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A new class of parameter estimation algorithms is introduced for Gaussian process regression (GPR) models. It is shown
that the integration of the GPR model with probability distance measures of (i) the integrated square error and (ii) Kullback–
Leibler (K–L) divergence are analytically tractable. An efficient coordinate descent algorithm is proposed to iteratively
estimate the kernel width using golden section search which includes a fast gradient descent algorithm as an inner loop
to estimate the noise variance. Numerical examples are included to demonstrate the effectiveness of the new identification
approaches.

Keywords: Gaussian process; optimization; probability distance measures

1. Introduction
Regression models that define a system input/output rela-
tionship are widely used for system analysis and design
in many scientific disciplines. Common regression mod-
els including linear models and nonlinear models such
as neural networks are characterized by their use of
a specific function to describe the system input/output
relationship. The Gaussian process regression (GPR)
model (Rasmussen, 2004; Rasmussen & Williams, 2006)
is a nonparametric probabilistic model in which the system
output is a data sample drawn from a Gaussian distribution
conditional on its input. One can think of a Gaussian pro-
cess as defining a distribution over functions, and inference
taking place directly in the space of functions (Rasmussen,
2004). A Gaussian process is completely specified by its
mean function and covariance function, and is defined
as a collection of random variables, any finite number
of which have a joint Gaussian distribution. As such the
functional mapping between the system input/output in
GPR is assumed unknown, but a random function (an infi-
nite dimensional vector), that is, a process with a specific
covariance function of the input. The GPR is a power-
ful modeling tool since it predicts the output mean and
variance conditional on a specific input at the same time.
Clearly, this is an advantage over many other nonlin-
ear functional-based modeling paradigms, for example,
support vector regression (Schölkopf & Smola, 2002),
which cannot quantify the uncertainties at the sample

∗Corresponding author. Email: x.hong@reading.ac.uk

level. The GPR model has been successfully applied to
a wide range of applications, for example, latent mod-
els for dimensionality reduction (Jiang, Gao, Wang, &
Zheng, 2012; Lawrence, 2005) and modeling dynami-
cal systems (Turner, Huber, Hanebeck, & Rasmussen,
2012).

The predictive output distribution of a GPR model is
parameterized by a small number of parameters in the
covariance function, which can be served by a typical ker-
nel function, as well as the variance of additive noise,
which can be regarded as one of the parameters. Typ-
ically, for a given data set the estimation of the GPR
model also involves finding the most appropriate param-
eters, this is in general achieved by maximum log marginal
likelihood or just maximum a posteriori estimation (Ras-
mussen & Williams, 2006). Alternatively, the GPR model
estimation can be configured as a special type of probabil-
ity density estimation problem concerning the conditional
probability of an output variable. It is therefore a straight-
forward matter to construct objective functions based on
the distance measure between the estimated output prob-
ability density function (pdf) for a given data set and an
assumed true pdf. Well-known probability distance mea-
sures include the integrated square error (ISE) (Girolami
& He, 2003; Hong et al., 2013; Silverman, 1986) which
has been successfully applied in probability density esti-
mation (Girolami & He, 2003; Silverman, 1986) and the
Kullback–Leibler (K–L) divergence (Kullback & Leibler,

c© 2014 The Author(s). Published by Taylor & Francis.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The moral rights of the named author(s) have been
asserted.
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1951) which is a widely used theoretic information metric
for model selection (Burnham & Anderson, 2002).

In this paper, an efficient coordinate descent algorithm
is proposed that iteratively estimates the kernel width using
the golden section algorithm, which includes a gradient
descent algorithm to rapidly update the noise variance.
This paper is organized as follows. Section 2 introduces the
GPR model. Section 3 formulates two types of probability
distance measures based on ISE and K–L divergence based
on a full GPR model. Section 4 introduces the proposed
gradient descent algorithm for estimating the noise vari-
ance and the kernel width using ISE and K–L divergence
metrics, respectively. Numerical experiments are utilized
to illustrate the effectiveness of the proposed algorithm in
Section 5 and our conclusions are given in Section 6.

2. Gaussian process regression
For a given data set DN = {xn, yn}Nn=1, where xn ∈ �m, let
X = [x1, . . . , xN ]T denote the observed input data matrix
and also input space. Y = [y1, . . . , yN ]T is an observed out-
put vector and is also the output space. Define a kernel
function k(xi, xj ) (i, j = 1, . . . N ) on the input space X . In
this study, the Gaussian kernel given by

k(u, v) = exp
(
−‖u− v‖2

2ρ2

)
(1)

is adopted, but other kernels can also be used. ρ > 0 is the
width parameter.

Let N (μ, �) denote the Gaussian distribution with
mean μ and covariance �. In the classical GPR model,
each sample yn is generated based on

y = f (x)+ ε, (2)

where f is drawn from a (zero mean) Gaussian pro-
cess f ∼ N (0, KXX ) which is dependent only on a
specific covariance/kernel function KXX = {k(xi, xj )} ∈
�N×N , and ε ∼ N (0, σ 2). Denote kX x = [k(x1, x), . . . ,
k(xN , x)]T ∈ �N .

The classical GPR aims to estimate the predictive dis-
tribution p(y | x∗) for any test data x∗ ∈ X . Consider a
new test observation x∗. Under the Gaussian likelihood
assumption, it is easy to prove (Rasmussen & Williams,
2006) that the estimated predictive distribution conditioned
on the given observation is

p̂(y | x∗, X , Y) ∼ N (f (x∗), g(x∗)), (3)

where

f (x∗) = kT
X x∗(KXX + σ 2I)−1Y, (4)

g(x∗) = σ 2 + k(x∗, x∗)− kT
X x∗(KXX + σ 2I)−1kX x∗ (5)

with I denoting identity matrix with appropriate dimen-
sion. Specifically, let α= [α1, . . . , αN ]T= (KXX + σ 2I)−1Y.

The mean of Equation (3) can be written as

f (x∗) = αTkX x∗ =
N∑

i=1

αik(xi, x∗), (6)

This form of the prediction exhibits the fact that a GP can
be represented in terms of a number of basis functions
according to the representer theorem (Schölkopf & Smola,
2002).

The marginal likelihood p(Y | X ) is the integral of the
likelihood times the prior

p(Y | X ) =
∫

p(Y | f , X )p(f | X ) df (7)

and the log marginal likelihood is given by Rasmussen &
Williams (2006) as

J ML = log p(Y | X ) = −1
2

YT(KXX + σ 2I)−1Y

− 1
2

log det(KXX + σ 2I)− N
2

log(2π) (8)

which is the mostly used criterion for the estimation of
GPR model parameters.

3. Probability distance measures for GPR
Probability distance measures are similarity metrics
between two pdfs. In this paper, we propose to identify
GPR model using the distance between the true output pdf
and its estimator. We use data set X as prior for a GPR
model, which predicts the conditional probability of the
system output induced by any input vector in X . Not all
pdf distance measures are tractable since the true probabil-
ity is always unknown. In the following, we formulate two
tractable cost functions that are related to the ISE and the
K–L divergence for an output probability density estimator
based on the GPR model.

3.1. The minimum integrated square error
The minimum integrated square error (MISE) between a
pdf estimator and the true density is a classical goodness-
of-fit criterion of probability density estimation, both for
nonparametric (Girolami & He, 2003; Silverman, 1986)
and for parametric models (Scott, 2001). The ISE for the
GPR pdf estimator is given by

ISE =
∫

(p(y)− p̂(y | X , Y))2 dy

=
∫

(p(y))2 dy − 2
∫

p̂(y | X , Y)p(y) dy

+
∫

(p̂(y | X , Y))2 dy

=
∫

(p(y))2 dy + Q, (9)
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where Q can be used as the cost function instead of ISE
since

∫
(p(y))2 dy does not contain adjustable parameters.

Consider the problem of estimating p̂(y | X , Y) based
on given data set {X , Y}, we have

p̂(y | X , Y) =
∫

p̂(y | x, X , Y)p(x) dx

= E(p̂(y | x, X , Y))

≈ 1
N

N∑
j=1

1√
2πg(xj )

exp
(
− (y − f (xj ))

2

2 g(xj )

)
.

(10)

Here, we applied the well-known Bayesian rule, and then
the principle of the plug-in estimator which states that sam-
ple average can be used to approximate an expected value
when the true density is unknown.

By making use of Equation (10) and also the princi-
ple of plug-in estimation for

∫
p̂(y | xj , X , Y)p(y) dy with

respect to the true density p(y), we have

Q =
∫ ⎛
⎝ 1

N

N∑
j=1

1√
2πg(xj )

exp
(
− (y − f (xj ))

2

2 g(xj )

)⎞⎠
2

dy

− 2
∫

p̂(y | X , Y)p(y) dy

≈ J ISE = 1
N 2

N∑
i=1

N∑
j=1

1
2π
√

g(xi)g(xj )

×
∫

exp
(
− (y − f (xi))

2

2 g(xi)
− (y − f (xj ))

2

2 g(xj )

)
dy

− 2
N 2

N∑
i=1

N∑
j=1

1√
2πg(xj )

exp
(
− (yi − f (xj ))

2

2 g(xj )

)

= 1
N 2

N∑
i=1

N∑
j=1

(qi,j − 2pi,j ) (11)

in which

qi,j = 1√
2π(gi + gj )

exp
(
− (fi − fj )2

2(gi + gj )

)
,

pi,j = 1√
2πgj

exp

(
− e2

i,j

2gj

)
, (12)

are used for brevity and the appendix was applied to gen-
erate Equation (11). Also, ei,j = yi − f (xj ). fi, gi denote
f (xi) and g(xi), respectively. Note that the plug-in estima-
tor can be fully justified since the approximation error is
asymptotically in the order of N−1/2 for many classes of
probability functions (van der Vaart, 2000).

3.2. K–L divergence
Similarly, we derive a cost function based on the Kullback–
Leibler divergence (Kullback & Leibler, 1951), given by

KL =
∫

p(y) log
p(y)

p̂(y | X , Y)
dy

=
∫

p(y) log p(y) dy −
∫

log p̂(y | X , Y)p(y) dy

(13)

in which the second term R = ∫ log p̂(y | X , Y)p(y) dy ≈
E(log p̂(y | X , Y)) needs to be maximized. Applying
Equation (10), we have

R ≈ J KL

= 1
N

N∑
i=1

log

⎛
⎝ 1

N

N∑
j=1

1√
2πg(xj )

exp

(
− (yi − f (xj ))

2

2 g(xj )

)⎞
⎠

= 1
N

N∑
i=1

log

⎛
⎝ 1

N

N∑
j=1

pi,j

⎞
⎠ . (14)

Remark 1 The Kullback–Leibler divergence can also be
defined by swapping the order of the true density and the
estimated density in Equation (13), yet it will become ana-
lytically intractable since the expectation needs to be taken
with respective to the estimated probability.

Remark 2 For both the second line of Equation (13) of
KL expression and the first line of Equation (11) of Q
expression, their second terms are similar in that the expec-
tation of either the estimated probability or its log needs to
be estimated with respect to the true density. This feature
leads to their computational tractability which is absent in
other distance measures. For example, we cannot easily
calculate the Hellinger distance from the data.

Remark 3 In Equation (14), since nothing is known about
the true density p(y), we also approximate KL using the
well-known principle of plug-in estimator, similar to ISE.

Remark 4 We do not claim superiority of proposed met-
rics over the well established J KL. Clearly, the proposed
metrics are based on sample average, while the latter is
based on a closed-form solution of integration on func-
tional space, which makes it very difficult to carry out
functional analysis on their differences. This issue is an
open problem.

4. Parameter estimation using coordinate descent
algorithms for GPR models

In the GPR model estimation, the variance of noise is usu-
ally regarded as a parameter and catenated with a small
number of parameters in the kernel function, and can be
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jointly estimated via maximizing the log marginal likeli-
hood J ML given by Equation (8). In this work, we propose
the idea of GPR parameter estimation based on either min-
imizing J ISE or maximizing J KL, which can be achieved
by using a gradient descent algorithm for a local optimum.
However, the computational cost for each iteration is in the
order of O(N 3) due to a matrix inversion in calculating gra-
dient direction. Alternatively, it is computationally cheaper
to apply coordinate descent algorithm to search for ρ and
σ 2, one at a time.

Consider solving σ 2 for a fixed ρ using the following
the gradient descent algorithm. With an initial σ 2

old, the gra-
dient descent algorithm for minimizing J ISE of Equation
(11) is given as follows:

σ 2
new = max

{
σ 2

min, σ 2
old − η · sign

(
∂J ISE

∂σ 2

∣∣∣∣
σ=σold

)}
,

σ 2
old = σ 2

new,
(15)

where η > 0 is a very small positive learning rate. σmin >

0 is set as a very small number to improve numerical
stability. Note that sign(∂J ISE/∂σ 2) is used in Equation
(15), indicating that this is a normalized version of gra-
dient descent algorithm and a small learning rate η will
scale well with the search space of σ 2, irrespective of the
actual size of ∂J ISE/∂σ 2. Equation (15) is repeated until
sign(∂J ISE/∂σ 2) for two consecutive steps are different
indicating a local minimum of J ISE, or when a preset num-
ber of iterations It is reached. For example, It = 100. From
Equation (11), we obtain

∂J ISE

∂σ 2 =
1

N 2

N∑
i=1

N∑
j=1

(
∂qi,j

∂σ 2 − 2
∂pi,j

∂σ 2

)
(16)

in which

∂qi,j

∂σ 2 =
1√
2π

exp

(
− μ2

i,j

2νi,j

)

×
{
μi,j ν

−3/2
i,j

(
∂

∂σ 2 f (xj )− ∂

∂σ 2 f (xi)

)

+ 0.5(μ2
i,j ν
−5/2
i,j − ν

−3/2
i,j )

×
(

∂

∂σ 2 g(xi)+ ∂

∂σ 2 g(xj )

)}
(17)

with μi,j = f (xi)− f (xj ), νi,j = g(xi)+ g(xj ), and

∂pi,j

∂σ 2 =
1√
2π

exp

(
− e2

i,j

2gj

)(
ei,j g−3/2

j
∂

∂σ 2 f (xj )

+ 0.5(e2
i,j g−5/2

j − g−3/2
j )

∂

∂σ 2 g(xj )

)
. (18)

The required f (xj ), g(xj ) and their gradients can be
calculated efficiently as follows.

Write KXX =
∑R

n=1 snunuT
n , where s1 ≥ s2 ≥ · · · ≥

sR > 0 are R ≤ N nonzero singular values of KXX , and un,
n = 1, . . . , R are the first R singular vectors (R can be found
by rank.m). It can be verified that for j = 1, . . . N ,

f (xj ) = kT
X xj

(KXX + σ 2I)−1Y =
R∑

n=1

αj ,nβn

sn + σ 2 , (19)

∂

∂σ 2 f (xj ) = −kT
X xj

(KXX + σ 2I)−2Y

= −
R∑

n=1

αj ,nβn

(sn + σ 2)2 , (20)

g(xj ) = 1+ σ 2 − kT
X xj

(KXX + σ 2I)−1kX xj

= 1+ σ 2 −
R∑

n=1

α2
j ,n

sn + σ 2 , (21)

∂

∂σ 2 g(xj ) = 1+ kT
X xj

(KXX + σ 2I)−2kX xj

= 1+
R∑

n=1

α2
j ,n

(sn + σ 2)2 , (22)

where αj ,n = uT
n kX xj and βn = uT

n Y. Note that each itera-
tion of Equation (15) requires Equations (19)–(22) to be
updated at O(N ) complexity except for the first iteration.
This is because only σ 2 is changed in the right-hand side
of the equations over each iteration. During the first iter-
ation the singular value decomposition (SVD) of KXX is
made at a cost of O(N 3).

Similarly for the maximization of J KL, we use the
iteration

σ 2
new = max

{
σ 2

min, σ 2
old + η · sign

(
∂J KL

∂σ 2

∣∣∣∣
σ=σold

)}
,

σ 2
old = σ 2

new, (23)

until either a preset number of It iterations is reached
or when sign(∂J ISE/∂σ 2) is different for two consecutive
steps, where

∂J KL

∂σ 2 =
1
N

N∑
i=1

1∑N
j=1 pi,j

N∑
j=1

∂pi,j

∂σ 2 (24)

Note that Equation (24) uses Equation (18) which in turn
also utilizes Equations (19)–(22) for efficient computation
as the case of minimizing J ISE.

Similarly for comparative study we also consider the
gradient descent algorithm based on J ML for a fixed ρ. By
applying the SVD of KXX =

∑R
n=1 snunuT

n to Equation (8)

J ML = −1
2

YT(KXX + σ 2I)−1Y − 1
2

log det(KXX + σ 2I)

− N
2

log(2π)
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= −1
2

R∑
n=1

β2
n

sn + σ 2 −
1
2

N∑
n=1

log(sn + σ 2)

− N
2

log(2π), (25)

where sn = 0 if n > R. Thus

∂J ML

∂σ 2 =
1
2

R∑
n=1

β2
n

(sn + σ 2)2 −
1
2

N∑
n=1

1
sn + σ 2 . (26)

For completeness the gradient decent iteration for J ML is
given as the iteration

σ 2
new = max

{
σ 2

min, σ 2
old + η · sign

(
∂J ML

∂σ 2

∣∣∣∣
σ=σold

)}
,

σ 2
old = σ 2

new,
(27)

until either a preset number of It iterations is reached
or when sign(∂J ML/∂σ 2) is different for two consecutive
steps.

Now consider the optimization of J ISE or J KL with
respect to ρ, which affects all elements in KXX . Their gra-
dients are not only much more computationally expensive,
but also complex. However, since there is only one vari-
able to optimize for fixed σ 2, we opt to use the golden
section search (Venkataraman, 2002) as the outer loop
which directly evaluates J ISE or J KL for fixed ρ and the
resultant σ 2 obtained using the gradient descent algorithms
of Equation (15) or Equation (23) as its inner loop. Sim-
ilarly, maximization J ML can use the same framework,
so next we present the general scheme of an optimiza-
tion algorithm that can deal with all the three criteria we
mentioned.

Pseudocode of the golden section-based coordinate
descent algorithm

Predetermine ρmax, ρmin {Search range for ρ}
Initialize σ 2

old
τ = 0.3897; ε = 0.1 {Precision}
nmax = −2.078 log

(
ε/(ρmax − ρmin)

)
{The number of

iterations}
ρ1 = (1− τ)ρmin + τρmax
Obtain σold1 in response to ρ = ρ1 using gradient
descent algorithm (15) or (23) or (27)
Obtain J ISE

1 in response to ρ = ρ1, σ 2
old = σ 2

old1 using
(11) (or J KL

1 via (14); or J ML
1 via (25) )

ρ2 = τρmin + (1− τ)ρmax
Obtain σ 2

old2 in response to ρ = ρ2 using gradient
descent algorithm (15) or (23) or (27)
Obtain J ISE

2 in response to ρ = ρ2, σ 2
old = σ 2

old2 using
(11) (or J KL

2 via (14); or J ML
2 via (25))

for n = 1→ nmax do

if J ISE
2 < J ISE

1 (or J KL
2 > J KL

1 or J ML
2 > J ML

1 ) then
ρmin ← ρ1; ρ1 ← ρ2 ; J ISE

1 ← J ISE
2 ; (or J KL

1 ←
J KL

2 or J ML
1 ← J ML

2 )
ρ2 = τρmin + (1− τ)ρmax
Initialize σ 2

old = σ 2
old2

Obtain σ 2
old2 in response to ρ = ρ2 using gradient

descent algorithm (15) or (23) or (27)
Obtain J ISE

2 in response to ρ = ρ2, σ 2
old = σ 2

old2
using (11) (or J KL

2 via (14); or J ML
2 via (25) )

end if
if J ISE

1 < J ISE
2 ( or J KL

1 > J KL
2 or J ML

1 > J ML
2 ) then

ρmax ← ρ2; ρ2 ← ρ1 ; J ISE
2 ← J ISE

1 ; (or J KL
2 ←

J KL
1 ; or J ML

2 ← J ML
1 )

ρ1 = (1− τ)ρmin + τρmax
Initialize σ 2

old = σ 2
old1

Obtain σold1 in response to ρ = ρ1 using gradient
descent algorithm (15) or (23) or (27)
Obtain J ISE

1 in response to ρ = ρ1, σ 2
old = σ 2

old1
using (11) (or J KL

1 via (14); or J ML
2 via (25) )

end if
n← n+ 1

end for
Obtain ρoptimal = (ρ1 + ρ2)/2
Obtain the final σ 2 in response to ρ = ρoptimal using
gradient descent algorithm (15) or (23) or (27)

Remark 5 The gradient descent algorithm using only
first-order derivatives has slow convergence. In this appli-
cation, the second-order derivatives with respect to the
parameters in the kernel function are very involved. The
golden section algorithm is a derivative free optimization
technique but only suitable for one-dimensional variable
search. If the kernel functions have more parameters, other
random search algorithms such as particle swarm optimiza-
tion algorithms (Kennedy & Eberhart, 2001) are recom-
mended which can obtain a suboptimal solution without
finding derivatives for solving the parameters in the kernel
function.

Remark 6 The proposed algorithm converges to a local
minimum. This is because the cost functions are highly
nonlinear functions.

5. Simulation study
Example 1 (1D Scalar Function) Consider using the GP
model to approximate an unknown scalar function

f (x) = sin(x)
x

. (28)

A data set of 200 points was generated from y = f (x)+ ξ ,
where the input x was uniformly distributed in [−10, 10]
and the noise ξ ∼ N (0, 0.04). The data were very noisy.
The Gaussian kernel of Equation (1) was used. The coor-
dinate descent algorithms based on either J ISE or J KL were
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Figure 1. The modeling results of 1-D scalar function problem; (a) True function and noisy data; (b) GPR model prediction based on
J ISE for f (x)±√g(x); (c) GPR model prediction based on J KL for f (x)±√g(x); and (d) GPR model prediction based on J ML for
f (x)±√g(x).

applied to jointly estimate the kernel parameter ρ as well
as the noise variance σ 2. For comparison, the well-known
maximization of log marginal likelihood J ML criterion is
also experimented. The same parameter settings were used
for three algorithms. The search range is set [ρmin, ρmax] =
[2, 5], and the variance σ 2

old was initialized as 0.5. The
learning rate was set as η = 0.01, and the maximum iter-
ation in the gradient algorithm It = 100. A maximum of
five iterations was set for golden section search. The search
range of ρ was determined empirically for this example.
Because the cost functions are multimodal the solutions
are only locally optimum. The estimated mean function for
f (x) are plotted in Figure 1(b)–(d), respectively, for three
resultant GPR models. The modeling results were given in
Table 1 demonstrating that the obtained GPR models are
comparable with an excellent capability to approximate the
underlying true function.

Example 2 (2D Scalar Function) The Matlab logo was
generated by the first eigenfunction of the L-shaped mem-
brane. A 31× 31 meshed data set f (x1, x2) was gen-
erated by using Matlab command membrane.m, which

Table 1. Comparison of modeling performance for
the scalar function; (a) Example 1; and (b) Example 2.

MSE over MSE over
noisy outputs true function

(a)
GPR via J ISE 0.0563 0.0013
GPR via J KL 0.0558 0.0015
GPR via J ML 0.0559 0.0016

(b)
GPR via J ISE 0.0092 6.41× 10−4

GPR via J KL 0.0092 6.46× 10−4

GPR via J ML 0.0088 6.22× 10−4

is defined over a unit square input region x1 ∈ [0, 1]
and x2 ∈ [0, 1]. The N = 961 sized data set y(x1, x2) =
f (x1, x2)+ e(x1, x2) was then generated by adding a noise
term e(x1, x2) ∼ N (0, 0.01). The noisy data and true func-
tion are plotted in Figure 2(a) and 2(b), respectively. By
using the Gaussian kernel of Equation (1) over x1 ∈ [0, 1]
and x2 ∈ [0, 1], the coordinate descent algorithms based
on J ISE, J KL and J ML were applied to jointly estimate the
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Figure 2. The modeling results of 2-D scalar function problem; (a) Noisy data; (b) True function; (c) GPR model prediction for f (x1, x2)
based on J ISE; (d) GPR model prediction for f (x1, x2) based on J KL; and (e) GPR model prediction for f (x1, x2) based on J ML.

kernel parameter ρ as well as the noise variance σ 2. For all
three algorithms, we preset the search range [ρmin, ρmax] =
[0.2, 0.4] and initialized the variance σ 2

old as 0.1, the learn-
ing rate was set as η = 0.005, and the maximum iteration
in the gradient algorithm It = 100. A maximum of five
iterations was set for golden section search. The estimated
mean function for f (x1, x2) are plotted in Figure 2(c)–(e),
respectively, for three resultant GPR models. The model-
ing results were given in Table 1 demonstrating that they
have comparable performance and can provide an excellent
approximation to the true underlying function.

Example 3 (Boston Housing Data) This is a classic regres-
sion benchmark data set, available at the University of
California, Irvine (UCI) repository (Frank & Asuncion,
2010). The data set comprises 506 data points with 14

variables. We perform the task of predicting the median
house value from the remaining 13 attributes. The GPR
model parameters were estimated based on the whole 506
data samples, in which the 13 attributes were normalized
so that each attribute has zero mean, and standard devia-
tion of one. The Gaussian kernel of Equation (1) based on
the normalized 13 features was used. Similar to the pre-
vious examples, the coordinate descent algorithms based
on J ISE, J KL , and J ML were applied over the search range
[ρmin, ρmax] = [2, 5]. σ 2

old was intialized as 0.1. The max-
imum iteration number in gradient descent algorithm was
set as It = 100. A maximum of five iterations was set for
golden section search. For both J ISE and J KL based algo-
rithms, the learning rate was set as η = 0.001, but for J KL

the result of η = 0.0001 was used since it gives better per-
formance. For 100 realizations, we randomly selected 456
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Table 2. Comparison of modeling performance for Boston House Data.

MSE over training data set MSE over test data set Model size

ε-SVM (Chen et al., 2009) 6.80± 0.44 23.18± 9.05 243± 5.3
LROLS-LOO (Chen et al., 2009) 12.97± 2.67 17.42± 4.67 58.6± 11.3
OFS-LOO (Chen et al., 2009) 10.10± 3.40 14.07± 3.62 34.6± 8.4
GPR via J ISE 4.07± 0.28 9.46± 5.54 456± 0
GPR via J KL 4.01± 0.28 9.62± 5.72 456± 0
GPR via J ML 4.75± 6.93 11.31± 6.93 456± 0

Notes: The results of were averaged over 100 realizations and given as mean± standard deviation. The
results of ε-SVM, LROLS-LOO, and OFS-LOO were quoted from (Chen et al., 2009).

data points from the data set, from which the 13 features
are normalized so that each attribute has zero mean, and
a standard deviation of one, which is used to construct
a covariance matrix based on the learnt parameters. The
remaining 50 data points forms the test set. Average results
were given over 100 realizations, and given in Table 2 and
are compared with a few known nonlinear regression meth-
ods of the ε-SVM (Gun, 1998), the LROLS-LOO (Chen,
Hong, Harris, & Sharkey, 2004) and the OFS-LOO (Chen,
Hong, & Harris, 2009). The details of the experimental set-
tings of these algorithms can be found in Chen et al. (2009).
The large sized GPR models have better performance in
general, with the two GPR models based on J ISE and J KL,
respectively, are shown to have superior performance for
this particular example.

6. Conclusions
New parameter estimation algorithms have been intro-
duced for GPR models. Our original contribution here is to
integrate the probability distance measures of the ISE and
K–L divergence with GPR model as new cost functions
for GPR parameter estimation. By using a kernel width
as the single parameter in the covariance function, we
iteratively estimate the kernel width using golden section
search which has an inner loop of fast gradient descent
algorithm to estimate the noise variance. Numerical exam-
ples have been utilized to demonstrate the effectiveness
of the new identification approaches in comparison with
the well-known maximal log marginal likelihood cost cri-
terion, and it is shown that ISE and K–L divergence are
effective alternative cost functions for GPR models.
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Appendix. Integrating∫
exp(−(y − f (xi))

2/2g(xi)− (y − f (xj ))
2/2g(xj )) dy in

Equation (11)
For brevity, let fi, gi denote f (xi) and g(xi), respectively.∫

exp

(
− (y − fi)2

2gi
− (y − fj )2

2gj

)
dy

=
∫

exp

⎛
⎜⎜⎜⎝−

(gi + gj )y2 − 2(figj + fj gi)y
+f 2

i gj + f 2
j gi

2gigi

⎞
⎟⎟⎟⎠ dy

= exp

⎛
⎜⎜⎜⎝−

(f 2
j gi + f 2

i gj )/(gi + gj )

−((figj + fj gi)/(gi + gj ))
2

2gigj /(gi + gj )

⎞
⎟⎟⎟⎠

×
∫

exp

(
− [y − (figj + fj gi)/(gi + gj )]2

2gigj /(gi + gj )

)
dy (A1)

By making use of
∫
(1/
√

2π�) exp(−(y − μ)2/2�) dy = 1, i.e.
Gaussian density integrates to one, we have

∫
exp

(
− (y − fi)2

2gi
− (y − fj )2

2gj

)
dy

=
√

2πgigj

(gi + gj )
exp

⎛
⎜⎜⎜⎝−

(f 2
j gi + f 2

i gj )/(gi + gj )

−((figj + fj gi)/(gi + gj ))
2

2gigj /(gi + gj )

⎞
⎟⎟⎟⎠

=
√

2πgigj

(gi + gj )
exp

(
− (fi − fj )2

2(gi + gj )

)
(A2)
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