[1] S. Ba and J. Odobez, “Evaluation of multiple cue head pose estimation
algorithms in natural environements,” in Multimedia and Expo IEEE
International Conference on, July 2005, pp. 1330–1333.
[2] B. Blankertz, G. Curio, and K. Mller, “Classifying single trial EEG:
Towards brain computer interfacing,” NIPS, pp. 157–164, 2002.
[3] M. Blondel, K. Seki, and K. Uehara, “Block coordinate descent
algorithms for large-scale sparse multiclass classification,” Machine
Learning, vol. 93, no. 1, pp. 31–52, 2013. [Online]. Available:
http://dx.doi.org/10.1007/s10994-013-5367-2
[4] B. S. Caffo, C. M. Crainiceanu, G. Verduzco, S. Joel, S. H. Mostofsky,
S. S. Bassett, and J. J. Pekar, “Two-stage decompositions for the
analysis of functional connectivity for fMRI with application to
alzheimer’s disease risk,” NeuroImage, vol. 51, no. 3, pp. 1140 –
1149, 2010. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S1053811910002685
[5] M. Donoho, D. L.and Elad, “Optimally sparse representation in general
(non-orthogonal) dictionaries via l1 minimization,” in Proc. Natl Acad.
Sci., 2003, pp. 2197–2202.
[6] C. Gao and X. Wu, “Kernel support tensor regression,” Procedia
Engineering, vol. 29, pp. 3986 – 3990, 2012. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1877705812006169
[7] A. Genkin, D. D. Lewis, and D. Madigan, “Large-scale Bayesian
logistic regression for text categorization,” Technometrics, vol. 49, pp.
291–304(14), 2007.
[8] N. Gourier, D. Hall, and J. L. Crowley, “Estimating face orientation
from robust detection of salient facial structures,” in In Proceedings
of ICPR, International Workshop on Visual Observation of Deictic
Gestures, 2004.
[9] W. Guo, I. Kotsia, and I. Patras, “Tensor learning for regression,” Image
Processing, IEEE Transactions on, vol. 21, no. 2, pp. 816–827, Feb
2012.
[10] T. Kolda and B. Bader, “Tensor decompositions and applications,”
SIAM Review, vol. 51, no. 3, pp. 455–500, 2009. [Online]. Available:
http://epubs.siam.org/doi/abs/10.1137/07070111X
[11] D. Kontos, V. Megalooikonomou, N. Ghubade, and C. Faloutsos,
“Detecting discriminative functional MRI activation patterns using
space filling curves,” in Proceedings of the 25th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC), Sept 2003, pp. 963–966.
[12] S. LaConte, S. Strother, V. Cherkassky, J. Anderson, and X. Hu,
“Support vector machines for temporal classification of block design
fMRI data,” NeuroImage, vol. 26, no. 2, pp. 317 – 329, 2005.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S1053811905000893
[13] X. Li, H. Zhou, and L. Li, “Tucker tensor regression and neuroimaging
analysis,” http://arxiv.org/abs/1304.5637, 2013.
[14] T. Mitchell, R. Hutchinson, R. Niculescu, F. Pereira, X. Wang,
M. Just, and S. Newman, “Learning to decode cognitive states
from brain images,” Machine Learning, vol. 57, no. 1-2, pp. 145–
175, 2004. [Online]. Available: http://dx.doi.org/10.1023/B%3AMACH.
0000035475.85309.1b
[15] D. Needell, J. Tropp, and R. Vershynin, “Greedy signal recovery
review,” in Proceedings of the 42nd Asilomar Conf. Signals, Systems
and Computers, Pacific Grove. IEEE, 2008, pp. 1048–1050.
[16] D. Needell and J. Tropp, “Cosamp: Iterative signal recovery from
incomplete and inaccurate samples,” Commun. ACM, vol. 53, no. 12,
pp. 93–100, Dec. 2010. [Online]. Available: http://doi.acm.org/10.
1145/1859204.1859229
[17] D.-S. Pham and S. Venkatesh, “Robust learning of discriminative
projection for multicategory classification on the stiefel manifold,” in
Computer Vision and Pattern Recognition (CVPR), IEEE Conference
on, June 2008, pp. 1–7.
[18] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical Recipes: The Art of Scientific Computing, 3rd ed. New
York, USA: Cambridge University Press, 2007.
[19] S. V. Shinkareva, H. C. Ombao, B. P. Sutton, A. Mohanty, and
G. A. Miller, “Classification of functional brain images with a
spatio-temporal dissimilarity map,” NeuroImage, vol. 33, no. 1, pp. 63
– 71, 2006. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S1053811906007105
[20] A. J. Smola and B. Sch¨olkopf, “A tutorial on support vector regression,”
Statistics and Computing, vol. 14, no. 3, pp. 199–222, 2004. [Online].
Available: http://dx.doi.org/10.1023/B:STCO.0000035301.49549.88
[21] X. Tan, Y. Zhang, S. Tang, J. Shao, F. Wu, and Y. Zhuang,
“Logistic tensor regression for classification,” in Intelligent Science
and Intelligent Data Engineering, ser. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2013, vol. 7751, pp. 573–581.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-36669-7 70
[22] J. Tropp, “Greed is good: algorithmic results for sparse approximation,”
Information Theory, IEEE Transactions on, vol. 50, no. 10, pp. 2231–
2242, 2004.
[23] J. Wang, K.-H. Lee, and K.-S. Leung, “L1-norm regularization
based nonlinear integrals,” ser. Lecture Notes in Computer Science,
vol. 5551. Springer, 2009, pp. 201–208. [Online]. Available:
http://dblp.uni-trier.de/db/conf/isnn/isnn2009-1.html#WangLL09
[24] Q. Zhao, C. F. Caiafa, D. P. Mandic, L. Zhang, T. Ball, A. Schulzebonhage,
and A. S. Cichocki, “Multilinear subspace regression: An
orthogonal tensor decomposition approach,” in Advances in Neural
Information Processing Systems 24, J. Shawe-taylor, R. Zemel,
P. Bartlett, F. Pereira, and K. Weinberger, Eds., 2011, pp. 1269–1277.
[Online]. Available: http://books.nips.cc/papers/files/nips24/NIPS2011
0748.pdf
[25] H. Zhou, L. Li, and H. Zhu, “Tensor regression with applications in
neuroimaging data analysis,” Journal of American Statistical Association,
vol. 108, pp. 540–552, 2013.