertainties. Second, it is has been documented that it is
common in operational practice, to look to (in)consistency
heuristically (sensu Nichols, 1999) as a quick and dirty indi-
cator of forecast uncertainty without always acknowledging
that (in)consistency, like uncertainty itself, comes in many
shapes and sizes. (In)consistency can be in the temporal, spa-
tial and magnitude domains or any combination thereof. Spa-
tial (in)consistency over an area can manifest itself as tem-
poral/magnitude uncertainty at a point. However, it can be
quantified (in what ever way) giving information about sys-
tem attributes, which are different from the measure of uncer-
tainty itself, and so specifying the kind of (in)consistency and
calculating it objectively provides additional information.

5 Consistency and forecast performance

It could be hypothesised that consistency is an indicator of
a “better” forecast. However we would like to highlight
the important fact that, the theoretical basis for this is not
necessarily clear cut. Persson and Grazzini (2007) demon-
strated that correlation between forecast jumpiness and fore-
cast error (typically 30 % according to investigations by see
e.g. Hoffman and Kalnay, 1983; Dalcher et al., 1988; Palmer
and Tibaldi, 1988; Roebber, 1990 and others) is a statistical
artefact. Inconsistency is clearly related to forecast error, but
consistency should not be used as a proxy for forecast accu-
racy (Hamill, 2003), nor does it qualify as a predictor of a
priori skill.

Ehret (2011) has put forward one interesting method to
explore the relationship between skill and jumpiness by us-
ing a threshold approach. Here we offer a solution based
on a continuous forecast framework (albeit using determin-
istic forecasts for demonstration). Our analysis is based on
the publication by Persson and Grazzini (2007). Lets assume
that forecast accuracy is measured as the Root Mean Squared
Error. We have two forecasts (g and f) and an analysis (a, ob-
servation) to which these forecasts are compared. This can
be expressed in vector geometry (see Fig. 3). The difference
between g and f is a measure for the jumpiness or inconsis-
tency (blue line labelled f–g). The cosine of the angle be-
tween the vectorsga andf g is the anomaly correlation and
can be used as a measure of this inconsistency. In Fig. 1 it
is assumed that the two forecasts systems (f) and (g) lack
predictive skill and are mutually uncorrelated therefore all
three vectors (a, g andf ) are perpendicular (90◦). Whereas
the analysis vector (a) and the forecast vectors (f andg) are
perpendicular, their differences are not! Their mutual angles
are 60◦ which implies correlations of 50 %. This can be seen
in Fig. 3 which is a rotated Fig. 4.

This concept can now be extended to climatological fore-
casts in which it can be proven that this correlation is always
50 %.

gf 2
= ga2

+ f a2
− 2 · f a · ga · cos(α) (1)

www.hydrol-earth-syst-sci.net/15/2391/2011/ Hydrol. Earth Syst. Sci., 15, 2391–2400, 2011
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Fig. 3. Illustration of two forecasts –(g) and (f) – and observa-
tions (a). Forecast errors (green line) represents the difference be-
tween forecast and analysis. Jumpiness are expressed as blue line
indicating the difference between two forecast.

At long forecast ranges, the individual forecasts should con-
verge to climatology meaning thatc =ga =gf =f a, there-
fore:

c2
= c2

+ c2
− 2 · c2

· cos(α) (2)

cos(α) −
1

2
(3)

This also allows us to derive a relationship between jumpi-
ness and skill (simply re-arranging Eq. 1)

cos(α) =
gf 2

− ga2
− f a2

2 · f a · ga
(4)

This means that if the skill of forecast increases then the
correlation decreases (assuming that the spread between the
forecasts is constant). Equally if the skill is kept constant
more dissimilar forecasts will lead to an increased correla-
tion. The concept presented could be extended to multiple
forecasts or a weighting of forecasts according to their im-
portance (e.g. a jumpiness in the latest forecasts maybe more
unsettling as suggested by Ehret, 2010) and we will include
this as an appendix to the paper.

a

gf

fa

fg

60° 60°

60°
ga

Fig. 4. Relationship between forecasts and analysis in the case of
lack of predictive skill and mutual uncorrelation.

6 The problem of inconsistency

Forecasting preference is usually for consistency. Any fore-
caster would ideally like to issue a flood warning as early
as possible, minimize the error and then update the forecast
in continuous way. However, hydro-meteorological forecasts
of flooding are typically subject to high uncertainty not only
due to the quality of NWP-or radar-based forecasts, but also
due to the rarity of flood events, which makes it difficult to
validate model predictions of them. Flood forecast recipients
face similar problems. Unlike daily weather forecasts, which
members of the public are accustomed to using and evaluat-
ing, flood alerts and other warnings of extreme weather are
so rare that there is not the same intuitive feel for how much
stock to put in them or how best to respond to uncertain warn-
ings of impending disaster.

One response to the challenge of decision-making in the
face of inevitable uncertainty about forecast accuracy is to
establish a cost-loss function, so as to weigh up the rela-
tive costs that would be incurred by taking precautionary ac-
tion in response to the forecast against the losses that would
be incurred if the forecast is ignored and yet proves cor-
rect (Murphy, 1977; Richardson, 2000; Roulin, 2007; Laio
and Tamea, 2007). However, actually establishing this func-
tional relationship is complex, and the values associated with
some costs and losses cannot be easily reduced to monetary
ones as is required for a cost-benefit type calculation (Davies
and Demeritt, 2000). What value should be put on a life?
The question is incalculable (Demeritt and Rothman, 1999),
and when the values at stake are sufficiently high – whether
in terms of lives and property, dread risk (i.e. nuclear acci-
dents or terrorism; cf. Slovic, 1987), or the reputational costs
of getting it wrong – then cost/loss functions often go out

Hydrol. Earth Syst. Sci., 15, 2391–2400, 2011 www.hydrol-earth-syst-sci.net/15/2391/2011/
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the window, and pre-emptive action is taken regardless of
whether one gives much credence to the likelihood of the
forecasted event. Moreover hits, misses, false alarms and
correct negatives often have significantly different weight
from each other in flood forecasting (Demeritt et al., 2010;
Ramos et al., 2010) than the weight that is implied by a stan-
dard contingency table (Bartholmes et al., 2009). There is
also the key issue that what counts as a meteorologically cor-
rect forecast (i.e. rainfall> 30 mm h−1, which is the design
capacity for urban drainage) may not result in flooding, so
that forecast recipients are measuring something slightly dif-
ferent than forecasters themselves when they evaluate what
stock to put in the warning.

Flood forecasters are well aware of the problem of “cry-
ing wolf” and the risk that a sequence of false alarms will
result in people no longer taking action and hence increase
the costs of a hit (value of losses!). In addition a miss can
be catastrophic for the individuals directly affected by the
flooding and also for the organisation which failed to alert
(Dedieu, 2010). Consideration of reputational damage plays
an important role in flood forecasting and consequentially
has to be added to the cost, which can be different for dif-
ferent people given the same event. The cumulative effect
of these two peculiarities suggests why flood forecasters are
often unwilling to update a previously issued warning sim-
ply based on the latest new forecast (Demeritt et al., 2010;
Ramos et al., 2010; Norbert et al., 2010)2. Therefore, reduc-
ing the false alarm rate and strong autocorrelation3 between
warnings both play a strong role in the design of any flood
warning system. But this is just one kind of error: the false
positives (type 1) error.

There is also the type 2 error of missed events. While
EPS helps to increase sensitivity to possible surprise, and
so decreases the frequency of type 2 errors, it tends (with
low thresholds needed to avoid type 2 errors) to increase the
number of type 1 errors. In the case of the EFAS, lagged
forecasts are used to reduce this sort of error, and this tem-
poral consistency, or persistency, of forecasts is then built
into the decision making process (Bartholmes et al., 2009):
At least three consecutive flood forecasts must predict that
a critical discharge threshold will be exceeded for the same
river stretch, for an EFAS flood alert to be issued. This use

2On the one hand, this may be analogous to the pre-NWP model
culture that existed in meteorology and so it may be that flood fore-
casters eventually will also adopt the approach of always using the
latest forecast the more they get used to meteo-hydrological fore-
casting chains. But, on the other hand, hydrological forecasting has
its own longstanding traditions and these, combined with the rarity
of flood event, may well mean that attitudes do not evolve as they
have done in meteorology.

3This auto-correlation stems partially form the fact that dis-
charge is a highly auto-correlated variable, however one could also
as whether this autocorrelation stems more from an “anchoring
bias” around the initial warning – a more detailed discussion is be-
yond the scope of this paper.

of temporal consistency reduces the number of false alarms
and at a minimal cost to the overall hit rate. It does, how-
ever, lead to under-forecasting, which may not always be
desirable and strongly depends on the envisaged lead time.
While Bartholmes et al. (2009) demonstrate that this use of
temporal consistency is the best solution for the particular in-
stitutional context of the European Flood Alert System, it is
important to recognize that different uses for forecast consis-
tency may be necessary for other forecasting contexts.

7 The uses of inconsistency

Despite the preference of hydrological forecasters for consis-
tency one should not ignore the advantages of inconsistency.
Inconsistency discourages the forecaster from relying on the
latest forecast, and instead seeking out alternative informa-
tion in an ensemble system in addition to the forecasted hy-
drograph values, as well as considering previous forecasts or
information from other models. Persson and Grazzini (2007)
argue that a consistent forecast may lull forecasters into a
false sense of confidence in the reliability of their model,
which exacerbates difficulties in decision making when sud-
den surprising forecasts arise. In the same way a gradually
changing forecast may contribute to greater confidence than
an abruptly changing one (Lashley et al., 2008) and thus the
magnitude of inconsistency is of particular importance. In-
consistency can thus be an asset if it alerts forecasters to pos-
sible forecast problems and highlights alternative develop-
ments (see full details in Persson and Grazzini, 2007).

To illustrate these benefits of inconsistency, we refer back
to Table 1. It can be clearly seen that a flood event could
occur between the 31st of March and 3rd of April. Here we
would argue that a warning should be issued at the 26.03
stating that there is the possibility of a flood between 31 and
4 April. This warning should stay in place until 28 March,
when it is changed to the fact that the flood may happen on
1 April. In this way the communicated warning would have
a considerable consistency but still allow for the ambiguity
seen in an otherwise deterministic forecast. In reality many
countries have several warning levels, ranging for example,
from “flood watch” over to “flood warning” and “severe flood
warning”. The ramping up of a warning level from no warn-
ing to flood watch is probably a tolerable level of inconsis-
tency; however fluctuating between flood watch and flood
warning or severe flood warning could be seen as intolera-
ble fluctuation. In order to avoid people letting their guard
down too early, the rule of thumb seems to be that warning
levels go up, but not down, until the crisis has passed (De-
meritt et al., 2007). The hypothetical flood event described
in Table 1 may in fact not have happened and a false warn-
ing would have been issued. However it is inevitable that we
will sometimes get it wrong, and so we need to ensure that
our process of forecast interpretation and warning is both ro-
bust, so that the prevalence of error can be reduced as much
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as possible, and also clear, so that forecast recipients can as-
sess how much confidence to place in them and that when
mistakes are made, lessons are learned.

8 How to deal with (in)consistency – codes of practice

(In)consistency in forecasts is unavoidable given the imper-
fections of forecast systems. The challenge is how to deal
with the difficulties – and opportunities – presented by it.
In this paper we have shown that there are different aspects
or dimensions of forecast (in)consistency: temporal persis-
tence, value magnitude, spatial pattern etc.). It may well be
that these various dimensions are more important for some
purposes than others. However this is yet to be pinned down
in forecasting practise.

It is clear that forecast inconsistency is one part of the
total uncertainty and analysis of it needs to be communi-
cated alongside the forecast itself as part of a wider frame-
work for decision-making. The challenge of communicating
inconsistency is thus embedded in the challenge of commu-
nicating uncertainty where a close relationship with forecast
end users is key (see Norbert et al., 2010; Faulkner et al.,
2007; NRC, 2006). It may well be that more trained ex-
perts are better able to deal with inconsistency whereas it
may cause a loss of confidence among less well qualified au-
diences (Lashley et al., 2008). However, the situation may
well be far more complex than this (for example the uncer-
tainty trough as postulated by MacKenzie, 1990, and Shack-
ley and Wynne, 1995). To date, inconsistency has not been
adequately discussed with forecast end users or indeed within
(and between) the connected but distinctive meteorological
and hydrological forecasting communities. For these prod-
ucts we strongly advocate future discussion and research in
this area. For example, post-processing methods may reduce
inconsistencies (Bogner and Pappenberger, 2011).

As a first suggestion, a code of practice with respect to
forecast inconsistency of any forecast system may be:

1. Define inconsistency in the context of the particu-
lar forecast task: Is a forecast which first predicts
10 m3 s−1 above a “medium” warning level (of let us
say 100 m3 s−1) and then 5 m3 s−1 above inconsistent?
How much does a probabilistic forecast have to change
to be inconsistent?

2. Involve your end users in developing inconsistency fore-
cast products: It is important that the way one de-
cides to illustrate and demonstrate inconsistency is de-
veloped in collaboration with the end users that infor-
mation is designed to inform. Similar to warning sys-
tem, these types of products cannot be designed at a sci-
entist’s/forecaster’s desk alone.

3. Establish the magnitude of inconsistency and its de-
pendency on catchment location, hydrological and

meteorological attributes. Inconsistency will heavily
depend on catchment properties such as catchment re-
sponse time. Flash flood forecasts on the medium range
will be highly inconsistent. In contrast forecasts which
rely on a longer channel routing process with ample op-
portunity to be updated will exhibit less inconsistency
(although perhaps at least in some dimensions, such as
the size of the flood peak, its timing or the resulting
spatial inundation pattern it may well be much more
uncertain). Inconsistency can depend on seasons (see
Pappenberger et al., 2011) and the degree of this depen-
dency must be understood.

4. Make it a clear part of your decision making and com-
munication framework

a. Establish the nature and magnitude of inconsis-
tency with which you and your end users are com-
fortable in issuing decisions/warnings

b. Anticipate forecast inconsistency in your decision
making(rather than just reacting to it in a post event
analysis setting). This means, if you expect high
inconsistency because of the season or domain in
which you are working, make sure that you antic-
ipate in your decision making and communication
process that it could happen.

c. Clearly communicate in your warnings and deci-
sions the level of inconsistencyat a level appropri-
ate to the end user. As illustrated above, commu-
nication has to be targeted and not necessarily “nu-
merical” (see also section on quantifying inconsis-
tency). A good (but as yet unanswered) question
is whether it would be better to be able to add this
to the total uncertainty of your system in your com-
munication process or whether it needs to be treated
and communicated separately. This will be strongly
end-user dependent. For untrained end-users all
sources of uncertainty may best be folded into a sin-
gle presentation, for trained end-users, which have
to rely on additional decision making processes, the
separation of uncertainty sources is vital

d. Above all: do not confuse end-users unless they are
clearly involved in the process and understand what
you are talking about (and you understand what
they want from you!)

9 Conclusions

Flood forecasting based on numerical weather predictions re-
mains a relatively new field and using probabilistic forecasts
is an even younger discipline and hence the guidelines above
are only a very first step to initiate the discussion in this field.
We expect them to be evaluated and revised. We encourage
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all flood forecasters researching and practising in this area to
routinely evaluate the inconsistency in their forecasts.

Is it a cure or blessing? We believe that it is a blessing
in that it does not lull us into a false sense of “reliability”
and it is better to know and actively approach all possible
levels of uncertainty. However, a perfect system would
have no issues with unreliability which complicates our
decision making and communication framework. If we
could honestly choose, we would prefer not to have any
inconsistency in our forecast rather than learning to live with
it. In that sense it is a curse.
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