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B-Spline Neural Network Based Single-Carrier Frequency Domain

Equalisation for Hammerstein Channels

Xia Hong, Sheng Chen and Chris J. Harris

Abstract— A practical single-carrier (SC) block transmission
with frequency domain equalisation (FDE) system can generally
be modelled by the Hammerstein system that includes the
nonlinear distortion effects of the high power amplifier (HPA)
at transmitter. For such Hammerstein channels, the standard
SC-FDE scheme no longer works. We propose a novel B-
spline neural network based nonlinear SC-FDE scheme for
Hammerstein channels. In particular, we model the nonlinear
HPA, which represents the complex-valued static nonlinearity
of the Hammerstein channel, by two real-valued B-spline neural
networks, one for modelling the nonlinear amplitude response
of the HPA and the other for the nonlinear phase response of
the HPA. We then develop an efficient alternating least squares
algorithm for estimating the parameters of the Hammerstein
channel, including the channel impulse response coefficients and
the parameters of the two B-spline models. Moreover, we also
use another real-valued B-spline neural network to model the
inversion of the HPA’s nonlinear amplitude response, and the
parameters of this inverting B-spline model can be estimated
using the standard least squares algorithm based on the pseudo
training data obtained as a byproduct of the Hammerstein
channel identification. Equalisation of the SC Hammerstein
channel can then be accomplished by the usual one-tap linear
equalisation in frequency domain as well as the inverse B-
spline neural network model obtained in time domain. The
effectiveness of our nonlinear SC-FDE scheme for Hammerstein
channels is demonstrated in a simulation study.

I. INTRODUCTION

The fourth generation (4G) and beyond 4G (B4G) mo-

bile communication systems support high-speed broadband

applications with data rates in tens of Mbps or higher over

the wireless channel of typical delay spread in microseconds.

The intersymbol interference (ISI) of such wireless channels

spans over tens or even hundreds of symbols, which causes

the nightmare senario for time-domain (TD) equalisation,

requiring an impractically long equaliser with excessively

slow convergence and therefore resulting in poor perfor-

mance. Orthogonal frequency-division multiplexing (OFDM)

[1], [2] offers a low-complexity high-performance solution

for mitigating long ISI. Owing to its virtues of resilience

to frequency selective fading channels, OFDM has found

its way into numerous recent wireless network standards.

However, an OFDM signal is notoriously known to have

high peak-to-average power ratio (PAPR), which requires

the high power amplifier (HPA) at the transmitter to have

an extremely long linear dynamic range. This requirement
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may not be met by practical HPAs which exhibits nonlinear

saturation characteristics [3]–[7]. An alternative solution for

long ISI mitigation is to adopt single-carrier (SC) block

transmission with frequency-domain equalisation (FDE) [8],

[9]. Although the total complexity of a SC-FDE based

transceiver is the same as that of an OFDM based transceiver,

the SC-FDE transmitter does not require the fast Fourier

transform (FFT) operation, and therefore it is better suited

for uplink implementation. The long term evolution advanced

(LTE-A) has specified the standard for the uplink of the 4G

and B4G systems based on the SC-FDE solution [10].

In order to enhance the achievable bandwidth efficiency,

SC based broadband systems typically adopt high-order

quadrature amplitude modulation (QAM) signalling [11].

The higher the order of QAM signalling, the better the

bandwidth efficiency but also the higher the PAPR of the

resulting transmit signal. This may drive the HPA at the

transmitter into the nonlinear saturation region, which will

significantly degrade the system’s achievable bit error rate

(BER) performance. Therefore, it is important to be able to

effectively compensate the nonlinear distortions of the HPA

in the design of a SC based high-rate wireless system. An

effective approach to compensate the nonlinear distortions of

HPA is to implement a digital predistorter at the transmitter,

which is capable of achieving excellent performance, and

various predistorter techniques have been developed [12]–

[18]. Implementing the predistorter is attractive for the

downlink, where the base station (BS) transmitter has the

sufficient hardware and software capacities to accommodate

the hardware and computational requirements for implement-

ing digital predistorter. In the uplink, however, implementing

predistorter at transmitter is much more difficult, as it is

extremely challenging for a pocket-size handset to absorb the

additional hardware and computational complexity. There-

fore, the predistorter option is not viable for the SC-FDE

based uplink. Alternatively, the nonlinear distortions of the

transmitter HPA can be dealt with at the BS receiver, which

has sufficient hardware and software resources. With the non-

linear HPA at transmitter, the channel is a complex-valued

(CV) Hammerstein system and, moreover, the received signal

is further impaired by the channel additive white Gaussian

noise (AWGN). Therefore, nonlinear equalisation of the SC

based Hammerstein channel is a challenging task.

In this contribution, we propose an efficient nonlinear SC-

FDE scheme for Hammerstein channels based on the B-

spline neural network. In our previous works [18], [19],

the B-spline neural network has been demonstrated to be

very effective in identification and inversion of CV Wiener



systems. We adopt two real-valued (RV) B-spline neural

networks to model the amplitude response and the phase

response of the CV static nonlinearity of the Hammerstein

channel, and we develop a highly efficient alternating least

squares (ALS) identification algorithm for estimating the

channel impulse response (CIR) coefficients as well as the

parameters of the two RV B-spline neural networks that

model the HPA’s CV static nonlinearity. As linear equalisa-

tion is naturally accomplished in SC-FDE based systems by

a one-tap equalisation in frequency domain (FD), nonlinear

SC-FDE of the Hammerstein channel additionally involves

the inversion of the estimated B-spline neural network that

models the HPA’s nonlinear amplitude response in TD, as

the compensation of the HPA’s nonlinear phase response

is straightforward using the estimated phase response. The

previous work [18] considers the inversion of a RV B-

spline model as the root finding problem, and develop an

iterative root finding procedure based on the Gauss-Newton

algorithm for inverting the estimated amplitude response.

This approach requires to carry out the iterative root finding

procedure for detecting every data symbol. We propose a

much faster and more efficient alternative for inverting the

HPA’s nonlinear amplitude response. Specifically, we use

another RV B-spline neural network to model the inversion

of the HPA’s nonlinear amplitude response. Although the

HPA’s output at the transmitter is unobservable at the receiver

for identifying this inverse model, the pseudo training data

obtained as a natural byproduct of the Hammerstein channel

identification can be used to estimate the parameters of the

inverting B-spline model using the standard least squares

(LS) algorithm. We demonstrate the effectiveness of our

proposed B-spline neural network based SC-FDE scheme for

Hammerstein channels in an extensive simulation study.

Throughout this contribution, a CV number x ∈ C is

represented either by the rectangular form x = xR + j · xI ,

where j =
√
−1, while xR = ℜ[x] and xI = ℑ[x] denote

the real and imaginary parts of x, or alternatively by the

polar form x = |x| · ej∠x

with |x| denoting the amplitude

of x and ∠
x its phase. The vector or matrix transpose and

conjugate transpose operators are denoted by ( )T and ( )H,

respectively, while ( )−1 stands for the inverse operation and

the expectation operator is denoted by E{ }. Furthermore, I

denotes the identity matrix with an appropriate dimension,

and diag{x0, x1, · · · , xn−1} is the diagonal matrix with

x0, x1, · · · , xn−1 as its diagonal elements.

II. HAMMERSTEIN CHANNEL MODEL FOR SC-FDE

We consider the M -QAM signalling. Each transmit block

or frame consists of N QAM data symbols expressed as

x[s] =
[
x0[s] x1[s] · · ·xN−1[s]

]T
, (1)

where [s] denotes the block index, and xk[s], 0 ≤ k ≤ N−1,

take the values from the M -QAM symbol set

X={d(2l−
√

M−1)+ j ·d(2q−
√

M−1), 1 ≤ l, q ≤
√

M},
(2)

where 2d is the minimum distance between symbol points.

For notational simplification, we will drop the block index

[s] in the sequel. Adding the cyclic prefix (CP) of length Ncp

to x yields

x̄ =
[
x−Ncp

x−Ncp+1 · · ·x−1 | xT
]T

, (3)

in which x−k = xN−k for 1 ≤ k ≤ Ncp. The signal block

x̄ is amplified by the HPA to yield the actually transmitted

signal vector

w̄ =
[
w−Ncp

w−Ncp+1 · · ·w−1 | w0 w1 · · ·wN−1

]T

=
[
w−Ncp

w−Ncp+1 · · ·w−1 | wT
]T

(4)

where

wk =Ψ(xk) , −Ncp ≤ k ≤ N − 1, (5)

in which Ψ( ) represents the CV static nonlinearity of the

transmitter HPA, and w−k = wN−k for 1 ≤ k ≤ Ncp.

We consider the solid state power amplifier [6], [7], whose

nonlinearity Ψ( ) is constituted by the HPA’s amplitude

response A(r) and phase response Υ(r) given by

A(r) =
gar

(
1 +

(
gar
Asat

)2βa

) 1
2βa

, (6)

Υ(r) =
αφrq1

1 +
(

r
βφ

)q2
, (7)

where r denotes the amplitude of the input to the HPA, ga

is the small gain signal, βa is the smoothness factor and

Asat is the saturation level, while the parameters of the phase

response, αφ. βφ, q1 and q2, are adjusted to match the specific

amplifier’s characteristics. The NEC GaAs power amplifier

used in the standardization [6], [7] has the the parameter set

ga = 19, βa = 0.81, Asat = 1.4;
αφ = −48000, βφ = 0.123, q1 = 3.8, q2 = 3.7.

(8)

Hence, given the input xk = |xk| · ej·∠xk
, the output of the

HPA can be expressed as

wk = A(|xk|) · ej·
(
∠

xk+Υ(|xk|)
)
. (9)

The operating status of the HPA may be specified by the

output back-off (OBO), which is defined as the ratio of the

maximum output power Pmax of the HPA to the average

output power Paop of the HPA output signal, given by

OBO = 10 · log10

Pmax

Paop
. (10)

The smaller OBO is, the more the HPA is operating into the

nonlinear saturation region.

The amplified signal w̄ is transmitted through the channel

whose CIR coefficient vector is expressed by

h =
[
h0 h1 · · ·hLcir

]T
. (11)

The CIR length satisfies Lcir ≤ Ncp. It is assumed that h0 =
1 because if this is not the case, h0 can always be absorbed



into the CV static nonlinearity Ψ( ), and the channel impulse

response coefficients are re-scaled as hi/h0 for 0 ≤ i ≤ Lcir.

At the receiver, after the CP removal, the channel-impaired

received signals yk are given by

yk =

Lcir∑

i=0

hiwk−i + ek, 0 ≤ k ≤ N − 1, (12)

in which wk−i = wN+k−i for k < i, where ek = ekR
+ j ·ekI

is the channel AWGN with E
{
e2
kR

}
= E

{
e2
kI

}
= σ2

e .

Because Ncp ≥ Lcir, the CP removal at the receiver au-

tomatically cancels the inter block interference and transfers

the linear convolution channel into the circular one. Passing

y =
[
y0 y1 · · · yN−1

]T
through the N -point FFT processor

yields the FD received signal vector

Y =
[
Y0 Y1 · · ·YN−1

]T
= Fy, (13)

where

F =
1√
N




1 1 · · · 1
1 e−j2π/N · · · e−j2π(N−1)/N

...
...

...
...

1 e−j2π(N−1)/N · · · e−j2π(N−1)(N−1)/N


,

(14)

is the FFT matrix which has the orthogonal property of

F HF = FF H = I . The elements of Y are given by

Yn =HnWn + Ξn, 0 ≤ n ≤ N − 1, (15)

where Ξn = ΞnR
+ j · ΞnI

is the FD channel AWGN with

E
{
Ξ2

nR

}
= E

{
Ξ2

nI

}
= σ2

e , and the frequency domain

channel transfer function coefficients (FDCTFCs) Hn for

0 ≤ n ≤ N − 1 are given by the N -point FFT of h
[
H0 H1 · · ·HN−1

]T
=Fh, (16)

while

W =
[
W0 W1 · · ·WN−1

]T
= Fw (17)

is the N -point FFT of w. Note that w is unobservable and,

therefore, neither w nor W is available at the receiver. If

we denote Ξ =
[
Ξ0 Ξ1 · · ·ΞN−1

]T
, the FD received signal

(15) can be expressed concisely as

Y =diag{H0,H1, · · · ,HN−1}W + Ξ

=diag{H0,H1, · · · ,HN−1}Fw + Ξ. (18)

Given the FDCTFCs Hn for 0 ≤ n ≤ N − 1, the FD

one-tap zero-forcing equalisation is given by

W̃n =
Yn

Hn
, 0 ≤ n ≤ N − 1. (19)

Performing the N -point inverse FFT (IFFT) on W̃ =[
W̃0 W̃1 · · · W̃N−1

]T
yields

w̃ =
[
w̃0 w̃1 · · · w̃N−1

]T
= F HW̃ = Ψ(x) + F HΞ̃, (20)

where Ξ̃ = diag{H−1
0 ,H−1

1 , · · · ,H−1
N−1}Ξ , and

Ψ(x) =
[
Ψ(x0) Ψ(x1) · · ·Ψ(xN−1)

]T

=
[
w0 w1 · · ·wN−1

]T
. (21)

If the HPA Ψ( ) at the transmitter were linear, w̃k would be

an estimate of the transmitted data symbol xk. But Ψ( )
is nonlinear, and the linear equalisation (19) alone is no

longer sufficient for estimating x. If the nonlinearity Ψ( )
is known and it is invertible, then the effects of Ψ( ) can be

compensated by inverting it. Specifically, an estimate of the

transmitted data vector x is given by

x̂ =Ψ
−1

(
w̃

)
=

[
Ψ−1

(
w̃0

)
Ψ−1

(
w̃1

)
· · ·Ψ−1

(
w̃N−1

)]T
.

(22)

III. NONLINEAR SC-FDE OF HAMMERSTEIN SYSTEM

A. Identification of the Hammerstein channel

Given the input xk to the HPA, we model the HPA’s

nonlinear amplitude response and phase response by the two

RV univariate B-spline neural networks

Â(|xk|) =

Nb∑

l=1

B
(Po)
l (|xk|)ωl, (23)

Υ̂(|xk|) =

Nb∑

l=1

B
(Po)
l (|xk|)θl, (24)

where Nb is the number of B-spline basis functions, (Po−1)
is the order of the piecewise polynomial and the B-spline

basis functions B
(Po)
l (r) are calculated based on the De Boor

algorithm given in Appendix A, while ω =
[
ω1 ω2 · · ·ωNb

]T

and θ =
[
θ1 θ2 · · · θNb

]T
are the parameter vectors of the

two RV B-spline models to be determined. The predicted

HPA’s output can then be expressed as

ŵk =Â(|xk|) · ej·
(
∠

xk+bΥ(|xk|)
)
. (25)

The identification task is to jointly estimate the CIR vector

h and the parameter vectors {ω,θ} based on a block of

training data
{
xk, yk

}N−1

k=0
by minimising the cost function

J1(h,ω,θ) =
1

N

N−1∑

k=0

∣∣êk

∣∣2 =
1

N

N−1∑

k=0

∣∣yk − ŷk

∣∣2 (26)

subject to the constraint h0 = 1, in which ŷk is given by

ŷk =

Lcir∑

i=0

hiŵk−i =

Lcir∑

i=0

hiÂ(|xk−i|) · ej·
(
∠

xk−i+bΥ(|xk−i|)
)
,

(27)

where xk−i = xN+k−i and ŵk−i = ŵN+k−i if k < i. By

denoting ê =
[
ê0 ê1 · · · êN−1

]T
and y =

[
y0 y1 · · · yN−1

]T
over the training data set, the system can be expressed as

y =Ph + ê, (28)

where the regression matrix P ∈ C
N×(Lcir+1) is given by

P =




ŵ0 ŵ−1 · · · ŵ−Lcir

...
...

...
...

ŵk ŵk−1 · · · ŵk−Lcir

...
...

...
...

ŵN−1 ŵN−2 · · · ŵN−1−Lcir




. (29)



Therefore, given ω and θ, ŵk for −Lcir ≤ k ≤ N − 1 are

fixed, and we have the LS estimate of h readily given by

ĥ =
(
P HP

)−1
P Hy. (30)

When h is fixed, the FDE (19) can be carried out and the

corresponding TD signal w̃k of (20) can be calculated based

on which we estimate {ω,θ} by solving the optimisation

min
ω,θ

J2(ω,θ)=min
ω,θ

1

N

N−1∑

k=0

∣∣∣w̃k−Â(|xk|) · ej
(
∠

xk +bΥ(|xk|)
)∣∣∣

2

.

(31)

However, this is a complex nonlinear optimisation problem,

requiring iterative calculation. To get around this difficulty,

we relax our optimisation task into the two simultaneous

objectives for ω and θ, respectively,

min
ω

J3(ω)= min
ω

1

N

N−1∑

k=0

(∣∣w̃k

∣∣−
Nb∑

l=1

B
(Po)
l (|xk|)ωl

)2

, (32)

min
θ

J4(θ)= min
θ

1

N

N−1∑

k=0

(
γk −

Nb∑

l=1

B
(Po)
l (|xk|)θl

)2

, (33)

where −π < γk < π is the principle value of arctan
w̃k

xk
.

The LS estimates of ω and θ are given respectively by

ω̂ =
(
B

T
B

)−1
B

T
∣∣w̃

∣∣, (34)

θ̂ =
(
B

T
B

)−1
B

Tγ, (35)

where
∣∣w̃

∣∣ =
[∣∣w̃0

∣∣ ∣∣w̃1

∣∣ · · ·
∣∣w̃N−1

∣∣]T, γ =
[
γ0 γ1 · · ·

γN−1

]T
, and the regression matrix B ∈ R

K×Nb with

B=




B
(Po)
1 (|x0|) B

(Po)
2 (|x0|) · · · B

(Po)
Nb

(|x0|)
B

(Po)
1 (|x1|) B

(Po)
2 (|x1|) · · · B

(Po)
Nb

(|x1|)
...

...
...

...

B
(Po)
1 (|xN−1|) B

(Po)
2 (|xN−1|) · · · B

(Po)
Nb

(|xN−1|)



.

(36)

Note that although J3(ω) and J4(θ) are not exactly

equivalent to J2(ω,θ), they serves the same purpose of

minimising the misalignment between the predicted HPA

output ŵk by the two B-spline models to the desired output

w̃k. Using J3(ω) and J4(θ) however can bring significant

computational advantage, since we have the closed-form

LS solutions of ω and θ given fixed h. We adopt the

following ALS algorithm, which is a coordinate gradient

descent algorithm [20], [21], to estimate h as well as ω

and θ. The coordinate gradient descent approach transforms

a difficult optimisation task into easier subtasks by fixing

some variables in turn and solving the remaining variables.

Unlike a generic coordinate gradient descent algorithm, in

our case we have the closed-form solutions of h as well as

ω and θ for the both subtasks.

Initialisation. Initialise ŵk = xk in P of (29). Calculate h

as the LS estimate given by ĥ(0) =
(
P HP

)−1
P Hy. Then

obtain ĥ(0) by normalising hi ← hi/h0 for 0 ≤ i ≤ Lcir.

ALS estimation. For 1 ≤ τ ≤ τmax, where τmax is the

maximum number of iterations, perform:

a) Fix h to ĥ(τ−1), and obtain w̃ using (16), (19) and (20).

Then calculated ω̂(τ) and θ̂(τ) using (34) and (35).

b) For P of (29), compute ŵk according to (25) based on

ω̂(τ) and θ̂(τ). Calculate ĥ(τ) using (30). Then obtain ĥ(τ)

by normalising hi ← hi/h0 for 0 ≤ i ≤ Lcir.

A few iterations, i.e. a very small τmax, are sufficient for

the above ALS estimation procedure to converge.

B. Inversion of the HPA’s Nonlinear Amplitude Response

Given the CV Hammerstein channel’s static nonlinearity

Ψ( ), we wish to compute its inverse defined by xk =
Ψ−1(wk). From (9), we have

|xk| =A−1(|wk|), (37)

∠
xk =∠

wk −Υ(|xk|). (38)

Therefore, given the estimated HPA’s amplitude response

Â( ) and phase response Υ̂( ) specified by (23) and (24),

we only need to find the inversion of Â( ). We adopt the

following B-spline neural network1 to model Â−1( )

∣∣x̂
∣∣ =Â−1(|w|) =

Nb∑

l=1

B
(Po)
l (|w|)αl. (39)

In order to learn this inverse mapping or to estimate the

parameter vector α =
[
α1 α2 · · ·αNb

]T
, a training data set

{|wk|, |xk|}N−1
k=0 would be needed but wk is unobservable

and, therefore, is not available. Fortunately, as a byprod-

uct of the Hammerstein channel identification presented in

Section III-A, we already obtain an estimate for wk as

ŵk which is given in (25). Therefore, the pseudo training

data
{∣∣ŵk

∣∣, |xk|
}N−1

k=0
can be utilised to estimate the inverse

mapping (39). More specifically, by defining

B̂=




B
(Po)
1 (|ŵ0|) B

(Po)
2 (|ŵ0|) · · · B

(Po)
Nb

(|ŵ0|)
B

(Po)
1 (|ŵ1|) B

(Po)
2 (|ŵ1|) · · · B

(Po)
Nb

(|ŵ1|)
...

...
...

...

B
(Po)
1 (|ŵN−1|) B

(Po)
2 (|ŵN−1|) · · · B(Po)

Nb
(|ŵN−1|)



.

(40)

the LS solution of α is readily given by α̂ =(
B̂

T
B̂

)−1
B̂

T
∣∣x

∣∣ in which
∣∣x

∣∣ =
[
|x0| |x1| · · · |xN−1|

]T
.

During the data detection, given the estimated CIR vector

ĥ, the estimated nonlinear phase response Υ̂( ) and the

estimated inverse nonlinear amplitude response Â−1( ), the

linear equalised TD signal w̃k can be computed according

to (16), (19) and (20). The estimate of the transmitted data

xk can then be given by x̂k =
∣∣x̂k

∣∣ · ej∠bxk
with

∣∣x̂k

∣∣ =

Â−1
(∣∣w̃k

∣∣) and ∠
bxk = ∠

ewk − Υ̂
(∣∣x̂k

∣∣).

1In order to avoid repetitions and for notational simplification, we keep
the same B-spline notations of Section III-A and assume that the same
number of basis functions and the polynomial order are used.



TABLE I

EMPIRICALLY DETERMINED KNOT SEQUENCES.

Knot sequence for |x| 0, 10−4, 10−3, 0.01, 0.03, 0.05, 1, 5, 10

Knot sequence for |ŵ| 0, 10−4, 10−2, 0.2, 0.5, 2, 3, 4, 5

TABLE II

IDENTIFICATION RESULTS FOR THE CIR COEFFICIENT VECTOR h OF THE HAMMERSTEIN CHANNEL.

True Parameter estimate under

Parameters Eb

/
No = 0 dB Eb

/
No = 10 dB Eb

/
No = 0 dB Eb

/
No = 10 dB

OBO = 5 dB OBO = 5 dB OBO = 2 dB OBO = 2 dB

h0 1 1 1 1 1
h1 −0.2145− j0.1867 −0.2140− j0.1870 −0.2143− j0.1868 −0.2133− j0.1873 −0.2140− j0.1871
h2 0.0399 + j0.3675 0.0408 + j0.3676 0.0402 + j0.3675 0.0410 + j0.3677 0.0402 + j0.3675
h3 −0.0900 + j0.4053 −0.0897 + j0.4058 −0.0899 + j0.4055 −0.0893 + j0.4059 −0.0896 + j0.4054
h4 −0.0893 + j0.1287 −0.0895 + j0.1286 −0.0894 + j0.1287 −0.0896 + j0.1286 −0.0895 + j0.1287
h5 −0.1117 + j0.3035 −0.1118 + j0.3034 −0.1117 + j0.3034 −0.1115 + j0.3037 −0.1115 + j0.3038
h6 −0.0766− j0.0264 −0.0770− j0.0266 −0.0768− j0.0264 −0.0769− j0.0266 −0.0765− j0.0264
h7 0.0623− j0.0668 0.0628− j0.0664 0.0625− j0.0667 0.0628− j0.0661 0.0623− j0.0666
h8 0.0282 + j0.0324 0.0272 + j0.0323 0.0279 + j0.0324 0.0264 + j0.0322 0.0275 + j0.0324
h9 −0.0395− j0.0291 −0.0395− j0.0287 −0.0395− j0.0290 −0.0398− j0.084 −0.0397− j0.0288

IV. SIMULATION STUDY

We considered a Hammerstein SC-FDE System in which

the HPA employed was described by (6) and (7) with the

parameter set given in (8). The size of the transmitted

data block was set to N = 2048 and 64-QAM was used.

We assumed a quasi-static Rayleigh multipath channel with

an exponentially decreasing power delay profile, where the

average gain for the lth path was given by

E
{
|hl|

}
= e

−
l

η , 0 ≤ l ≤ Lcir, (41)

with η being the channel degradation factor. In the simulation

study, we set η = 3 and Lcir = 9. The CIR coefficients hl for

0 ≤ l ≤ Lcir remained constant during the communication

session. We used a full data block with N = 2048 training

samples in the joint estimation of the CIR coefficient vector

h and the parameter vectors ω and θ of the two B-spline

models for Ψ( ) as well as the estimation of the parameter

vector α of the inverting B-spline model for A−1( ). The

piecewise quadratic polynomial of Po = 2 was chosen as

the B-spline basis function, and the number of B-spline basis

functions in all three B-spline neural networks was set to

six. The empirically determined knot sequences for |xk| and

|ŵk| are listed in Table. I. The system’s signal-to-noise ratio

(SNR) was defined as SNR = Eb

/
No, where Eb was the

average power of the input signal xk to the HPA and No =
2σ2

e was the channel AWGN’s power.

The identification experiments were conducted under the

HPA operation conditions of OBO = 5 dB and OBO = 2 dB,

respectively, as well as two given SNR conditions of SNR =
0 dB and SNR = 10 dB, respectively. The identification

results of the linear subsystem in the Hammerstein channel

under the four experimental conditions are summarised in

Table II, while the modelling results of the HPA static

nonlinearity Ψ( ) by the estimated Ψ̂( ) as represented by

the two B-spline neural networks are illustrated in Fig. 1. It

can be seen from Table II that the CIR estimates achieve

high accuracy for all the four conditions. The results of

Fig. 1 clearly demonstrate the capability of the proposed two

RV B-spline neural networks to accurately model the HPA’s

nonlinear amplitude and phase response, respectively.

The combined response of the HPA’s true nonlinearity

and its estimated inversion obtained under the condition of

OBO = 2 dB and SNR = 10 dB is depicted in Fig. 2.

The result of Fig. 2 demonstrates the capability of the B-

spline neural network to accurately model the inversion of

the HPA’s nonlinearity based only on the pseudo training

data. The effectiveness of the proposed nonlinear SC-FDE

scheme is illustrated in Fig. 3, where the nonlinear SC-

FDE was constructed based on the estimated CIR ĥ, the

estimated HPA’s phase response Υ̂( ) and the estimated

inverse mapping for the HPA’s amplitude response Â−1( ),
obtained under the two simulation conditions. The achievable

BER performance of the proposed nonlinear SC-FDE are

plotted in Fig. 4 under three different operating conditions

of the HPA, in comparison to the BER performance obtained

by the standard linear SC-FDE. Clearly, the standard SC-FDE

is incapable of compensating the nonlinear distortions of the

Hammerstein channel and its attainable BER performance

is very poor even under the HPA operating condition of

OBO = 5 dB, as can be seen from Fig. 4. By contrast,

the proposed nonlinear SC-FDE constructed based on the

estimated CIR and the inverse mapping of the HPA is able

to compensate most of the nonlinear distortions and attains

a much better BER performance.

V. CONCLUSIONS

A novel nonlinear SC-FDE scheme has been developed for

the Hammerstein channel that includes the significant nonlin-
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Fig. 1. Comparison of the HPA’s static nonlinearity Ψ( ) and the estimated static nonlinearity bΨ( ) under: (a) OBO= 5 dB, Eb

‹
No = 0 dB;

(b) OBO= 5 dB, Eb

‹
No = 10 dB; (c) OBO= 2 dB, Eb

‹
No = 0 dB; and (d) OBO= 2 dB, Eb

‹
No = 10 dB.
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Fig. 2. Combined response of the true HPA and its estimated inversion
obtained under OBO = 2 dB and Eb/No = 10 dB: (a) combined amplitude
response, and (b) combined phase response.

ear distortions of the HPA at transmitter. We have proposed

to utilise two RV B-spline neural networks for modelling the

HPA’s nonlinear amplitude and phase responses, respectively,

and have derived an efficient ALS scheme to estimate the

CIR coefficient vector as well as the parameter vectors of the

two B-spline models that represent the HPA’s nonlinearity.

Moreover, an additional RV B-spline neural network has been

utilised to model the inverse mapping of the HPA’s amplitude

response, and we have shown that the parameter vector of

this inverting B-spline model can readily be obtained as

the closed-form LS solution based on the pseudo training

data obtained as a natural byproduct of the Hammerstein

channel identification. Simulation results have demonstrated

that our proposed identification procedure is capable of

accurately estimating the Hammerstein channel as well as

the inverse mapping of the channel’s static nonlinearity. The

results obtained have also confirmed the effectiveness of the

proposed nonlinear SC-FDE scheme constructed based on

the estimated CIR and inverse B-spline mapping.
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Fig. 3. Effectiveness of the proposed nonlinear SC-FDE scheme based

on the estimated CIR bh and the estimated HPA’s CV static nonlinearity as
well as the estimated inverse mapping for the HPA’s amplitude response
under: (a) OBO = 3 dB and Eb/No = 10 dB; and (b) OBO = 5 dB and
Eb/No = 4 dB. The top two plots in sub-figures (a) and (b) depict one
transmitted QAM symbol block x and its received signal block y, while
the bottom two plots show the corresponding estimated bx obtained by the
linear and nonlinear SC-FDEs, respectively.
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APPENDIX

A. De Boor Recursion

Univariate RV B-spline basis functions are parametrized

by the order (P0 − 1) of a piecewise polynomial and a knot

sequence which is a set of values defined on the real line

that break it up into a number of intervals. Let the number

of basis functions be Nb. The knot sequence is specified by

the (Nb + P0 + 1) knot values {R0, R1, · · · , RNb+P0
} with

R0 < R1 < · · · < RP0−2 < RP0−1 = Rmin < RP0
< · · · <

RNb
< RNb+1 = Rmax < RNb+2 < · · · < RNb+P0

. (42)

At each end, there are Po− 1 external knots that are outside

the input region and one boundary knot. As a result, the

number of internal knots is Nb + 1 − P0. Given the set

of predetermined knots (42), the set of Nb B-spline basis

functions can be formed by using the De Boor recursion

[22], yielding for 1 ≤ l ≤ Nb + P0,

B
(0)
l (r) =

{
1, if Rl−1 ≤ r < Rl,
0, otherwise,

(43)

as well as for l = 1, · · · , Nb + P0 − p and p = 1, · · · , P0,

B
(p)
l (r)=

r − Ul−1

Up+l−1 − Ul−1
B

(p−1)
l (r)+

Up+l − r

Up+l − Ul
B

(p−1)
l+1 (r).

(44)

Note that, due to the piecewise nature of B-spline functions,

there are only P0+1 basis functions with nonzero functional

values at any point r. Hence, the complexity of the De Boor

algorithm is determined by the polynomial order P0, rather

than the number of knots, and this is in the order of O
(
P 2

0

)
.
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