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1. Introduction  

In subsistence agricultural settings, crossbred cow adoption is a potent precipitator encouraging 

marketable surplus, stimulating entry into milk markets, and, often, alleviating the incessant burden 

of poverty. Crossbred cows arrive as counts. When new, improved technology avails itself in finite 

countable amounts, complications confront the investigator wishing to model the adoption decision. 

With the objective of understanding, better, the factors contributing to crossbred cow adoption, we 

compare and contrast the evidence in favor of prototypical count formulations. Despite some 

notable exceptions (see Holloway et al, 2000; Ahmed et al., 2002; and Abdulai and Huffman, 

2005), specification choice relevant to countable adoption has been neglected in the agricultural-

economics literature. Considerable scope therefore exists for examining formally the countable 

adoption process surrounding cross-bred cow adoption. Viewing the adoption decision under 

alternative statistical specification allows us to substantiate better inferences about adoption, the 

selection of various covariates among the total that avail themselves, and the validity of predictions 

made from the various model structures. We focus on a comprehensive set of characterizations in 

what we refer to, generically, as ‘count data models’ and we incorporate conditioning factors into 

the adoption process by extending the basic formulations into generalized-linear-model 

specifications.   

 The paper is organized as follows.  In section two, we review key facets of the adoption 

literature, paying specific attention to the adoption of crossbreed cows.  In section three we review, 

briefly, the sample setting and the data generation experiment.  In section four we develop relevant 

empirical models.  In section five we formalize one very important unifying feature of adoption 

studies derived explicitly from the present methodology, and argue its importance for future 

inquiry.  Conclusions are offered in section six. 

2. Motivation, objectives and modelling strategy 

Literature on adoption and diffusion of innovations is voluminous. Evidence abounds within the 

reviews by Feder et al. (1985), Besley and Case (1993), Sunding and Zilberman (2001) and, more 
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recently, Doss (2006). The coverage is heterogeneous.  However, thematic developments identify 

commonalities including decision-making simultaneities surrounding the adoption process; 

predicting productivities between adopters and non-adopters; understanding adoption learning 

processes; conceptualizing social networking’s adoption impacts; understanding neighborhood 

effects; and accounting for abstinence. Doss (2006) identifies neglected foci, including policy, 

institutions, markets and infrastructure and how the interaction of these factors can effect adoption 

of potentially beneficial technology and alleviate or mitigate poverty (Doss 2006).   

The ‘binary choice adoption legacy’ 

The overwhelming majority of studies reviewed by Feder et al. (1985), Besley and Case (1993), 

Sunding and Zilberman (2001) and Doss (2006) focus attentions on binary choice. Within binary-

choice frameworks a set of standard procedures and econometric specifications arise and constitute 

an essential ‘toolbox’ available to agricultural economists. However, binary choice is not 

exclusively the modus operandi in agricultural technology adoption studies. Indeed many adoption 

processes, by their nature, lend themselves to more complex econometric specification. Livestock, 

in particular, avail in countable finite units and in the context of developing livestock-adoption 

methodology it is important to have available methodology for handling counts.  

 In the absence of counts, and the presence of cross-sectional data, investigations center on the 

binary choices confronting decision-makers (Besley and Case 1993). Within the binary-choice 

setting, the probit model is the most celebrated adoption model. Examples abound (see, for 

example, Misra, Carley et al. 1993; Foltz and Chang, 2002; Lapar and Ehui 2004; Koundouri, 

Nauges et al. 2006); closely followed in rank is the ordered probit model (see, for example, Lal 

1999; Negatu and Parikh 1999; Giunta and Trivieri 2007), the multinomial probit (see, for example, 

Koop, 2003) and the binary and multinomial logit formulations (see, for example, Feder and Slade 

1984; Staal, Baltenweck et al. 2002). 

Livestock innovations and subsistence household decision-making 

Livestock are of fundamental importance to a vast swath of humanity faced with subsistence 
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household decision-making (Kiwuwa et al, 1983).  Indeed, one of the Consultative Groups of 

International Agricultural Research—the International Livestock Research Institute—focuses its 

attentions almost exclusively on the interface between human decision-makers and animal 

enterprise. If “the most important resource available to a subsistence household is the total amount 

of time that its members have available to spend in productive enterprises (Holloway and Ehui, 

2001)” then the second-most important household resource is usually an animal input (Ehui et al., 

1998). 

 Despite their fundamental importance, we have neither the literary legacy nor the 

methodological dexterity for dealing with adoption decisions surrounding animal counts or other 

countable, adoptable quantities. Despite the fundamental importance of animal agricultural 

activities, the vast majority of adoption studies focus on high yielding technologies within the crop 

sector (Abdulai and Huffman 2005). Research on adoption of technologies relating to animal inputs 

is limited and research relating to dairy-cow adoption is scant. 

 Like the crops sector, in which adoption decisions focus upon the introduction of high-yielding 

varieties, within the dairy sector adoption of crossbreed cattle are at issue. Evidence from one 

International-Livestock-Research-Institute experiment (see Holloway and Ehui (2002) for an 

overview) suggests that the adoption of high-yielding, intensively-managed European breeds for 

purposeful fertilization with grade indigenous stock spawns externality. Generally speaking, 

evidence (Holloway, barett and Ehui, 200a; Holloway and Ehui, 2001;  and Holloway, Teklu and 

Ehui, 2008) suggests that crossbreeding is a potent policy option enabling formerly subsistence 

households to participate in emerging milk markets; has important implications for the food security 

of small farmers (Ahmed, Ehui et al. 2002); and, perhaps more importantly engenders statistically 

significant income gains from cow ownership (Nicholson et al., 2004).  

Experiment 

Given these antecedents, an experiment akin to the one enacted by The International Livestock 

Research Institute in Addis Ababa, is assessed in an altogether different climatic regime within Sri 
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Lanka (Edirisinghe, 2010). This experiment provides the basis for this study, the desire for 

improved understanding of the methodologies available to us or handling countable quantities and 

desire for unification of choices surrounding the countable adoption decision. In most of the cases, 

the model choice is dictated by the data availability and the research questions are addressed using 

frequentist procedures. The plethora of model choices often leads to an ‘embarrassment of riches’ 

leading to sometimes conflicting predictions about the adoption decision; the specific covariates 

deemed to affect the adoption decision; and, conditional on these covariates being chosen, their 

relative and absolute potency in policy prescription. The investigator, however, must have 

uncertainty given the breadth of options available for modelling the adoption decision. And the 

presence of uncertainty leads us to the inevitable question of models comparisons. 

Models comparisons  

Formal incorporation of countable decision-making into the conventional household-production 

framework (Singh, Squire and Strauss, 1986) arises in a latent ‘step-function model’ (Holloway, 

Barrett et al. 2000) developed specifically for the purpose of correlating the countable adoption 

quantities with other real-valued data generated from household decision-making. That 

contribution, like the contributions of Ahmed et al, (2002) and Abdulai and Huffman (2005) ignores 

potentially important information arising in the process of developing conjugate models for 

countable adoption. Conjugate models have the property that the prior and posterior descriptions of 

the parameter environment have the same functional form. Conjugate models are, necessarily, 

simplistic and are criticized because they over-simplify the complexities surrounding actual, 

countable adoption processes. Conjugate models, however, possess a very attractive property which 

makes them manifest within the modelling environment, especially when the investigator has 

uncertainty concerning model specification. To the best of our knowledge, within agricultural 

economics, these benefits appear to have been largely ignored to date. 

Conjugacy benefits 

When specification choice arises the investigator needs to compute the marginal density for the 
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data, which we signify as (y). A conjugate model makes (y) available in closed form via direct 

calculation.  When the model space is large, as it is in one of the settings considered within this 

paper, the ready availability of (y) enables the investigator to compare and contrast, on formal 

probabilistic grounds, the most suitable model specification for the data. One purpose of this 

contribution is to illustrate this procedure in a natural-conjugate count-data setting. The natural-

conjugate count-data models include, most notably, the Poisson sampling model, the Geometric 

sampling model, the Negative-Binomial sampling model and the relatively little used, though no less 

important, Binomial sampling model. In the cases of two of these models (the Negative-Binomial 

and the Binomial sampling models), the mathematical formulation includes an assigned integer 

value, making comparisons across a large number of potential models straightforward by virtue of 

the availability of (y). A second purpose of this contribution is to illustrate this search procedure. 

Integer search  

We illustrate the vast benefits available to the researcher—measured in formal probability gains—

of correctly assigning integer values to the Negative-Binomial and Binomial sampling models. 

Notwithstanding, the aforementioned benefits, the conjugate settings (Poisson, Geometric, 

Negative-Binomial and Binomial sampling models) are restrictive. And they are particularly 

restrictive in the search for prescriptions concerning the policies we should enact in order to 

promote adoption. They are restrictive within the policy domain because they are restrictive 

primarily in understanding the fundamental intricacies surrounding the adoption decisions 

undertaken by subsistence small-holders.  These issues, it is worth emphasizing, are the heart of the 

literature reviewed in the flagship contributions (Feder et al, 1985; Besley and Case, 1993; Sunding 

and Zilberman, 2001; and Doss, 2006). For the purpose of understanding the nuances surrounding 

the adoption decision we need a wealth of additional information, or, at the very least, the usual set 

of approximations to which investigations default, which is covariates. A third purpose of this 

contribution is to illustrate the incorporation of covariate information into the count-data adoption 

framework. 
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Covariate search 

When covariate information is available, we incorporate the covariates by way of a generalized-

linear model. Such models have become commonplace in related settings in which a conjugate 

model need default to a generalized linear framework in order to include covariate information. The 

potential benefits of including covariate-information, however, are necessarily complicated by costs 

of having no longer available in closed form the desired quantity (y) for model choice. In general, 

only for the Normal-Linear-Regression and Log-Normal-Linear Regression setups does the model 

retain its conjugate properties when parameters are replaced by covariates and corresponding 

regression coefficients. The non-availability of (y) directly in closed form complicates analysis 

requiring us to produce estimates of (y) and necessarily restricts the sample space. This situation is 

not novel. For example, previously within this journal, Hattam, Lacombe and Holloway (2012) 

model time-to-adopt organic practices and consider model choice across conjugate settings which 

relinquish conjugacy in the presence of covariates.  

 The significance for model selection of the absence of conjugacy is that it confines attentions in 

the insurmountable model space with K covariates under consideration in which evaluations of all 

2
K
 possible models are sought. Presently, we have four model specifications under consideration 

(Poisson, Geometric, Negative Binomial and Binomial); an integer search across two of these 

specifications (the Negative Binomial and Binomial models); and model comparisons within each 

specification amounting to 2
K
 where K is potentially large. The Cartesian product (specifications  

integer values  covariates) defining the model space is too large for us to make definitive 

statements across the entire space. However, we argue, through a suitable use of the conjugate 

information prior to the addition of covariates, along with a restricted covariate search conditioned 

by the results of model search under conjugacy, an approximate ‘preferred’ specification emerges. 

Thus, our fourth, and final, objective is to indicate how judicious choice of conjugate and non-

conjugate results can be combined to motivate, a ‘preferred’ specification suited to the adoption 

process. We enact these demonstrations following presentation of details concerning the Sri Lankan 
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sample setting and a description of the data. 

3. The Sri Lankan sample setting and the data 

There are approximately 1.5 million cattle spread throughout Sri Lanka, with areal concentrations 

due to cultural, market and agro-climatic factors favoring specific breeds, specific production 

practices, and specific markets and marketing activities. Smallholders account for approximately 96 

percent of the total cattle-rearing population according to the most recent agricultural census 

(Department of Census and Statistics, 2002). The overall penetration of exotic breeds is considered 

to be ‘low’ (Department of Census and Statistics, 2002).   

Sampling strategy  

We enact sampling taking into consideration variation in agro-climatic factors that are thought to 

impact adoption propensity. Sri Lanka has three main agro-ecological regions, which, for want of 

better nomenclature, we refer to, respectively, as the ‘dry,’ ‘wet,’ and ‘intermediate’ zones. Sri-

Lankan agriculture is also classified with respect to ‘elevation.’  We employ the nomenclature 

‘upper,’ ‘middle,’ and ‘lower’ elevations in order to distinguish between elevation levels. Both the 

wet and intermediate zones are observed in each of the three elevation levels but the dry zone is 

mostly limited to the lower elevation. In addition to agro-ecological zones, sampling is also 

motivated by the delicate balance between ‘costs’ and ‘benefits.’ Needing to restrict costs of data 

acquisition we target representative dairying districts that feature each of the agro-climatic regions 

thought to influence production (Department of Census and Statistics, 2002). And within these eight 

districts we sample as expansively as resources permit, with coverage amounting to 401 

households. The total sample size is distributed among the districts based on the desire for an 

approximate proportionate representation within each district, as reported in the most recent 

agricultural census (Department of Census and Statistics, 2002). Within Sri Lanka, political 

administrative units are ordered in hierarchical fashion, with the smallest administrative unit being 

known as a ‘Grama Niladhari’ division. We use each of the Grama Niladhari veterinary officer’s 

lists of farmers in order to randomly select households from within each of the eight divisions 
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comprising the sample.  

Responses 

Figure 1 depicts the distribution of the response variable—the total number of crossbred cows 

within each household—across the 401 households. We make reference to the observation that the 

mean number of crossbred cows is 1.77 and that the variance is small, being, approximately 2.45. 

We emphasize that the sample estimates of mean and variance do not coincide, which is a condition 

assumed by the benchmark Poisson model. In fact the variance exceeds the mean by approximately 

39 percent and, alone, posits grounds to consider alternative model formulations. (Insert figure 1 

about here.)  

Agro-ecological zone distribution 

The sample size is N = 401.  The minimum count is zero, which represents a small proportion of the 

observations; and the maximum count is 11, which is observed in one single household. One issue 

of considerable interest across the sample is the relative difference, if any, in the distribution of the 

counts across the three climatic zones. The distribution of the sample across the three zones is as 

follows. There are 152 dry-zone respondents; there are 93 wet-zone respondents; and there are 156 

intermediate-zone respondents. Figure 2 depicts the climatic-zone conditional distribution of the 

cow counts across the sample along with the sample total distribution across counts. Some minor 

differences emerge, although the overall conditional and marginal count distributions are quite 

similar. (Insert figure 2 about here.) 

Covariate justification and summary statistics 

Data are collected from face-to-face interviews with the help of a structured questionnaire. The 

questionnaire includes data on the number of crossbred animals employed by the household; 

demographic characteristics; the human-, social-, financial- and physical-capital status of the 

household; perceptions about crossbred cow technology; elevation levels; and transactions costs.  

The selected covariates are chosen based on three factors.  One factor is the background information 

contained in the relevant literature (surveyed by Feder et al., 1985; Besley and Case, 1993; Sunding 



- 10 - 

and Zilberman, 2001; and Doss, 2006); a second factor is the lead author’s previous site experience 

and familiarity with Sri Lankan farming systems; and the third factor is casual, contemporaneous 

empirical evidence gleaned intermittently during primary data collection. 

 Our focus is on the few selected covariates. We include the agro-ecological zones dry, wet and 

intermediate because we expect to observe different practices and perception of cross-bred cow 

technology within each climatic zone and, therefore, because zone difference is expected to explain 

some variation in adoption practices, we wish to control for zone difference.  We include ‘time to 

market’ to reflect market access and developments in infrastructure and because time-to-market 

features as a prominent covariate in each of the milk-market precipitation studies produced by 

Holloway and co-authors (see, for example, Holloway and Ehui, 2001). We include income levels 

of the farmers in question because wealth, in general, but ‘Income,’ in particular, is likely to affect 

aversion to risk.  The variable ‘Land’ is included because it is thought that congestion effects may 

bottleneck the adoption process and because there is uncertainty generally within the literature 

surrounding the size-versus-efficiency conundrum (see, for example, Barrett (1996) and the 

references cited there). The variable ‘Cattle Shed Dummy’ is included in order to identify those 

individuals having access to superior housing conditions for cross-bred animals; this variable is 

likely highly correlated with wealth and status effects in the adoption decision. The tri-chotomous 

variable ‘Perception I’ is included in order to represent overall indications of the farmer’s view of 

intensive crossbred farming practices. The variable ‘Perception II’ is included in order to condition 

perceptions about costs factors. The effect of institutional developments is taken into account by 

including the membership status with a milk society, as depicted by the variable ‘Society. Feder 

(1985) states that “Farmers’ technology choices are based on their subjective probabilities and 

hence, on their exposure to information regarding the new technology”. We include ‘Education’ as 

a (somewhat crude) projector of the ability of the farmer to process information. We hypothesize 

that access to information is reflected by the level of contact with the agents and use the variable 

‘Extension’ following a considerable precedent (see, in particular, Frisvold et al, 2001; Holloway 
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and Ehui, 2001; Dinar and Keynan, 2001; and Hanson and Just, 2001). 

Summary  

In summary, we believe that cross-bred cow adoption is affected by (a) the agro-ecological climatic 

zone in which decisions are made, (b) proximity to market, (c) wealth effects inclusive of income, 

access to land, and cattle sheds, (d) perceptions about crossbreeding and crossbreeding production 

practices, (e) social status, social networks and neighborhood effects, and by (f) the intellectual 

capital accumulators, experience education and experience. These effects are accounted for through 

reference to the (numbered) covariates depicted in table 1.  (Insert table 1 about here.) 

 With reference to the covariates, it is insightful to consider inter-component differences across 

the adopting and non-adopting sample constituents as well as differences across agro-ecological 

zones. Differences among the agro-ecological zones are depicted within table 2. Within the dry, wet 

and intermediate zones there are 152, 93 and 156 respondents, respectively; and within the non-

adopting and adopting classifications there are 51 and 350 respondents, respectively. The 

disposition of the covariates is mostly homogeneous, with a few exceptions. Some small but 

potentially significant differences emerge. These differences raise scope for nuanced empirical 

investigation about the factors precipitating countable cow adoption among the Sri-Lankan 

smallholders. (Insert tables 2 and 3 about here.) 

4. Empirical models and results 

 

Given the data-generating experiment, we outline, within this section, our inferential methodology.  

Relegating details to the appendix to the manuscript, contained at the end of the text; we also 

provide additional inferential detail in an expanded online version of the appendix. We focus 

discussion on the presentation of key results affecting model choice, covariate selection and various 

other motivations that guide and direct enquiry.  The spirit of enquiry lies in orchestrating analysis 

exhaustively prior to considering covariates.  As usual, in this setting, all inferential questions are 

guided by formal probability considerations. 

Notation 
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Preliminary investigation of the four, conjugate settings evolves as follows. Using y  (y1, y2, .., 

yN) to denote the observed counts across the (N = 401) households, we use () to denote, 

generically, an appropriate probability density function; use (y|) to denote the conditional 

distribution for the data given the parameter, which may be vector-valued, say   (1, 2, .., K); 

and use () to denote the distribution for the parameters in the absence of data, which we refer to, 

henceforth, as the ‘prior probability density function (pdf).’ In what follows, and in most usual 

circumstances, we are primarily interested in the scales and locations of the marginal pdf’s for the 

parameters after examining the data and which we refer to henceforth as the ‘posterior probability 

density function (pdf).’ The joint distribution is (|y) and the marginal distributions of each 

(scalar) parameter will be referred to accordingly as (1|y), (2|y),  ..,  (K|y). For most enquiries, 

the derivation of the densities (1|y), (2|y), ..,  (K|y) identifies the end of the investigation.  

Presently, however, interests center on model comparisons. For this reason, the marginal density of 

the data’ also termed ‘the evidence’ also termed ‘the marginal likelihood’ makes the quantity (y), 

of over-arching importance. In most investigations, densities, (1|y), (2|y), ..,  (K|y) are also 

conditional upon investigator choice. Where there is uncertainty associated with such choice, 

‘model realizations’ need to be evaluated as part of the inferential process.  For example, we may be 

interested in the densities (1|y), (2|y), ..,  (K|y) in the presence of covariates, which we signify 

X, defining a matrix of observations (of dimension NK), containing rows x1, x2, .., xN, wherein x1 

 (x11, x12, .., x1K),   x2  (x21, x22, .., x2K), .., xN  (xN1, xN2, .., xNK),  and X  (x1, x2, .., xN).  In 

this context, we may write, (y|,X) to denote the conditional distribution for the data given the 

parameters and the observed covariate information; use (|y,X) to denote the posterior pdf for the 

parameters given the data; and use (y|X)  to denote the marginal distribution for the response data 

conditioned by the covariates.   

Specification search 

Our task is to evaluate (y) and (y|X). This task is further complicated by the fact that the matrix X 
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involves, itself, a choice. When there is a single column within X (K = 1), we have available one 

choice with either of two mutually-exclusive outcomes. We may include X or exclude X from the 

proceedings. When there are two columns in X (K=2), there are four outcomes.  And when the 

columns in X number three (K=3), there are eight possible realizations.  Considering that 2
1
, 2

2
 and 

2
3
 defines the total number of outcomes within each setting, we wish to consider the total number of 

models available, M, which is 2
K
.  Using Mk to denote the choice under action k, where k = 1, 2, .., 

M; we can write, in turn, (|Mk), (y|,Mk), (|y,Mk) and (y|Mk)  to denote, respectively, the 

prior pdf, likelihood for the data, the posterior pdf and the evidence, all of which are conditional on 

the realizations of the choice made by the investigator. One important task of this paper is to 

evaluate the evidence in favor of competing models, indexed Mk, k = 1, 2, .., M.  Conceptually, we 

seek to evaluate the ‘mixtures’  

  (y|Mk)    =   ∫  (y|,Mk) (|Mk)  𝑑𝜽,     k = 1, 2, .., M.        (1) 

Remaining attentions are devoted to evaluations of (1), within which, henceforth, in order to avoid 

notational clutter, we suppress dependency on the model label, Mk.   

Search 

Focusing attentions on (), (y|), (|y) and (y) under the respective models specifications, we 

emphasize that the Poisson, Geometric, Negative Binomial and Binomial model formulations right 

sides of equation (1) are available in closed form. In particular, the marginal likelihoods, for a 

particular model in the Poisson, Geometric, Negative Binomial and Binomial settings are known to 

be, respectively, Poisson-Gamma, Negative-Binomial-Beta subject to a parameter restriction; 

Negative-Binomial-Beta; and Binomial-Beta. This feature of the analysis is particularly noteworthy 

in the last two settings in which further choice avails itself.  Unlike the Poisson and the Geometric 

models, the Negative-Binomial and the Binomial models are count-data models containing a 

second, integer-valued parameter.  While the Negative Binomial and Binomial models remain 

conjugate, it is straight-forward to evaluate both of them across a range of values for these integer-
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valued parameters. Because it is then possible, due to their inherent conjugacy, to compute the left-

hand side of (1), by direct computation, it is possible to easily evaluate the evidence in favor of any 

single integer-valued specification. Consequently, inferences about the adoption process obtained 

from a specific model can be assigned their formal probability weight in a model averaged setting. 

Increasingly, model averaging is appearing in a plethora of applied investigations as an appropriate 

procedure for dealing with uncertainty within the high-dimensional model space. A good discussion 

of this procedure now appears in graduate textbook treatments, and the reader is directed to Koop 

(2003) and Koop, Poirier and Tobias (2007) for details.  At this point two questions beckon. First, to 

what extent do the foundational conjugate count models explain the data generating environment? 

Second, will there be improvement, if at all, once covariate information is included?  We answer 

these questions, in the following sequential manner. 

Preliminary conjugate analysis 

Given the data (figure 1) and some sensitivities about how the propensities may change across 

climatic zones (figure 2), we first consider straight-forward conjugate analysis of, respectively, 

Poisson, Geometric, Negative Binomial and Binomial sampling models.  In the latter two cases, one 

must select an integer value for the negative-Binomial parameter ‘ro’ which is defined with respect 

to the Negative Binomial pdf, presented in the appendix. In the Binomial setting, we must also 

adopt a value for the parameter ‘noi,’ which is defined with respect to the Binomial pdf, presented in 

the appendix. The maximum number of cows owned within the sample is 11. It would not seem 

unreasonable, therefore, to consider this household, somewhat an outlier (figure 1), as being 

‘successful’ in each of 11 consecutive trials. Such an assumption would mandate noi = 11 as the 

lower limit, but other assumptions cohere. In the Negative Binomial model the assumption ro = 1 

leads to the Geometric distribution. For reasons which we soon justify, formally, we select ro = 7 

and we assign noi = no = 139 to each household. Given these specializations, we are now in a 

position to consider inferences under each respective specification.  The results of case-specific 

analysis (please refer to the supplemental appendix) are summarized in figures 3 and 4.  (Insert 
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figures 3 and 4 about here.) In figure 3 we report, for each count, the implied probabilities 

distributed across the sample, including the empirical conditional probability derived from the data 

and the Poisson, Geometric, Negative Binomial and Binomial probabilities. By and large, the four 

models do a good job of predicting the counts. The often encountered ‘over-inflation’ of zeros that 

arises in the Poisson model is evident, but is insubstantial.  Notwithstanding this feature, all models 

do a relatively poor job of picking up the second element of counts, the value 1, which is the modal 

value within the sample. Taking these reports, we are able then to transform the results into a figure 

reporting the relationship between the observed and predicted probabilities within the data. We 

note, that correlations between the observed and predicted quantities are quite high, and are 

dominated—not exclusively, but collectively—by the Poisson, Negative-Binomial and Binomial 

models; the Geometric model is adjudged, by this criterion, to perform rather poorly. 

Exchangeability  

We now consider the problem of choosing and selecting across the various models, and a small 

digression, inclusive of some significant output contained within the supplemental appendix, is in 

order. We motivate that the different agro-ecological zones give rise to distinctly different 

expectations about adoption propensity, and we note that the knowledge of existence within each 

zone is datum. The question is just how significant are these differences? We are able to answer this 

question by appealing to a notion which is frequently employed to justify Bayesian inference, but 

which is largely untapped – to our knowledge – in applications.  This notion is that of 

‘exchangeability.’ Exchangeability was promulgated by Johnson circa 1920 (Johnson, 1924) and 

subsequently exploited in a ground-breaking contribution by de Finetti (1938). The consequences of 

de Finetti’s theorem—the so-alled ‘representation theorem’—are profound for model building, 

inference and selection (Bernardo, 1996). Kreps (1988) opines that de Finetti’s theorem is the 

‘fundamental theorem of statistical inference.’ And Poirier (2011) concludes that de Finetti’s 

theorem places the entwined notions of exchangeability, subjectivity and model building in their 

appropriate inferential contexts. Its relevance within applications—hitherto neglected in agricultural 
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economics—is fundamentally important, as follows. By sequentially updating throughout the 

sample space we are able to gauge whether the exchangeability condition is violated and whether 

modification is called for. Specifically, wishing to evaluate the assumed belief that the propensities 

to sample from the three distinct agro-ecological zones are exchangeable, we evaluate the 

sequential updating of the posterior expectations about the adoption propensities (the likelihood of 

adopting a given number of crossbreed cows) and consider the outputs under alternative sequencing 

of the data. If the data are in fact exchangeable, then the posterior inference is unaffected by the 

order in which the data are processed.  By reordering the observations specific to various regimes 

we can observe a difference—if any—that is available from re-ordering. If the observations within 

the sample are indeed exchangeable then we should have no concern about the agro-climatic 

locations of the individual households and a single-sample processing of the data is applicable. If 

we find to the contrary, then modification is called for. 

 We consider the relevant re-sequencing and sequential updating within the sample within the 

graphics which appear in the supplement (see , in particular, Supplemental Figures S.i.j, i = 1, 2, 3, 

4, j= 1,2). The figures indicate that, clearly, within the separate evaluations of the Poisson, 

Geometric, Negative Binomial and Binomial models, exchangeability of agro-ecological zones is 

violated. Modification is necessary. Either the inclusion of binary, climatic-specific indicators 

(fixed effects) or extension to hierarchical formulation (the Bayesian analogue of random effects) is 

called for. (We elaborate on considerations of exchangeability in the supplemental material 

available to the reader online.)  

Integer search strategy 

We now turn to the question about the evidence in favor of each competing formulation and note 

that considerable choice is available.  Prior to considering covariates, we compute the model 

marginal likelihoods corresponding to the Poisson, Geometric, Negative Binomial and Binomial 

models, where the Negative-Binomial specification is evaluated under an iterated search across the 

parameter ‘ro,’ and the Binomial specification is evaluated under an iterated search for the 
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parameter ‘noi.’ Figure 5 reports the results of this search.  (Insert figure 5 about here). The results 

are quite revealing. First, no single model dominates over all ranges within the search. Second, each 

of the three alternate models Poisson, negative Binomial and Binomial dominate the Geometric 

model. Third, the Negative Binomial model has an optimal (‘optimal’ in the sense that it maximizes 

the corresponding log marginal likelihood) value of the parameter ‘ro’ which is ro = 7, and thus the 

motivation for the aforementioned choice is justified. Fourth, the Binomial model has an optimal 

value for its ‘trials’ parameter, which is no = 139 and its reason for pre-assignment is revealed.  

 Given the marginal likelihood values reported in the figure, it is relatively straightforward to 

compute the probabilities in favor of any particular model.  These reports are presented in figure 6.  

(Insert figure 6 about here.) We note that the maximum probability is around .166 and that the bulk 

of the probability space is dominated by about ten models.  We note also that each of these ten 

models relates to different parameterizations of the Negative Binomial model. That is, in the 

absence of covariate information the Negative-Binomial specification, variously parameterized, 

dominates the sample space.  

Covariate search strategy 

Taking as datum the integer values ro = 7 and noi  no = 139, we next consider the covariates 

predicting the counts.  Given the 13 covariates under consideration (please refer to table 1 and the 

numbering of the covariates), taking as datum the agro-ecological-specific dummy variables 

consider covariate selection across the remaining 10 covariates. A total of S = 2
K
 = 2

10
 = 1024 

models must be evaluated and these evaluations must be executed within each respective 

formulation. Thus, a total of S = 4096 models must be evaluated. The totality of models defining 

the sample space is of course, considerably larger if we were to repeat the integer search across all 

1024 covariate specifications. This computation is infeasible due to the fact that we need estimate, 

rather than calculate, (y), for each specific formulation.  

 We do not attempt to tackle this problem comprehensively.  However, using the knowledge 
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acquired from the conjugate settings, with ro = 7 and no = 139 performing well for the Negative-

Binomial and Binomial models, respectively, we consider four searches within the vicinity of these 

restrictions in an effort to gain a better understanding about the likelihoods of ‘optimal’ outcomes 

throughout the covariate sample space. The four exercises are, first, a search across a reduced-

design matrix consisting of the zone-specific dummy variables and the Negative-Binomial 

parameter values permitted to vary from ro = 1 to ro=100 (100 passes); the same experiment but 

with the full column design of the covariate matrix (100 passes); a search across the reduced-design 

matrix with the Binomial parameter values permitted to vary from no = 11 to no = 210 (200 passes); 

the same experiment but with the full column design of the covariate matrix (200 passes). In each 

case, we find that the log-marginal likelihood values are quite stable after a few thousand iterations, 

but we execute under the conservative procedure of sampling for S = 20,000 iterations discarding 

the first 10,000 observations and processing the second 10,000 observations. Some interesting 

patterns emerge.  These patterns are portrayed in figure 7. (Insert figure 7 about here.) The results 

for the restricted covariate matrix experiments are clearly inferior to the results reported for the 

unrestricted cases and appear to be bounded by the reports for the conjugate models.  

Preferred models specifications 

With this covariate-search information at hand, we combined findings with the results of the 1024 

models run across the four count specifications with parameters ‘ro’ and ‘no’ set at 7 and 139, 

respectively, and consider the ‘optimal’ configurations across each profile.  For the purpose of 

permitting one final comparison, we permitted the simulations of each of the four models to run for 

a few days using randomly selected covariate specifications and permitting random selections of the 

integers between for the Negative Binomial and Binomial formulations.  And we determine that 

respective full-covariate generalized-linear-model formulations marginal likelihood estimates are 

quite comparable to the random search values.  The results of the estimations are reported in table 

4. (Insert table 4 about here.)  Within table 4 we observe a fairly heterogeneous profile of 

‘significance’ across the four primary specifications. And we note that, at least according to the 
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marginal likelihood reports corresponding to the counts, that there is relatively close proximity 

between the Poisson, Negative Binomial and Binomial generalized-linear-model specifications. The 

Geometric generalized linear model specification—as it did within the conjugate setting (see, in 

particular, figure 5)—again performs poorly, at least as adjudged by the marginal-likelihood 

criterion. In addition to the count-data-generalized-linear model specifications we include, in the 

left-most region of the table, reports derived from a standard probit specification of the ‘adopt-

versus-non-adopt’ binary outcome. A conventional investigation would most likely enact probit 

estimation when confronted with the counts, treating the counts yi = 0, for i = 1, 2, .., N, signifying 

‘non-adoption’ and treating the counts, yi = 1, 2, .., for i =1, 2, .., N, signifying ‘adoption.’ Until, 

presently, comparisons between counts and binary outcomes have been thought to be ill-considered 

due to the fact that the marginal density for the data, (y), pertains to a given set of observables. 

This is problematic within the present context due to the desire for understanding of the 

performance of conventional binary choice specifications given the binary-choice legacy in 

agricultural adoption studies. We demonstrate, in the next section, how one is able to circumvent 

this problem, specifically with reference to Bayes theorem and de Finettti’s (1938) identity. 

5. Bayesian Unification of Agricultural Adoption Studies 

 

It is noteworthy and emphasized that the majority of adoption studies—within agricultural 

economics and elsewhere—view adoption processes as the outcome of a binary-choice experiment. 

Within binary choice frameworks, the modus operandi are the familiar probit and logit 

specifications. Indeed, the probit specification is considered “the most celebrated binary choice 

specification (Koop, Poirier and Tobias, 2007).” Sometimes ordinal and categorical response 

specifications such as the ordered probit and the multinomuial probit and logit specifications are 

approrpiate. This contribution has added the count-data models specifications Poisson, Geometric, 

Negative Binomial and Binomial and generalized-linear extensions.  

 Given the rich heritage devoted by agricultural economists to binary choice it becomes useful, 

pedagogic and insightful to consider unification of the results of multifarious specifiations—non-
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binary choice—into a common whole. Here, we consider, explicitly, the problem of unifying 

agricultural-adoption studies and provide an example about how such unification proceeds. Our 

goal is to compute a single over-arching metric, which is capable of evaluating relevant sample 

information enabling a ‘preferred’ specification to emerge with reference to the adoption threshold. 

A solution is available, once again, with reference to the left-side of de Finetti’s famous 1938 

identity, which is the quantity (y). As the reader, no doubt, observes, the recurrent dependence on, 

(y), gives this over-arching measure profound status, to which we assign, the alternative 

interpretation, ‘the statistical footprint of the data.’ For the purpose of evaluating (y) presently, a 

hierarchical representation, similar in spririt to Albert and Chib (1993) and, similar in 

decomposition and reaarrangement to Chib (1995), prove fruitful. 

 Consider the counts, once again, but suppose, specifically that the counts are realizations of some 

latent-variable process, say, №i = 0, 1, 2, ..,  relevant to household ‘i.’  Assume that this process 

gives rise to the observed, binary outcomes, yi = 0, if №i = 0, and yi = 1 if  №i ≠ 0. Following Koop, 

Poirier and Tobias (2007), form a binary indicator density for the joint distribution of y and №  

(№1, №2, .., №N) and following Chib (1995) derive the evidence in favor of the count-data model, 

from which the № are observed, using the ‘basic marginal likelihood identity,’  

   (y) = (y|№) × (№|)  ()  (|№,y)  (№|y).          (2) 

Here, (y) denotes the marginal likelihood for the ‘binary-data-transformed’ counts. Within the 

numerator, the density (y|№) denotes the indicator function depicting the binary outcomes in the 

transformation of the №i’s to the yi’s. That is (y|№) satisfies 

   (y|№)  =  ∏ 𝐼(𝑦𝑖 = 0, №𝑖 = 0) + 𝐼(𝑦𝑖 = 1, №𝑖 ≠ 0)𝑁
𝑖=1  .         (3) 

The density (№|) denotes the count-data sampling density. And the density () denotes the prior 

pdf for the unknown . With respect to the denominator, (|№,y) denotes the posterior pdf for the 

unknown  upon observing the counts (and, hence, the binary outcome). And the density (№|y) 

denotes the marginalized distribution for the counts, conditional on the binary outcomes. This 

density is simply the dichotomized pdf for the counts, reducing their probability space to the binary 
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outcomes. That is, for i = 1, 2, .., N, №i = 0, if yi = 0, and №i ≠ 0 if yi = 1. Within conjugate settings 

we can compute directly (№i = 0|yi = 0) and (№i ≠ 0|yi = 1) = ∑ (№i = j|𝑦𝑖  =  1) 
max (№i)
𝑗=1 . In 

non-conjugate settings we estimate these probabilities via the usual Monte Carlo method, averaging 

across the draws within the sampling algorithm. Thus, despite (№|y), having complex form, in 

principle, an estimate, say,  

   (№|𝐲)  ≅   𝐺−1 ∑ (№|𝐲, 𝛉(𝐠))  𝐺
𝑔=1 ,              (4) 

is available. The question of preference between the conventional probit specification and the non-

conventional generalized-linear-count-model specifications can then be determined with refernce to 

the estimates of (y), lodged at the base of table 4. A striking result emerges. This result is that the 

various cont-data sepcification dominate the conentional probit specification within the binary-

chocie context. Moreover, within the preferred count-data specializations for predicting the binary 

outcomes, the Geometric model—performaing disparagingly in conjugate and count-based 

generalized-linear-model settings—is now dominant. The result is striking and raises considerable 

scope for further nuances unifying agricultural adoption studies. 

6. Concluding comments 

This study considers countable adoption specification search in application to household dairy 

production. A rich set of Sri-Lankan small-holder dairy data are evaluated.  The data are of interest 

in and of themselves but are potentially more interesting in light of our search for a plausible count-

data model specification. In the context of the counts, some additional problems arise that are non-

existent in more conventional adoption analyses. This paper has demonstrated how these problems 

can be addressed formally in a common unifying framework; has developed methodology for model 

selection and covariate comparison; and, importantly, assessed the potential gains from pooling the 

results from alternative specifications within a unifying whole. We have also proposed a direction 

for additional research with the aim of comparing, hierarchically, a greater plethora of 

specifications, some of which are novel and others which the traditional agricultural-economic 

contributions have produced. Work remains in further formalizing this unification. Until then the 
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results presented are subject to the usual caveat. This caveat is that an over-arching, hitherto 

neglected, but preferred model, may exist. 
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Appendix  

This appendix subdivides into sections, including, background, notation, density development, 

conjugate models specification and non-conjugate models specialization. We facilitate 

implementation by amending well-known results in three, small, but important, ways. First, we 

extend the four foundations in counts, which are the Poisson, Geometric, Negative-Binomial and 

Binomial models to generalized-linear specializations. Second, we determine from an extensive set 

of models comparisons the preferred generalized-linear framework in each case. Third, we modify 

the basic marginal-likelihood identity outlined in Chib (1995) and extended in Chib and Jeliazkov 

(2001) in order to facilitate selection. In addition to Zellner (1971), Lindley and Smith (1972) and 

Chib (1995), some familiarity with conjugate developments in count-data models at a level of 

dexterity of, say, Mood et al (1974) or, alternatively, Poirier (1995), is advantageous. We assume 

familiarity with regression techniques in Markov Chain Monte Carlo systems as appears, for 

example, in Koop (2003) and Koop, Poirier and Tobias (2007). 

A.1 Notation 

By way of notation we use lower-case Greek and Roman numerals to reference scalar quantities, 

use emboldened lower-case symbols to reference vectors and use emboldened upper-case symbols 

to reference matrix quantities. Thus, let   (1, 2, .., N) denote a vector of parameters of interest, 

where ‘’ denotes the ‘transpose’ of the column vector ; () denotes the prior probability density 

function (pdf) for ; and (|y) the posterior pdf for ; where y  (y1, y2, .., yN) denotes data.  

Frequently, we reference the data generating model (y|), which is the likelihood function when 
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viewed as a function of  conditioned by y; and, sometimes, make use of variants of the (|) 

notation in order to reference particular probability density functions. Occasionally we find it useful 

to reference just the variable part of the density (integrating constant excluded) in which case we 

use the symbol ‘’ to denote ‘is proportional to.’  In view of the prior-to-posterior conjugacy 

shared by many of the models we consider, we adopt the notational convention employed by Drèze 

and Richard (1983) wherein postscripts indicated ‘
o
’ reflect prior information and postscripts 

indicated ‘
*
’ reflect posterior information; accordingly (|

o
)  () and (|

*
)  (|y).  Finally, 

we use indices i = 1, 2, .., N, to reference the households in question, where, we remind the reader, 

N = 401.   

 A.2 Probability density functions 

We use twelve probability density functions. The first, which we use to model the prior and 

posterior information about the single unknown parameter in the conjugate Poisson sampling 

model is the Gamma distribution (Bernardo and Smith, p. 118), namely, 
11
Ga (x|, )   


 ()

-1
 


-1 

exp{-x},   (0,+),   (0,+), x  (0,+). The second, which we use to model the data in 

the Poisson sampling model is the Poisson distribution (Bernardo and Smith, p. 116), namely, 


11
Pn (x|)   exp{-} 

x
 (x!)

-1
,   (0,+), x  [0, 1, 2, .., +). The third, which we use to model 

the evidence in the Poisson sampling model is the so-called Poisson-Gamma distribution (Bernardo 

and Smith, p. 119), 
11
Pg (x|, , n)   


 ()

-1
 (+x) (x!)

-1 
n

x
 (+n)

-(+x), 
  (0,+),   (0,+), 

x  [0, 1, 2, .., +). The fourth, which we use to model the prior and posterior information about 

the single unknown parameter in the conjugate Geometric sampling model is the Beta distribution 

(Bernardo and Smith, p. 116),  namely, 
11
Be (x|, )   (+) ()

-1
 ()

-1
 x
-1

 x
-1

,   (0,+),  

 (0,+), x  (0,1). The fifth, which we use to model the data in the Geometric sampling model is 

the Geometric distribution (Bernardo and Smith, p. 116)   
11
Ge (x|)    (1-)

x
,   (0,1), x  [0, 1, 

2, .., +). The sixth, which we use to model the evidence in the Geometric sampling model is the 

Geometric-Beta distribution (Bernardo and Smith, p. 118), 
11
Gb (x|, , n)   (+) ()

-1
 ()

-1
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(+1) (+x) (++x+1)
-1, 
  (0,+),   (0,+), x  [0, 1, 2, .., +). The seventh, which we 

use to model the data in the Binomial sampling model, is the Binomial distribution (Bernardo and 

Smith, p. 115), 
11
Bi (x|, n)   (n!) (x!)

-1
 ((n-x)!)

-1
 

x
 (1-)

n-x
,   (0,1), n  [1, 2, .., +), x  [0, 1, 

2, .., +). The eighth, which we use to model the evidence in the conjugate Binomial sampling 

model is the Binomial-Beta distribution (Bernardo and Smith, p. 117), 
11
Bb (x|, , n)   (+) 

()
-1

 ()
-1

 (+x) (+n-x) (++n)
-1, 
  (0,+),   (0,+), x  [0, 1, 2, .., +).  The ninth, 

which we use to model the data in the Negative-Binomial sampling model is the Negative-Binomial 

distribution (Bernardo and Smith, p. 116), 
11
Nb (x|, r)   ((r+x-1)!) (x!)

-1
 ((r-1)!)

-1
 

r
 (1-)

x
,   

(0,1), r  [1, 2, .., +), x  [0, 1, 2, .., +). The tenth, which we use to model the evidence in the 

conjugate Negative-Binomial sampling model is the Negative-Binomial-Beta distribution (Bernardo 

and Smith, p. 118), 
11
Nbb(x|, , r)   (+) ()

-1
 ()

-1
 (+r) (+x) (++x+r)

-1, 
  

(0,+),   (0,+), r  [1, 2, .., +), x  [0, 1, 2, .., +).  The eleventh, which we use to model the 

prior information for the regression coefficients in the models containing covariates, is the 

Multivariate-Normal distribution (Bernardo and Smith, p. 136),  
K1
Mn (𝐱|,)   (2)

-.5K
 ||

-.5
 exp{ -

.5(x-)
-1

(x-) }. Finally, for the purpose of drawing from cumulative distribution functions and 

the application of the ‘probability integral transform method,’ we make use of the Uniform 

distribution 
11
U (x|, )   (-)

-1
,   (-,),   (,+), which is the twelfth pdf we employ. 

A.3 Conjugate Poisson model development  

The assumption that the data, y1, y2, .., yN, follow the Poisson sampling distribution, leads to yi ~ 


11
Pn (yi|). The Poisson model has a conjugate prior probability density function, which is of the 

Gamma form. Hence, by assuming that  ~ 
11
Ga (|αo, βo)  and that the observations, y1, y2, .., yN, 

are independent and identically distributed as exchangeable random variables, it follows that the 

posterior distribution for the Poisson parameter, , is also in the Gamma form, |y ~ 
11
Ga (|α∗, β∗), 

wherein 𝛼∗ = 𝛼𝑜 + ∑ 𝑦𝑖
𝑁
𝑖=1  and 𝛽∗ = 𝛽𝑜 + 𝑁 define the location and scale of the posterior 
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distribution for  which has mean and variance, namely E{} = 𝛼∗ ÷ 𝛽∗ and Var{} = 𝛼∗ ÷ 𝛽∗
2
. 

The Poisson sampling model’s marginal density for the data, (y), is in the Poisson-Gamma form,  


11
Pg (x|,, n)   


 ()

-1
 (+x) (x!)

-1 
n

x
 (+n)

-(+x), 
  (0,+),   (0,+), x  [0, 1, 2, .., +). 

Finally, in the Gamma prior pdf,  ~ 
11
Ga (|αo, βo) , as in subsequent prior specifications, we set 

o = o = 1. 

A.4 Conjugate Geometric model development 

Developments for the conjugate Geometric-Beta sampling model follow analogously with that of 

the Poisson model.  The data, y1, y2, yN, are assumed to follow the Geometric distribution,  


11
Ge (yi|)    (1-)

yi
,   (0,1), yi  [0, 1, 2, .., +).  The unknown parameter in the Geometric 

distribution, which is , is assumed to follow the prior probability density which is the Beta 

distribution, namely, 
11
Be (|o, 

o
) , o  (0,+), o  (0,+),   (0,1). The conjugate posterior 

is in the Beta form and is 
11
Be (|∗, 

∗
) , wherein ∗ = 𝑜 + 𝑁 and 

∗
 = 

𝑜
+ ∑ 𝑦𝑖

𝑁
𝑖=1  define the 

location and scale of the posterior distribution for  for which the mean and variance are, 

respectively, E{} = 𝛼∗ ÷ (𝛼∗ + 𝛽∗) and Var{} = 𝛼∗∗
 ÷ (𝛼∗ + 𝛽∗ + 1) ÷ (𝛼∗ + 𝛽∗)2. The 

Geometric sampling model has a marginal likelihood, (y), in the Negative-Binomial-Beta form, 


11
NbB(𝐲|αo, βo, Nr), which is available by direct calculation. Finally, in the Beta prior pdf,  ~ 


11
be (|αo, βo), we set o = o = 1. 

A.5 Conjugate Negative Binomial model development  

Developments concerning the Negative Binomial formulation follow analogously to the Geometric 

model when it is recognized that the Geometric distribution is a special case of the Negative 

Binomial formulation with the restriction ro = 1. Analyses follow directly by extension to those 

described under the Geometric setting with the restriction ro = 1 relaxed to ro  1.  Once again, the 

conjugate Negative Binomial model has a marginal likelihood which is available in closed form, 

thus facilitating straight-forward models comparisons. 
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A.6 Conjugate Binomial model development 

Developments concerning the Binomial formulation are as follows. The data, y1, y2, yN, are 

assumed to be distributed as Binomial random deviates, 
11
Bi (x|, n)   (n!) (x!)

-1
 ((n-x)!)

-1
 

x
 (1-

)
n-x

,   (0,1), n  [1, 2, .., +), x  [0, 1, 2, .., +). The unknown parameter in the Binomial 

distribution, , is assumed to follow the prior probability density which is the Beta distribution, 

namely, 
11
Be (|o, 

o
) , o  (0,+), o  (0,+),   (0,1). The conjugate posterior is in the Beta 

form 
11
Be (|∗, 

∗
) , *  (0,+), *  (0,+),   (0,1), wherein ∗ = 𝑜 + 𝑁 and 

∗
 = 

𝑜
+

∑ 𝑦𝑖
𝑁
𝑖=1  and the marginal likelihood is in the Binomial-Beta form 

11
Bb (x|, , n)   (+) ()

-1
 

()
-1

 (+x) (+n-x) (++n)
-1, 
  (0,+),   (0,+), x  [0, 1, 2, .., +). Finally, in the 

Beta prior pdf,  ~ 
11
be (|αo, βo), we set o = o = 1. 

A.7 Generalized linear models development  

In the Poisson setting, inferences about the all-important location-and-scale parameter, , are 

attainable by making three very small modifications to the conjugate Poisson-Gamma sample 

setting.  First, we allow  to vary across respondents, assuming that there exist quantities, 1, 2, .., 

N depicting the propensity for each household to ‘adopt.’ Second, we assume, in turn, that each 

choice is conditioned by a K-vector of household-specific covariates, x1, x2, .., , xN, consisting of 

household specific elements, xi  (xi1, xi2, .., xiK). Third, we consider that the adoption propensities, 

which are unobserved, are affected by a vector of unobserved coefficients   (1, 2, .., K) which 

are assumed to evolve, in turn, from a K-variate Normal prior distribution  ~ 
K1
Mn (|𝛍𝐨,𝐨), 

wherein o denotes the K-dimensional null-vector and o denotes the K-dimensional identity matrix 

scaled by a factor of 10. Finally, observing that the  1, 2, .., N must satisfy 1 > 0,  2 > 0,  .., N 

> 0, we assume that for each i = 1, 2, .., N, i  exp{xi}.  The model is no longer conjugate and so 

inferences, including conclusions about the evidence in favor of any particular model, must be 

derived by iterative simulation, such as Markov Chain Monte Carlo. Notwithstanding this remark, 



- 27 - 

computational issues are rather modest in this generalized-linear setting. It follows from work that 

is now considered quite standard in such situations, (Casella and Robert, 1999; Koop, 2003; Koop, 

Poirier and Tobias, 2007) that estimates of the full model, with joint distribution (y,|x) = 

∏  
11
Pn (yi|exp {𝐱𝐢

) N
i=1  

K1
Mn (|𝛍𝐨,𝐨) are easily retrieved. In particular, a basic Metropolis-

Hastings algorithm for retrieving estimates of ; for providing a foundation for models comparison 

extensions (Jeliazkov and Chib, 2001); and for subsequent posterior prediction and inference; 

proceeds sequentially, for iterations t = 0, t=1, t=2, …., as follows: Algorithm(Ao) Given the 

state variable at iteration ‘t’, say  
(t)

; draw a K-variate proposal, say 
(t)

, from the K-variate-Normal 

distribution, 
K1
Mn ((t)|(t), 𝐈𝐊

(t)), where 
(t)

 denotes an investigator-supplied variance parameter.  

Compute the ratio 
(t)

    (y,
(t)

|x)  (y,
(t)

|x).  Accept the draw such that 
(t+1)

 = 
(t)

 with a pre-

specified probability, say, 
(t)

; and set 
(t+1)

 = 
(t)

, with probability 1-
(t)

. This algorithm is very 

simple to implement and leads to robust estimates of the regression coefficients in the generalized-

linear Poisson setup. In practice, we target the acceptance rate in the proposal distribution to be 

fixed at 
(t)

 =  = 0.25 and we allow adjustments in the variance terms 
(t)

, 
(t+1)

, 
(t+2)

, such that 

this acceptance rate is targeted throughout the simulation. In the specific case of the Poisson 

distribution, we find that estimates are rather quick to converge, requiring only modest sample sizes 

slightly in excess of about 1,000 iterations.  However, in all of the reports enacted with respect of 

the algorithm we sample conservatively for an initial 10,000 iterations, using the subsequent 10,000 

iterations for reporting. We note that, one attractive feature of this algorithm, due to Chib and 

Jeliazkov (2001) is that it is relatively straight-forward to derive robust estimates of the marginal 

likelihood attributable to a specific model by simply extending the sampling scheme for a 

subsequent two rounds of draws. In summary, closed-form analysis of the Poisson-Gamma 

sampling framework facilitates inference, posterior prediction and model selection. However, the 

conjugate Poisson-Gamma model is restrictive. Importantly, it precludes the evaluation of 

potentially important and fundamental covariate information. A generalized-linear Poisson-Normal 

model is available from minor modifications of the Poisson-Gamma configuration and the resulting 
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joint posterior distribution is easily assessed using routine application of Markov Chain Monte 

Carlo techniques. The generalized-linear Poisson-Normal model leads to improvements in fit. 

Implementation under Geometric, Negative Binomial and Binomial sampling schemes is virtually 

identical, except for one major modification. Recognizing that the sample space for these sampling 

models is   (0,1), we implement the probability measure using a logit transformation of the 

regression means. That is, 1, 2, .., N, are modeled using the conditions i  exp{jxjij}  

{1+exp{jxjij}}, i = 1, 2, .., N. And all of the remaining detail outlined in the context of the 

Poisson generalized linear model proceeds analogously. The computer codes used to implement the 

relevant simulations are available within the supplemental materials accompanying this publication. 

Additional inferential detail is available from the authors upon request. 
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 Tables 

 

Table 1: Description of variables 

Variable (number) Description  

Cow number Total number of cows owned by the household 

Dry Zone (1) Household live in the dry zone = 1 

Wet Zone (2) Household live in the wet zone = 1 

Intermediate Zone (3) Household live in the intermediate zone = 1 

Time to market (4) Time to the closest buyer in minutes  

Total Income (5) Code for the Total income of the household in Sri Lankan Rupees per 

month 

1. below 5000; 2. 5000 – 10000;  3. 11000-15000; 4. 16000- 20000; 5. 

21000 – 25000; 6. 26000- 30000; 7. 31000 – 35000;   8. above 35000 

Land (6) Land extent owned 

Cattle Shed (7) Owns a cattle shed =1 

Perception I (8) Perception of the farmer on the statement :  “Cross bred animals are not 

suitable in your area” 1=do not agree ; 2=don’t know; 3=agree 

Perception II (9) Perception of the farmer on the statement : “It is expensive to maintain 

cross bred animals” 

Society (10) Household is a member of milk society = 1 

Training (11) Household had training on dairy activities = 1 

Education (12) Number of years in formal education 

Experience (13) No of years farmer has been engaged in dairy farming 
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Table 2: Summary statistics stratified by agro-ecological zones 

  Dry Zone Wet Zone Intermediate  Zone All Data 

 N = 152 N = 93 N = 156 N = 401 

  Mean Std. Mean Std. Mean Std. Mean Std. 

Cow number 1.61 1.47 2.03 1.59 1.76 1.61 1.65 1.54 

Dry zone  1.00 0.00 0.00 0.00 0.00 0.00 0.29 0.45 

Wet Zone  0.00 0.00 1.00 0.00 0.00 0.00 0.30 0.46 

Intermediate Zone  0.00 0.00 0.00 0.00 1.00 0.00 0.41 0.49 

Time to market 11.09 11.57 13.93 14.37 22.01 37.07 21.78 36.75 

Total Income 3.82 2.05 3.28 1.85 3.66 2.01 3.60 2.02 

Land 2.14 2.18 1.45 1.81 1.45 1.65 1.56 1.68 

Cattle Shed  0.59 0.49 0.81 0.40 0.78 0.42 0.64 0.48 

Perception I 1.42 0.80 1.28 0.68 1.40 0.80 1.39 0.77 

Perception II 2.87 0.47 2.46 0.89 2.78 0.63 2.60 0.79 

Society 0.76 0.43 0.87 0.34 0.69 0.46 0.74 0.44 

Training 0.66 0.47 0.66 0.48 0.59 0.49 0.65 0.48 

Education 7.53 3.01 8.18 2.75 7.80 2.88 7.49 3.00 

Experience 12.22 10.72 15.72 9.25 13.99 11.09 14.37 10.45 

Note: Std. = Standard Deviation 
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Table 3: Summary statistics stratified by adoption class  

  Non Adopters Adopters All Sample 

 N = 51 N = 350 N = 401 

 
Mean Std. Mean Std. Mean Std. 

Cow number 0.00 0.00 1.00 0.00 1.71 1.53 

Dry zone  0.51 0.50 0.35 0.48 0.27 0.44 

Wet Zone 0.10 0.30 0.25 0.43 0.34 0.47 

Intermediate Zone  0.39 0.49 0.40 0.49 0.39 0.49 

Time to market 41.08 53.75 12.95 14.97 20.77 34.90 

Total Income 2.88 1.82 3.29 1.85 3.54 1.97 

Land 1.69 1.77 1.40 1.54 1.54 1.63 

Cattle Shed 0.31 0.46 0.77 0.42 0.66 0.47 

Perception I 1.63 0.91 1.36 0.76 1.38 0.77 

Perception II 2.67 0.70 2.79 0.60 2.58 0.80 

Society 0.49 0.50 0.77 0.42 0.76 0.43 

Training  0.35 0.48 0.57 0.50 0.43 0.65 

Education 5.96 3.22 7.61 2.90 7.59 2.93 

Experience 13.66 11.79 13.65 10.54 14.24 10.15 

Note: Std. = Standard Deviation 

 

 

 



Table 4. Generalized linear regression results. 

 Specification 

 Poisson Geometric Negative Binomial Binomial Probit 

                

Dry Zone -0.61 -0.30 0.03 -0.35 0.37 1.11 1.72 1.96 2.53 -5.64 -5.24 -4.89 -1.66 -0.62 0.41 

Wet Zone -0.28 -0.01 0.31 -0.61 0.14 0.86 1.37 1.71 2.17 -5.47 -4.97 -4.53 -0.91 0.12 1.19 

Intermediate Zone -0.42 -0.14 0.19 -0.56 0.23 1.01 1.49 1.84 2.43 -5.59 -5.09 -4.71 -1.21 -0.15 0.91 

Time to Market -2.87 -1.74 -0.84 0.33 1.41 2.43 0.33 1.55 2.30 -2.20 -1.49 -0.87 -4.04 -2.63 -1.32 

Total Income 0.52 0.88 1.16 -1.44 -0.90 -0.30 -1.22 -0.81 -0.47 0.74 0.97 1.14 -0.58 0.29 1.16 

Land 0.03 0.67 1.12 -1.51 -0.48 0.66 -0.92 -0.42 0.10 -0.15 0.47 1.01 -2.24 -0.30 1.82 

Cattle Shed 0.00 0.15 0.31 -0.48 -0.19 0.09 -0.29 -0.12 0.07 0.00 0.17 0.36 0.29 0.71 1.13 

Perception I -0.49 -0.24 0.06 -0.50 0.08 0.60 -0.06 0.21 0.49 -0.44 -0.19 0.15 -0.96 -0.29 0.40 

Perception II -0.49 -0.12 0.20 -0.43 0.15 0.63 0.00 0.25 0.56 -0.36 -0.14 0.07 -0.46 0.41 1.25 

Society -0.14 0.06 0.23 -0.43 -0.05 0.30 -0.25 -0.08 0.14 -0.14 0.06 0.26 -0.17 0.24 0.67 

Training 0.16 0.30 0.46 -0.65 -0.33 0.00 -0.52 -0.28 -0.09 0.14 0.31 0.46 0.07 0.49 0.92 

Education -0.06 0.36 0.69 -1.11 -0.36 0.41 -0.73 -0.21 0.28 -0.13 0.26 0.73 0.04 0.91 1.77 

Experience -0.57 -0.07 0.34 -0.65 0.01 0.67 -0.68 -0.02 0.51 -0.28 0.12 0.69 -0.36 0.77 1.98 

                

Count log marginal likelihood  -646.78 -731.75 -646.62 -643.33    

Numerical standard error    0.22 0.36 0.00 0.00    

                

Binary log marginal likelihood -154.66 -100.48  -138.33 -150.92 -237.80 

Numerical standard error       0.00      0.00        0.04      0.03      4.05 

              

Note: Estimates derived from a Gibbs sample size of S = 10,000 discarding an initial ‘burnin’ of S = 10,000. Within each specification, the columns 

report, respectively, the 2.5 % lower highest-posterior-density limit; the posterior mean; and the 97.5% upper highest-posterior-density limit. 

Emboldened entries are ‘significant’ at the’ 95% confidence level.’ ‘Significant’ within each specification are as follows: Poisson regression model: 

Time to Market, Total Income, Land, Cattle Shed and Training; Geometric regression model: Time to market, Total Income; Negative Binomial 

regression model: Dry Zone, Wet Zone, Intermediate Zone, Time to Market, Total Income, Perception II, Training. Binomial regression model: Dry 

Zone, Wet Zone, intermediate Zone, Time to Market, Total Income, Cattle Shed, Training; Probit regression model: Time to Market, Cattle Shed, 

Training, Education. The dominant count-data model is the Binomial regression model. The dominant binary-data model is the binary-transformed 

Geometric model. 



 

 

 

 

 

 

Figures 

 

 

 

Figure 1.  Distribution of crossbred cows across the sample.  There are 401 households within the 

sample.  The maximum number of cows is eleven; the minimum number of cows is zero; the mean 

number of cows is 1.77; the median is 1.00; and the standard deviation is 1.57. 
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Figure 2.  Distribution of crossbred cows across agro-climatic zones.  The entries within each count 

are, respectively, the conditional probability of that count across the respective climatic zones and 

the full data set.  The first bar denotes the probability of observing that count across the ‘dry zone,’ 

consisting of N = 152 respondents; the second bar denotes the probability of observing that count 

within the ‘wet zone,’ N = 93; the third bar denotes the probability of observing that count within 

the ‘intermediate zone,’ N = 156; and the fourth bar denotes the empirical probability of observing 

that count across the overall sample, N = 401. 
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Figure 3.  Crossbred-cow counts. The observed probabilities across the sample are reported for each 

count by the left-most (red) bar. The predicted probabilities derived from the Poisson model are 

reported in the (green) second bar. The predicted probabilities derived from the Geometric model 

are reported in the (cyan) third bar.  The predicted probabilities derived from the Negative Binomial 

model are reported in the (magenta) fourth bar. The predicted probabilities derived from the 

Binomial model are reported in the right-most (red) bar. 
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Figure 4. Empirically-observed and model-predicted probabilities.  The black dotted line represents 

the line of ‘perfect fit’ with the empirically observed probabilities entered in circles.  The predicted 

probabilities derived from the Poisson model are reported in green.  The predicted probabilities 

derived from the Geometric model are reported in cyan.  The predicted probabilities derived from 

the Negative Binomial model are reported in magenta.  The predicted probabilities derived from the 

Binomial model are reported in red.  The correlations between the empirically observed 

probabilities and the predicted probabilities for the Poisson, Geometric, Negative Binomial and 

Binomial models are, respectively, .927, .689, .926, and .929. 
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Figure 5. Log-marginal likelihood values for the conjugate Poisson, Geometric, Negative Binomial 

and Binomial models over iterated, integer-valued parameter space. The green entry depicts the 

constant log-marginal likelihood value corresponding to the Poisson model and the cyan entry 

depicts the constant log-marginal likelihood value corresponding to the Geometric model. The 

magenta entries depict the log-marginal likelihood value of the Negative-Binomial model as the 

integer-valued parameter, r, is varied from a lower bound of 1, at which point the Geometric and 

Negative Binomial models coincide; the maximum log-marginal likelihood value is attained at r = 

7. The red entries correspond to the Binomial model, with the number of trials, no, adjusted 

uniformly across the sample from a lower bound of no = 11, which is the maximum number of 

crossbred animals held by a household; the maximum log-marginal likelihood value is attained at 

the maximum log-marginal likelihood value is attained at no = 139.  Not indicated in the graphic is 

the fact that the Negative Binomial and Binomial log marginal likelihood values appear asymptotic.  

Conditional probabilities in favor of the Poisson, Geometric, Negative Binomial and Binomial 

models with the integer parameters set at their optimal values are 0.00078, 0.00000, 0.99921 and 

0.00001. 
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Figure 6.  Model-average probabilities available from applying the integer-value search procedure 

documented in figure 4.  The maximum probability over the first 50 iterations is 0.1654.   
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Figure 7. Covariate search results. The magenta dotted entries depict the log-marginal likelihood 

values derived from the search employing the Negative-Binomial generalized linear model with 

covariates #1, #2, …, #13 included.  The red dotted entries depict the log-marginal likelihood 

values derived from the search employing the Binomial generalized linear model with #1, #2, …, 

#13 included.  The magenta crossed entries depict the log-marginal likelihood values derived from 

the search employing the Negative-Binomial generalized linear model with covariates #1, #2, #3 

included. The red crossed entries depict the log-marginal likelihood values derived from the search 

employing the Binomial generalized linear model with covariates #1, #2 and #3 included. The 

profiles from figure 5 have been superimposed in order to emphasize the differences obtained from 

moving between the conjugate- and generalized-linear-model specifications. The Negative 

Binomial model was iterated for 100 passes and the Binomial model was iterated for 200 passes. 

The predictive improvement, attributable to covariates, measured in terms of the log marginal 

likelihood differences, is substantial.   
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Supplemental Information  

 

Conjugate Analysis, Exchangeability and Prediction 

 

 S.1 Poisson Data Generation 

A first matter of some importance pertains to the way in which inferences are affected by the 

alternative production practices availed by the data across the dry-zone-, wet-zone- and 

intermediate-zone-climatic regions. Some alternatives for assessing this difference are available 

from exploiting the conjugate updating formulae which are availed by virtue of the conjugacy in the 

Poisson-Gamma setting. Supplemental Figure S.1.1 depicts the updating of the inferences about the 

Poisson parameter, , by sampling sequentially across the 401 observations, with the ordering of 

the sequence re-arranged so that, in turn, the dry-zone, then wet-zone and finally the intermediate-

zone observations are placed first within the sample.  There are some significant differences 

apparent across the climatic zones.  These differences are further highlighted within the posterior 

reports of the distribution for  across the respective climatic zones and the overall sample, as 

depicted in Supplemental Figure S.1.2.  The predictive performance of the conjugate Poisson model 

is reported in Supplemental Figure S.1.3. A question concerning possible improvements in fit are 

considered by an extensive model selection exercise that considers, as datum, that differences 

across the climatic regimes exist but that adoption propensities may be affected by one or other of 

the covariates described in Table 1, justifications for which are noted in the text. These estimates 

are summarized in the degrees of fit depicted in Supplemental Figure S.1.4.  
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Supplemental Figure S.1.1. Sequential updating posterior expectations of the Poisson parameter. 

There are three, respective orderings. The blue dots depict the sequence when the dry-zone 

observations are sampled first; the red dots indicate the pattern of inferences when the wet-zone 

observations are sampled first; and the black dots indicate inference progression when the 

intermediate-zone observations are placed first. 
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Supplemental Figure S.1.2. Posterior distributions of the Poisson parameter under alternative 

sampling assumptions. The blue-shaded area depicts the location and scale derived from processing 

the entire sample. The left-of-center distribution in red depicts the dry-zone inference; the right-of-

center red distribution depicts the wet-zone inference; and the centered red distribution depicts the 

intermediate-zone inference. 
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Supplemental Figure S.1.3.   Posterior predictive inference for the counts derived from the Poisson 

sampling model.  The right-most red-colored bars depict the observed data; the centered magenta-

colored bars depict the predictions derived from the conjugate Poison-Gamma model; and the left-

most red-colored bars depict inferences derived from the preferred-covariate-specification of the 

generalized-linear Poisson regression model with covariates #1, #2, .., #13 included. 
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Supplemental Figure S.1.4. Posterior predictions derived from the preferred-covariate-specification 

of the generalized-linear Poisson regression model with covariates #1, #2, ..,  #13 included. The line 

of perfect fit is denoted by black dots and the predicted observations derived from the Multivariate-

Normal generalization of the Poisson-Gamma model are depicted in red. The coefficient of 

correlation between the observed and the predicted values is 0.49. 
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S.2 Geometric Data Generation  

Once again, as we did for the Poisson model, we consider sequential updating and differences 

between the adoption potentials in the three distinct agro-climatic zones.  Supplemental Figure 

S.2.1 depicts the inferences derived from sequentially updating the data ordered, respectively, with 

the dry-zone observations situated first in the sample; with the wet zone then situated first; and 

finally the intermediate zone observations situated first. The first ordering is depicted in red; the 

second in blue; and the third in black.  Once again, some significant differences emerge.   These 

differences are again manifested in posterior reports of the Geometric sampling model parameter.  

Supplemental Figure S.2.2 depicts these reports.  Posterior predictive reports from the conjugate 

Geometric model are reported in Supplemental Figure S.2.3 and predictive reports corresponding to 

the generalized-linear regression estimation are reported in Supplemental Figure S.2.4. 
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Supplemental Figure S.2.1. Sequential updating expectations about the Geometric parameter across 

the sample under three, respective data orderings.  The blue dots depict the sequence when the dry-

zone observations are sampled first; the red dots indicate the pattern of inferences when the wet-

zone observations are sampled first; and the black dots indicate inference progression when the 

intermediate-zone observations are placed first. 
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Supplemental Figure S.2.2.  Posterior distributions of the Geometric sampling parameter under 

alternative sampling assumptions. The blue-shaded area depicts the location and scale derived from 

processing the entire sample.  The left-of-center distribution in red depicts the wet-zone inference; 

the right-of-center red distribution depicts the dry-zone inference; and the centered red distribution 

depicts the intermediate-zone inference. 
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Supplemental Figure S.2.3.  Posterior predictive inference for the counts derived from the 

Geometric sampling model.  The right-most red-colored bars depict the observed data; the centered 

magenta-colored bars depict the predictions derived from the conjugate Geometric-Beta model; and 

the left-most red-colored bars depict inferences derived from the preferred-covariate-specification 

of the generalized-linear Geometric regression model with covariates #1, #2, .., #13 included. 
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Supplemental Figure S.2.4.  Posterior predictions derived from the preferred-covariate-specification 

of the generalized-linear Geometric regression model with covariates #1, #2, .., #13 included.  The 

line of perfect fit is denoted by black dots and the predicted observations derived from the 

Multivariate-Normal generalization of the Geometric-Beta model are depicted in red. The 

coefficient of correlation between the observed and the predicted values is 0.46. 
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S.3 Negative Binomial Data Generation  

Once again, for the Negative Binomial model, we consider sequential updating and differences 

between the adoption potentials in the three distinct agro-climatic zones.  Supplemental Figure S.3.1 

depicts the inferences derived from sequentially updating the data ordered, respectively, with the 

dry-zone observations situated first in the sample; with the wet zone then situated first; and finally 

the intermediate zone observations situated first. The first ordering is depicted in red; the second in 

blue; and the third in black.  Once again, some significant differences emerge.   These differences 

are again manifested in posterior reports of the Negative Binomial sampling model parameter.  

Supplemental Figure S.3.2 depicts these reports.  Posterior predictive reports from the conjugate 

Negative Binomial model are reported in Supplemental Figure S.3.3 and predictive reports 

corresponding to the generalized-linear regression estimation are reported in Supplemental Figure 

S.3.4. 
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Supplemental Figure S.3.1. Sequential updating expectations about the Negative-Binomial 

parameter across the sample under three, respective data orderings. The blue dots depict the 

sequence when the dry-zone observations are sampled first; the red dots indicate the pattern of 

inferences when the wet-zone observations are sampled first; and the black dots indicate inference 

progression when the intermediate-zone observations are placed first. 
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Supplemental Figure S.3.2. Posterior distributions of the Geometric sampling parameter under 

alternative sampling assumptions. The blue-shaded area depicts the location and scale derived from 

processing the entire sample.  The left-of-center distribution in red depicts the wet-zone inference; 

the right-of-center red distribution depicts the dry-zone inference; and the centered red distribution 

depicts the intermediate-zone inference. 
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Supplemental Figure S.3.3. Posterior predictive inference for the counts derived from the Negative-

Binomial sampling model.  The right-most red-colored bars depict the observed data; the centered 

magenta-colored bars depict the predictions derived from the conjugate Negative-Binomial-Beta 

model; and the left-most red-colored bars depict inferences derived from the preferred-covariate-

specification of the generalized-linear Negative Binomial regression model with covariates #1, #2, 

.., #13, included. 
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Supplemental Figure S.3.4.  Posterior predictions derived from the preferred-covariate-specification 

of the generalized-linear Negative-Binomial regression model with covariates #1, #2, .., #13, 

included.  The line of perfect fit is denoted by black dots and the predicted observations derived 

from the Multivariate-Normal generalization of the Negative-Binomial-Beta model are depicted in 

red. The coefficient of correlation between the observed and the predicted values is 0.49. 
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S.4 Binomial Sampling Model 

 

Sequential updating and differences between the adoption potentials in the three distinct agro-

climatic zones is undertaken for the Binomial sampling models.  Supplemental Figure S.4.1 depicts 

the inferences derived from sequentially updating the data ordered, respectively, with the dry-zone 

observations situated first in the sample; with the wet zone then situated first; and finally the 

intermediate zone observations situated first. The first ordering is depicted in red; the second in 

blue; and the third in black. Significant differences emerge.  These differences are again manifested 

in posterior reports of the Binomial sampling model parameter.  Supplemental Figure S.4.2 depicts 

these reports. Posterior predictive reports from the conjugate Binomial model are reported in 

Supplemental Figure S.4.3 and predictive reports corresponding to the generalized-linear regression 

estimation are reported in Supplemental Figure S.4.4. 
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Supplemental Figure S.4.1. Sequential updating expectations about the Binomial parameter across 

the sample under three, respective data orderings.  The blue dots depict the sequence when the dry-

zone observations are sampled first; the red dots indicate the pattern of inferences when the wet-

zone observations are sampled first; and the black dots indicate inference progression when the 

intermediate-zone observations are placed first. 
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Supplemental Figure S.4.2. Posterior distributions of the Binomial sampling parameter under 

alternative sampling assumptions. The blue-shaded area depicts the location and scale derived from 

processing the entire sample. The left-of-center distribution in red depicts the dry-zone inference; 

the right-of-center red distribution depicts the wet-zone inference; and the centered red distribution 

depicts the intermediate-zone inference. 
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Supplemental Figure S.4.3.  Posterior predictive inference for the counts derived from the Binomial 

sampling model.  The right-most red-colored bars depict the observed data; the centered magenta-

colored bars depict the predictions derived from the conjugate Geometric-Beta model; and the left-

most red-colored bars depict inferences derived from the preferred-covariate-specification of the 

generalized-linear Poisson regression model with covariates #1, #2, .., #13 included. 
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Supplemental Figure S.4.4.  Posterior predictions derived from the preferred-covariate-specification 

of the generalized-linear Binomial regression model with covariates #1, #2, .., #13, included.  The 

line of perfect fit is denoted by black dots and the predicted observations derived from the 

Multivariate-Normal generalization of the Binomial-Beta model are depicted in red. The coefficient 

of correlation between the observed and the predicted values is 0.49. 
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