
Body-centric modelling, identification, and 
acceleration tracking control of a 
quadrotor UAV 
Article 

Accepted Version 

Alkowatly, M. T., Becerra, V. M. and Holderbaum, W. ORCID: 
https://orcid.org/0000-0002-1677-9624 (2015) Body-centric 
modelling, identification, and acceleration tracking control of a 
quadrotor UAV. International Journal of Modelling, 
Identification and Control, 24 (1). pp. 29-41. ISSN 1746-6172 
doi: 10.1504/IJMIC.2015.071697 Available at 
https://centaur.reading.ac.uk/39735/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .
Published version at: http://www.inderscience.com/jhome.php?jcode=ijmic 
To link to this article DOI: http://dx.doi.org/10.1504/IJMIC.2015.071697 

Publisher: Inderscience Publishers 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


CentAUR 

Central Archive at the University of Reading 
Reading’s research outputs online



Body-centric Modelling, Identification, and
Acceleration Tracking Control of a Quadrotor UAV

Mohamad T. Alkowatly
School of Systems Engineering,
University of Reading,
Reading, RG6 6AX, UK
E-mail: m.t.alkowatly@pgr.reading.ac.uk

Victor M. Becerra
School of Systems Engineering,
University of Reading,
Reading, RG6 6AX, UK
E-mail: v.m.becerra@reading.ac.uk

William Holderbaum
School of Systems Engineering,
University of Reading,
Reading, RG6 6AX, UK
E-mail: w.holderbaum@reading.ac.uk

Abstract: This paper presents the mathematical development of a body-centric nonlinear
dynamic model of a quadrotor UAV that is suitable for the development of biologically
inspired navigation strategies. Analytical approximations are used to find an initial guess
of the parameters of the nonlinear model, then parameter estimation methods are used
to refine the model parameters using the data obtained from onboard sensors during
flight. Due to the unstable nature of the quadrotor model, the identification process is
performed with the system in closed-loop control of attitude angles. The obtained model
parameters are validated using real unseen experimental data. Based on the identified
model, a Linear-Quadratic (LQ) optimal tracker is designed to stabilize the quadrotor
and facilitate its translational control by tracking body accelerations. The LQ tracker is
tested on an experimental quadrotor UAV and the obtained results are a further means
to validate the quality of the estimated model. The unique formulation of the control
problem in the body frame makes the controller better suited for bio-inspired navigation
and guidance strategies than conventional attitude or position based control systems that
can be found in the existing literature.
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1 Introduction

Quadrotor Unmanned Aerial Vehicles (UAV) have
gained considerable interest as a research platform
[1, 2, 3, 4]. This is because, besides being affordable,
they are relatively lightweight and quite manoeuvrable
which makes them suitable for testing different flight
strategies. This manoeuvrability comes mainly from the
fact that quadrotors are unstable in open-loop, and this
emphasizes the role of the control system for operating
them. This in turn stresses the importance of developing
faithful models both for simulation and control design
purposes.

In order to obtain a particular model for a specific
quadrotor, either the quadrotor dynamics have to be
approximated or the model parameters, such as the
aerodynamic coefficients and moments of inertia, have
to be accurately identified. In the first approach, system
identification has been used to identify the attitude
angular velocity transfer function of a helicopter [5],
thus obtaining a linear and decoupled model of the
vehicle. In [6], an Autoregressive structure with External
input (ARX) model of a helicopter has been identified
by employing neural networks. The second approach,
on the other hand, allows to obtain the nonlinear
equations of motion of the vehicle by finding or refining
the model parameters of a specific quadrotor UAV.
It is possible to estimate most of these parameters
experimentally as discussed by Derafa et al [7], but
that requires the use of a purpose made test bench
to hold the UAV and allow appropriate motion and
measurements. Alternatively Abas et al. [8] used the
unscented Kalman filter to estimate the moments of
inertia and the rotor inertia parameters of the quadrotor
while the aerodynamic parameters were assumed to
be experimentally estimated in advance. However, no
action has been taken to validate the resulting model
parameters other than the convergence of the unscented
Kalman filter, which does not imply that acceptable
model parameters have been found. Additionally,
extending this method to estimate all model parameters
might be limited by their identifiability [9]. Finally the
authors in [10] used Prediction Error Methods (PEM)
to identify a linear discrete state-space model of a
quadrotor UAV. Although such model can be useful for
the control design process, the linearity of the model
will adversely affect simulation fidelity and restrict its
validity to small neighbourhood of the linearisation
points.

The first take towards identifying the parameters
of a nonlinear model of coaxial helicopter has been
presented in [11] where some of the model parameters are
found experimentally or analytically while the remaining
parameters are estimated using the Covariance Matrix
Adaptation Evolution Strategy (CMA-ES). Note that
the presence of the stabilizer bar as well as the tandem
counter rotating propellers in the coaxial helicopter

greatly reduces the rotational dynamics instability if
not eliminating it all together. No such mechanical
stabilization aid is available on the quadrotor, thus
the system identification process has to be adjusted to
cope with the fast unstable open loop dynamics of the
quadrotor.

Many quadrotor control techniques have been
presented in the literature. Most techniques implement
separate angular and translational control systems based
on a separate models for the rotational and translational
dynamics. Simple PID based control systems have been
presented [12, 13, 14, 15] where the attitude dynamics
are simplified to decouple the attitude angles and then
separate feedback loops are used to control each angle.
Although the method is reported to work well, ensuring
controller stability in all flight conditions is challenging,
especially given the use of oversimplified decoupled
models.

Sliding mode control of a quadrotor UAVs has
been implemented and tested by Öner et al. [16]
and Bouabdullah et al. [13]. These two works report
contrasting results, so while sliding mode control
has been found to provide a very good tracking
performance by the former, the latter concluded that
the switching nature and the chattering associated
with sliding mode control is not suitable for quadrotor
control. Backstepping techniques have been used for
position tracking in [17], and the Linear Quadratic
Regulators (LQR) has been applied for attitude control
of quadrotors in [18] where it has provided good
stability, but has shown to be slow to react possibly
due to modelling uncertainties. Another LQR strategy
is demonstrated in [16] providing effective position
tracking.

Regardless of the design method used for quadrotor
control, all of the aforementioned methods either control
the body attitude only or control the translational
dynamics through kinematic variables obtained in an
inertial frame (position and velocities). Estimating such
kinematic variables requires special sensors and rather
complicated calculations and filtering schemes. On the
other hand, biologically observed visual navigation
strategies solve navigation problems without relying on
variables in an inertial frame [19, 20, 21, 22, 23], and
rely on a body-centric frame of reference instead [24].
Hence, it is more convenient, and more coherent, to
develop model based controllers in the same frame of
reference. Advantages of employing biologically inspired
navigation in UAVs are lighter onboard sensor suites and
less computational power requirements [25, 26].

It should be mentioned that it is possible to
use the aforementioned conventional control system to
serve a bio-inspired navigation method. However, it is
more convenient, and more coherent, to develop control
systems that do not rely on equivalent variables not
normally available in animal species. Furthermore, if the
control system is used to validate the applicability of a

Copyright c© 2014 Inderscience Enterprises Ltd.
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bio-inspired navigation method, it is important not to
use variables that the navigation strategy claims not to
use. As the control system presented in this paper is used
to serve the position and velocity free bio-inspired visual
navigation method presented in [27], the control system
should not use such variables employed conventionally.
Thus, body accelerations are more suitable references for
the tracking control system. Attitude tracking control
has been assumed to serve as acceleration tracking
control in [28]. However, in this research, LQ tracking
control design method is used to design an explicit body
acceleration tracking control.

This paper demonstrates the modelling,
identification and control of a quadrotor helicopter in
a body-centric reference frame. A unique feature of
this controller is that it provides a means to control
the quadrotor translation by tracking body frame
accelerations, in contrast to tracking a trajectory defined
in an inertial frame. The relation between the the tracked
acceleration and the body attitude is analysed. To the
authors’ knowledge, this paper is the first to address
the issues associated with numerical estimation, and
validation of the parameters of a nonlinear quadrotor
model without requiring any special test benches.
The paper provides a numerical quantification of the
enhancement achieved by using the estimated model
parameters compared to the analytically approximated
parameters, and it validates the obtained model
parameters using unseen measured data. The body
acceleration tracking control system, developed in this
paper, is used as an additional validation step for the
identified model. Finally, the model and control system
presented in this paper are used with the bio-inspired
navigation strategy demonstrated in [27].

This paper is organized as follows: The modeling
of the quadrotor in a body-centric frame is presented
in section 2, estimation of model parameters using
analytical approximations is presented in section 3,
the formulation of the system identification process
is presented in section 4, system identification results
and model validation are presented in section 5, the
development of a tracking low level controller based
on the proposed model is presented in section 6, and
the results of low level control experimental testing are
presented and discussed in section 7.

2 Body-Centric Quadrotor Model

The quadrotor model developed here is similar to that
developed in [12]. The model formulation is briefly
presented here. Two Cartesian coordinate frames are
defined for the purpose of quadrotor modelling. The
earth surface fixed frame with axes 1e

x,1
e
y and 1e

z aligned
with North, East and Down (NED) local directions
respectively, which is safely assumed to be an inertial
frame for the purposes of the slow and short flight of

the quadrotor. The second frame is a body fixed frame
with its origin at the body center of mass and axes 1x,1y

and 1z are aligned with forward, right (starboard), and
down body orientations. The body and earth coordinate
frames, motor numbering, and their positive rotation
direction are illustrated in Figure 1. Note that the axes
orientation is different from those used by [12].

 Ω2
 Ω4

 Ω3

 Ω1

1x

1y1z

1e
y

1e
x

1e
z

Figure 1 Top view of the quadrotor showing the
definition of used coordinates frames, motor
numbering and positive motor rotation direction.
Axes 1e

z and 1z are pointing into the page

2.1 Attitude and Rotation Representation

To obtain body attitude starting from the earth frame,
one performs three right handed consecutive rotations
(yaw, pitch, roll) with angles (ψ, θ, φ) about 1z, the
new 1y, and the new 1x axes, respectively. These three
rotations define the transformation matrix Rb/e.

The quadrotor angular velocity in the earth frame
ωe

b/e = [φ̇, θ̇, ψ̇]T can be found from quadrotor angular
velocity in body frame ωb

b/e = [p, q, r]T as follows [29]:

ωe
b/e =

 1 tan(θ) sin(φ) tan(θ) cos(φ)
0 cos(φ) − sin(φ)
0 sin(φ)/ cos(θ) cos(φ)/ cos(θ)

ωb
b/e (1)

2.2 Quadrotor Body Dynamics

Using Newton’s Euler formalism, the body dynamics are
expressed in the body fixed frame as:[

mI3×3 03×3
03×3 Iq

][
V̇ b

ω̇b
b/e

]
+

[
ωb

b/e ×mV
b

ωb
b/e × Iqω

b
b/e

]
=

[
Fb

τ b

]
(2)
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where Iq is the moments of inertia tensor of the
quadrotor (kg m2), V b = [u, v, w]T is the body frame
translational velocity vector (m/s), F b is the force vector
acting on the quadrotor in body frame (N), and τ b is the
torque vector acting on the quadrotor in body frame (N
m). The quadrotor is assumed to be symmetric about its
body principal axes which are assumed to coincide with
the body frame. This assumption cancels all products
of inertia and the inertia matrix becomes the diagonal
matrix Iq = diag(Ixx, Iyy, Izz).

The external forces acting on the quadrotor body are
the weight force (mg) and the thrust forces generated by
the four propellers Ti. Each thrust forces is modelled as:

Ti = b Ω2
i , i = 1, 2, 3, 4 (3)

and the total thrust force Ta = T1 + T2 + T3 + T4 is
always aligned with the body 1z axis in the negative
direction.

The total torque acting on the quadrotor is
composed of the control torques and gyroscopic effect
torque. Control torques τx, τy that generate a positive
rolling and pitching moment respectively can be
expressed as:

τx = `(T4 − T2)1x

τy = `(T1 − T3)1y

(4)

The aerodynamic drag torque Qi acting on propeller
i is modeled as:

Qi = dΩ2
i , i = 1, 2, 3, 4 (5)

The total drag torque that generates a positive yawing
moment is expressed as:

τz = d(Ω2
2 + Ω2

4 − Ω2
1 − Ω2

3)1z (6)

Body angular rates induce a gyroscopic effect torque
τr on each of the rotating propellers due to rotor inertia
Jr (rad/s), and the total imbalance Ωr in the propeller
angular velocities. τr can be expressed as:

τr = Jr(ωb
b/e × 1z)Ωr =

 Jr q Ωr

−Jr p Ωr

0

 (7)

where

Ωr = Ω2 + Ω4 − Ω1 − Ω3 (8)

By defining the following variables:

U1 = (Ω2
1 + Ω2

2 + Ω2
3 + Ω2

4)

U2 = (Ω2
4 − Ω2

2)

U3 = (Ω2
1 − Ω2

3)

U4 = (Ω2
2 + Ω2

4 − Ω2
1 − Ω2

3)

(9)

the quadrotor equations of motion expressed in the body
fixed coordinates frame in addition to the local earth
attitude kinematics (φ̇, θ̇, ψ̇) can be written as follows:

ṗ = [q r (Iyy − Izz) + Jr q Ωr + ` b U2] / Ixx

q̇ = [p r (Izz − Ixx)− Jr p Ωr + ` b U3] / Iyy

ṙ = [p q (Ixx − Iyy) + d U4] / Izz

u̇ = r v − q w − g sin(θ)

v̇ = p w − r u+ g cos(θ) sin(φ)

ẇ = q u− p v + g cos(θ) cos(φ)− b U1 /m

φ̇ = p+ q tan(θ) sin(φ) + r tan(θ) cos(φ)

θ̇ = q cos(φ)− r sin(φ)

ψ̇ = q sin(φ)/ cos(θ) + r cos(φ)/ cos(θ)

(10)

3 Initial Estimation of Quadrotor Model
Parameters

3.1 Initial Estimation of Aerodynamic Model
Parameters

Initial Estimation of Lift Factor. The aerodynamic
forces and moments generated due to propeller rotation
are derived in [30] using the blade element theory. No
assumption is made in [30] on the size of the propeller,
hence the derivations presented in [30] are valid for larger
propellers like the one used in this work. If the ratio of
the lateral quadrotor velocities to the propeller’s angular
velocity is neglected, the lift force generated by the
propeller is approximated by:

T = 2π ρ Nb c̄ Ω2R3
p

[
θtw0

6
−
θtwf

8
− λ

4

]
(11)

where θtw0
and θtwf

are used to model the propeller
variable twist angle at a point r along its radius, which
is given by:

θtw(r) = θtw0 − θtwf

(
r

Rp

)
(12)

Values of θtw0
and θtwf

can be found from the propeller
geometry using least squares fitting.

From (3) and (11) the lift factor b is expressed as:

b = 2π ρ Nb c̄ R
3
p

[
θtw0

6
−
θtwf

8
− λ

4

]
(13)

Additionally, if a closed-loop stabilizing controller is
available (which is the case in this work), the lift factor
b can be estimated experimentally when the quadrotor
is hovering, as the total thrust force should be equal to
the quadrotor weight. Thus b can also be written as:

b =
mg

4Ω2
h

(14)

It is important however to perform this experimental
measurement well above the ground to eliminate the
contribution of the ground effect.
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Initial estimation of drag factor. The drag torque Q is
derived in [30] under the same assumption used for lift
force, and can be approximated by:

Q = 2π ρ Nb c̄ Ω2R4
p

[
Cd

16π
+ λ

(
θtw0

6
−
θtwf

8
− λ

4

)]
(15)

Substituting (15) in (5) and solving for d results in:

d = 2π ρ Nb c̄ R
4
p

[
Cd

16π
+ λ

(
θtw0

6
−
θtwf

8
− λ

4

)]
(16)

3.2 Initial Estimation of the Moments of Inertia

The estimation of the quadrotor moments of inertia
Ixx, Iyy, Izz about the body axes, and the rotor inertia Jr
about its rotational axis is simplified by segmenting the
quadrotor into simple shapes, working out the individual
moments of inertia, and then adding them together
[12]. The quadrotor frame is approximated by two rods,
the electronics are approximated by a box, the motors
are approximated by a cylinder, and the propellers are
approximated by a variable density flat cylinder.

4 System Identification for Refining Model
Parameters

The Prediction Error Method (PEM) has been chosen to
estimate the parameters of the nonlinear model (10) due
to its ability to provide good estimates even if the data
are collected from a closed-loop system [9]. The PEM
finds the parameter vector Θ by using an optimization
algorithm to minimize the following error function:

E(Θ, ZT ) =
1

N

N∑
t=1

ε(Θ, t)TΛε(Θ, t) (17)

where ZT = {(u(t), y(t)), t = 1, . . . , N} is the training
data set, ε(Θ, t) = y(t)− ŷ(Θ, t) is the difference
between measured and predicted system outputs, N is
the total number of time steps in the data, and Λ is
a diagonal weighting matrix used to reflect the relative
importance of the outputs in the minimization process.
To prevent the optimization algorithm from being biased
in favour variables with large mean values, matrix Λ is
calculated as shown in (18):

Λ = diag

(
1

ȳ2i

)
(18)

where ȳi = 1
N

∑N
i=1|yi| is the mean of the absolute value

of the output variable yi. This will normalize the different
variables values for the optimization and will make
the error function E (17) unitless, which is useful for
comparing results of different data sets as well.

The parameter vector Θ to be identified is defined
as:

Θ =
[
Ixx, Iyy, Izz, Jr, b, d

]T (19)

where the initial guess of Θ is obtained from the
analytically approximate values as described in section
3. The search space is constrained within an order
of magnitude up and down the initial guess, while
three other linear inequality constraints are added to
reflect the perpendicular axis theorem constraint on the
moment of inertia so that the solution must satisfy:

Ixx ≤ Iyy + Izz

Iyy ≤ Ixx + Izz

Izz ≤ Iyy + Ixx

(20)

In principle, the system identification can be
performed both in open loop and closed loop
configurations. In an open loop configuration, the model
inputs are the motor angular velocities (Ω1 to Ω4) and
the model output is the vehicle measured state y as
shown in Figure 2. In the closed loop configuration, a
feedback stabilising control system is employed so that
the inputs of system model used for identification are
the reference commands of the stabilising control (u)
and the vehicle measured state y as an output. Although
the data is collected from a closed loop system in both
cases, the two configuration are considerably different
when using the prediction error method to estimate
the model parameters. The instability of the open loop
model will cause high sensitivity of the error function
making the identification process very challenging. This
is because the input data, although collected from the
closed loop system, will fail to stabilise the unstable
quadrotor system in open loop due to the presence of
model uncertainties. Therefore the parameter estimation
is performed using closed-loop data as this addresses
both issues by stabilizing the predictor and reducing the
sensitivity of the error function [9]. This is possible since
in this work a prior stabilizing controller was available.

The identification experiment is performed in closed-
loop (Figure 2) by choosing the input vector u to be
the remote pilot commands comprising the attitude and
throttle reference:

u =
[
φr, θr, ψr,Υr

]T (21)

while the output vector y is chosen to be:

y =
[
φ, θ, ψ, p, q, r, ax, ay, az

]T (22)
(23)

where body measured accelerations ax, ay, az are
included in the outputs to enhance the observability of
the lift factor b. These accelerations are given by:

ax = −g sin(θ)

ay = g cos(θ) sin(φ)

az = g cos(θ) cos(φ)− b U1 /m

(24)
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The pilot commands references are processed by
the on-board closed-loop feedback controller Cfb to
produce the four motor angular velocities commands
[Ωr1,Ωr2,Ωr3,Ωr4] based on the measured quadrotor
attitude and attitude rates. Motor commands are then
subjected to the actuator dynamics which result in the
actual motor angular velocities that drive the model
presented in (10). This scheme is illustrated in Figure 2

Quadrotor
 dynamics

u 
(ϕr, θr, ψr, Γr) 

Stabilizing
controller

(Ω1, Ω2, Ω3, Ω4)(Ωr1, Ωr2, Ωr3, Ωr4) Actuator
dynamics

y
(ϕ, θ, ψ, p, q, r)

Figure 2 Control scheme used for closed-loop
identification of quadrotor system

5 System Identification Results

5.1 Experimental Platform

Quadrotors are unstable systems that cannot be flown
under open loop control. In this work a UAV platform for
research by Ascending Technologies GmbH known as the
Pelican has been used. The platform comes with an on-
board stabilizing controller which is implemented on the
on-board ARM7 embedded microcontroller and runs at
1KHz. This controller allows the user to fly the quadrotor
by providing attitude reference commands (roll, pitch,
and yaw angles) and a throttle value by means of a
remote controller. This allows the data acquisition to
be performed while flying a closed-loop stable system.
Figure 3 shows a side view of the Pelican quadrotor
helicopter employed in this work.

Brushless DC motors, like those used by the Pelican,
are known to have a small time constant (10ms as
reported in [31]). Thus, actuator dynamics are neglected
here for simplicity, implying [Ωr1,Ωr2,Ωr3,Ωr4] =
[Ω1,Ω2,Ω3,Ω4]. The supplied stabilizing controller has
known structure and parameters, leaving the model
parameter vector Θ in (19) to be estimated by an
optimization algorithm.

Output body rates (p, q, r) are provided by onboard
Micro Electro Mechanical system (MEMS) gyroscopes
while the attitude angles (φ, θ, ψ) are estimated
by the onboard Attitude and Heading Reference
System (AHRS). The body accelerations (ax, ay, az) are
measured by the onboard MEMS accelerometers, and
corrected for gravity using the AHRS attitude estimate.
Input and output data are sampled at a rate of 50Hz
while the quadrotor attitude and throttle is manually

Figure 3 Side view of the Pelican quadrotor helicopter

varied during the experiments. Three experimental data
sets, with a duration of 500 seconds each, are collected
for the purposes of system identification and model
validation.

5.2 Parameter Estimation

The initial model parameters values are obtained using
the analytical approximations described in section 3,
and shown in Table 1. These values are used as an
initial guess for the system identification process, and
subsequently refined to achieve more accurate values.

A Quasi-Newton (QN) constrained optimization
method from MATLAB’s optimization toolbox is used
to minimize (17) where the gradients are evaluated
numerically and the Hessian is approximated using
the BFGS method. A refined estimate of Θ is found
using 500 seconds of real experimental data. Smaller
time segments of the experimentally measured against
model predicted outputs are shown in Figures 4 and
5 when using the initial guess and the optimized
model parameters, respectively. These time segments
of the fitted variables have been chosen to show
the fitted variables under excitation. A considerable
prediction enhancement of 47.61% is achieved by the
optimization process where the error function value after
the optimization is (E = 7.67) compared to (E = 14.64)
for the initial guess. The parameters values obtained are
listed in Table 1.

5.3 Validation of The Identified Model

In order to ensure that the identified model parameters
represent well the system dynamics, the model is
validated against two data sets of unseen experimental
measurements collected from the quadrotor when it
was flown manually and all its degrees of freedom
were varied. Figure 6 shows different time segments of
measured outputs of the validation data set against
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Figure 4 Comparison of model outputs using the initial
parameter guesses and the training data set
(segments). Angles (φ, θ, ψ) are given in radians,
accelerations (ax, ay, az) are given in m/s2, and
body rates are in rad/s
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Figure 5 Quasi-Newton Optimization for model output
fitting in closed-loop using the training data set
(segments). Angles (φ, θ, ψ) are given in radians,
accelerations (ax, ay, az) are given in m/s2, and
body rates are in rad/s

Table 1 Initial approximations along the system
identification refined model parameters

Parameter Initial value Refined value
Ixx 1.57× 10−2 1.21× 10−2

Iyy 1.57× 10−2 1.355× 10−2

Izz 2.52× 10−2 2.179× 10−2

Jr 8.031× 10−5 1.143× 10−4

b (Analytical) 2.599× 10−6 -
b (Experimental) 2.428× 10−5 2.256× 10−5

d 1.247× 10−7 3.679× 10−7

the predicted model outputs using the optimized
parameters. Additionally, the value of the error function
E evaluated when using the initial and the refined model
parameters for the training, as well as two unseen data
sets are shown in Table 2. There is consistency in the
improvement of fitting quality from the initial guess
across the training and validation data sets. The model
with the optimized parameters is shown to provide about
48% better fit than the model with the initial parameters
values for all the data sets available. This indicates
that the model with the identified parameters captures
the quadrotor dynamics better than the model with
analytically approximated parameters with no signs of
over fitting.
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Figure 6 Model validation using one of the unseen data
sets (segments). Angles (φ, θ, ψ) are given in
radians, accelerations (ax, ay, az) are given in
m/s2, and body rates are in rad/s

It is noted that the variable θ has lower fitting
quality compared to other variables both using the
training and the validation data sets shown in Figures
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Table 2 Total model fitting error E using initial guess
and refined model parameters showing fitting
enhancement percentage for each data set

Data set Using
initial
guess

Using
refined
parameters

Model
fitting
enhancement

Training
data set

14.64 7.67 47.61%

Unseen
data set 1

18.93 8.71 48.59%

Unseen
data set 2

16.81 8.79 47.72%

5 and 6, respectively. Consequently, the variable ax
shows similar quality as it is directly related to θ. The
same results have been found even when increasing the
weight corresponding to those variables in the weighting
matrix Λ. This indicates that there is a trade off
between fitting θ and ax, and fitting all other variables
in order to minimize the total error function E (17).
The relative inaccuracy in fitting θ may be explained by
minor violations of modelling assumptions, including for
instance the presence of an small imbalance in the center
of mass on the 1y quadrotor axis.

Nevertheless, the fitting of the corresponding body
rate q is acceptable, although still more sluggish than
other rates, which explains the observed lag between
the predicted and measured values of θ. Note that the
prediction error of θ is bounded for all the data sets
available (L∞(θ − θ̂) < 0.58).

As a final remark, despite the good prediction
accuracy achieved by performing the identification in
closed-loop, it has been found that the best model
parameters achieved fail to predict the quadrotor
dynamics for more than 2 seconds if prediction is
performed in open loop. This is due to the unstable
nature of the open loop system.

6 Quadrotor Low Level Control

In this section the design of a control system
is presented based on the body-centric model of
the quadrotor dynamics (10). To fit within a
biologically inspired navigation scheme, it is desired to
develop a biologically plausible low-level control. The
definition of a biologically plausible control system has
different interpretations from different points of view
(neurological or ecological). Moreover, the factors that
make a control system biologically plausible are different
depending on the animal species used as reference.
In this work, the guidelines for biological plausibility
suggested in [24] are followed. Hence, a biologically
plausible control should only use the information
equivalent to that provided by sensory organs such as
the vestibular system. Additionally, the system should

use this information in the body-centric fame of reference
which is the motive to develop the model (10) in the
body frame.

Functionally, the desired control system must be
able to stabilize the fast quadrotor rotational dynamics
in addition to facilitate the control of the quadrotor
translational dynamics by a higher level controller
without relying on kinematic variables that are defined
in an external reference, such as position or velocity. The
attitude reference, particularly the roll and pitch angles,
are an exception because they are defined by the gravity
vector and body shape, both of which are perceived by
many animal species.

Based on the previous guidelines, and noting the
system dynamic equations (10), the body velocities
u, v, w do not affect the rest of the states and can be
dropped from the state vector for the purposes of control
synthesis. The state vector x then becomes:

x =
[
φ, θ, ψ, p, q, r

]T (25)

the control vector u is

u =
[
Ω1,Ω2,Ω3,Ω4

]T (26)

and the output vector y is

y =
[
ψ, ax, ay, az

]T (27)

where the body accelerations ax, ay, az, which depend on
the states and the input as shown in (24), are assumed
to be available through the on-board accelerometers. On
the other hand, the heading angle ψ is only available
through an external reference (like the earth magnetic
field or an arbitrarily chosen heading reference) and it
is included in the state and output vectors only to aid
testing and flying the quadrotor by a human operator. It
is clear from the model equations (10) that dropping the
heading angle dynamics ψ has no effect whatsoever on
the quadrotor dynamics in the body frame, in contrast
with the case when the model is derived in an inertial
frame [13].

The dynamic equations (now a subset of (10)) are
linearised about the equilibrium point (xeq,ueq) given
by:

xeq =
[
0, 0, 0, 0, 0, 0

]T
ueq =

[
Ωh,Ωh,Ωh,Ωh

]T
(28)

where Ωh = 407 rad/s for the Pelican. The linearised
equations are discretised to obtain the system matrices
Φ, Γ,C,D of a linear discrete state space representation
of the quadrotor system:

x(n+ 1) = Φ x(n) + Γ u(n)

y(n) = C x(n) +D u(n)
(29)

The values of the system matrices Φ, Γ, C,D are shown
in the appendix.
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6.1 Optimal Tracker Control Design

To stabilize the rotational dynamics in addition to
controlling the translational dynamics of the quadrotor,
the following control law is used:

u(n) = −Kx(n) + Fyr(n+ 1) (30)

where matrices K,F are the state feedback and
reference feed-forward gains respectively. The rotational
dynamics are stabilized due to the state feedback term
in (30). To allow the tracking of desired translational
reference, the output reference yr is defined as :

yr =
[
ψr, axr, ayr, azr

]T (31)

The references for body accelerations axr, ayr, azr enable
the translational control of the quadrotor along the three
body axes, while the yaw angle reference ψr allows the
operator to control the quadrotor’s heading. As this low-
level control is designed to be used by a high level bio-
inspired navigation control system, then the low-level
controller is chosen to be simple as high performance is
not required from it.

Linear Quadratic (LQ) optimal control methods
have been used to obtain the values of K and F in (30).
Equation (24) shows that the system has direct feed-
through of the control input in the output acceleration
equations (resulting in a non-zero D matrix), thus the
gain matrices have been found using the formulation
presented in [32] which assumes a constant reference
signal and involves the following performance index:

J =
1

2

∞∑
n=0

{ (y(n)− yr)TQy(y(n)− yr) + u(n)TRu(n) }

(32)

The obtained values of K and F are shown in the
appendix. Lastly, the overall control scheme is illustrated
in Figure 7.

x 

Quadrotor dynamics
yr C

K

+

-

F
y

Figure 7 LQ Tracker controller structure for low-level
control

6.2 Tuning and Analysis

A Simulink model is developed implementing the control
structure shown in Figure 7 using the nonlinear model

(10). The references are provided externally by the
user via a joystick. Initial tuning of the controller
weight matrices Qy and R was performed in simulation
and further tuning was performed experimentally. The
final chosen values of weight matrices are given in the
appendix.

The LQ tracker provides sub-optimal tracking due
to the linearisation of the non-linear quadrotor dynamics
in addition to unsatisfied assumptions in the optimality
problem, such as the constant reference value. Besides
achieving sub-optimal tracking, LQ optimal control
design methods guarantee nominal stability under mild
assumptions[33].

It is useful to study the effect of tracking acceleration
commands on the system states. When the controller
is presented with a zero reference signal to track,
the feedback term in control law (30) will stabilize
the quadrotor about its original equilibrium point
xeq = 0. However, when a non-zero reference signal yr
is presented, the feed-forward term will displace the
equilibrium point at steady state to xss. This state can
be found from the system dynamics equations (29) when
the control law (30) is used to produce the control input
vector u. Substituting (30) in (29) and dropping the time
dependency results in:

xss = Φxss + Γ(−Kxss + Fyr) (33)

solving for xss gives:

xss = Πyr (34)

where Π is given by:

Π = (I −Φ + ΓK)−1ΓF (35)

and I is the identity matrix of the same dimensions as
Φ. Using the parameter values shown in the appendix,
matrix (I −Φ + ΓK) is invertible and the numerical
value of Π is shown in the appendix.

Inspecting the value of Π reveals an interesting
property. Firstly, positive longitudinal body acceleration
axr is tracked by demanding a negative pitch angle
while positive lateral body acceleration ayr is tracked
by demanding a positive roll angle. Thus, one can
limit the maximum attitude angles (at steady state)
by limiting the values of the demanded acceleration
reference. Limiting axr and ayr to values in the range
[−ār, ār] results in a maximum pitch and roll angles of
0.102 ār rad. This maximum value is not exact if the
reference is not constant and because of nonlinearities
in the dynamics. However, ār can be set to provide
a safe operation of the vehicle and to prevent driving
the attitude angles too far from the point the nonlinear
model was linearised at. Finally, the motors cannot
change their spin direction, and hence cannot generate
a negative thrust. Therefore, the maximum feasible
downward acceleration cannot exceed the value of free
fall gravity acceleration of 9.805 m/s.
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7 Low Level Control Experimental Results
and Discussion

The control system presented in the previous section is
implemented on the Pelican ARM embedded processor
which runs the control loop at a frequency of 1 KHz.
The state vector x is estimated by the onboard Attitude
and Heading Reference System (AHRS) while the output
reference vector yr is provided by the remote controller.
The quadrotor is flown indoors and both the commanded
body accelerations axr, ayr, azr as well as the measured
body accelerations corrected for gravity ax, ay, az are
logged at a rate of 50 Hz. Figure 8 shows 50 seconds
of the experimental data showing the reference signals
against measured body accelerations.
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Figure 8 Reference vs. actual body accelerations
(segment).

The proposed controller managed to achieve its aim
of stabilizing the quadrotor attitude and providing a
mean to control the translational dynamics. In addition
to the smooth and stable flight achieved experimentally,
it can be seen that the tracking performance of body
acceleration shown in Figure 8 is very satisfactory. The
previous sentence has to be interpreted taking into
account the limitations of the linearised control and
the feed forward acceleration tracking employed. As
the quadrotor dynamics (10) and output acceleration
equations (24) are linearised around zero attitude angles,
then the attitude contribution to changes in the body
accelerations are not fully captured. This becomes
evident by comparing the tracking performance of small
accelerations in the first 10 seconds of Figure 8 compared
to simultaneous, larger, and more sustained accelerations
around second 35 in the same figure. Another artefact
of linearising the system dynamics can be seen on the
vertical body acceleration az which shows a tendency
to track upward (negative) reference accelerations better
than downward accelerations as shown in Figure 8. This

is mainly due to linearising the nonlinear relation of the
thrust force with respect to the motor angular velocity
(11).

In addition to the linearisation limitations, it should
be noted that the acceleration tracking results shown
have been achieved without an acceleration feedback
loop correcting for any observed errors. Nevertheless,
the tracking performance obtained was satisfactory
especially given that the proposed control system will
act under the higher-level visual control presented in
[27], where the visual variables of interest will be under
a feedback control cascaded with the control system
presented here. The tracking performance presented in
Figure 8 has another use in the context of this paper
as the tracking performance is partly a measure of
the quality of the linearised model employed, which is
derived from the identified nonlinear model.

Another experiment is performed where individual
body accelerations have been demanded separately
to reduce the attitude coupling effect on the output
acceleration, which in not fully captured by the linearised
model. Figure 9 shows 3 different time segments of the
experiment each showing one of the body accelerations
being excited where the reference and measured body
accelerations are plotted. Achieving fairly accurate
tracking performance as shown in Figure 9 reflects the
quality of the model parameters obtained in this paper.
This can be considered an additional validation step
in addition to performing the unseen data fitting test
as well as the experimental control of the quadrotor
under a model based control system. Additionally, these
results show that despite the relative difference in the
fitting quality of variables θ and ax compared to the
other variables has no noticeable effects on the quality
of the tracking of longitudinal and lateral accelerations
as shown in Figures 8 and 9. Therefore, it is possible
to conclude with confidence that the proposed model
structure and parameter estimation methods employed
resulted in a nonlinear model of the quadrotor that is
sufficiently accurate for the purpose of control system
design.

8 Conclusions

In this paper, a body-centric non-linear model for
a quadrotor UAV has been presented, identified,
verified and used in a model based body acceleration
tracking control system. The proposed approach is
an attractive choice for researchers investigating bio-
inspired navigation strategies for quadrotor UAVs.
The parameters of the nonlinear model are initially
approximated by analytical methods and then further
refined using system identification methods. Due to the
unstable nature of the quadrotor model the system
identification is performed in closed loop to avoid
the issues associated with the integration of unstable
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Figure 9 Reference vs. actual body accelerations when no
two accelerations are demanded simultaneously

dynamics and the high sensitivity of the error function.
Performing the identification in closed loop resulted in
satisfactory prediction of the quadrotor dynamics when
using sets of unseen experimental data.

The results obtained with the proposed control
method demonstrate the possibility of using body-
centric based control to operate the quadrotor, which
is more suitable for fulfilling bio-inspired navigation
strategies. The proposed control system has been tested
experimentally and it performed sufficiently well in
stabilizing the quadrotor and controlling its translation.
The good tracking performance achieved via the feed-
forward tracking is another direct indication of the
good quality of the model achieved via the system
identification process carried out in this paper. The
body-centric model and the body acceleration tracking
control proposed in this paper are the building blocks
of the visual high-level control and state estimation
presented in [27].
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Appendix

Table A1: Discrete time linearised model and LQ tracker
parameters

Φ


1 0 0 0.001 0 0
0 1 0 0 0.001 0
0 0 1 0 0 0.001
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



Γ 10−3 ×


1 −0.0002 0 0.0002

0.0001 0 −0.0001 0
0 0 0 0
0 −0.3305 0 0.3305

0.295 0 −0.295 0
−0.0143 0.0143 −0.0143 0.0143



C


0 0 1 0 0 0
0 −9.805 0 0 0 0

9.805 0 0 0 0 0
0 0 0 0 0 0
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Table A1 (continued)

D


0 0 0 0
0 0 0 0
0 0 0 0

−0.0116−0.0116−0.0116−0.0116



K


0 530.32 −211.61 0 42.4 −86.12

−529.93 0 211.61 −40.04 0 86.12
0 −530.32−211.61 0 −42.4−86.12

529.93 0 211.61 40.04 0 86.12



F


−211.61−54.09 0 −21.52
211.61 0 −54.05−21.52
−211.61 54.09 0 −21.52
211.61 0 54.05 −21.52



Qy 103 ×


180 0 0 0
0 5 0 0
0 0 5 0
0 0 0 5



R I4

Π


0 0 0.102 0
0−0.102 0 0
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0




