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Influence of inherent structure shear stress of supercooled liquids on their
shear moduli

Ingo Fuereder1 and Patrick Ilg1, a)

ETH Zurich, Department of Materials, Vladimir-Prelog-Weg 1-5/10, CH-8093 Zurich

(Dated: April 14, 2015)

Configurations of supercooled liquids residing in their local potential minimum (i.e. in their inherent structure,
IS) were found to support a non-zero shear stress. This IS stress was attributed to the constraint to the energy
minimization imposed by boundary conditions, which keep size and shape of the simulation cell fixed. In this
paper we further investigate the influence of these boundary conditions on the IS stress. We investigate its
importance for the computation of the low frequency shear modulus of a glass obtaining a consistent picture
for the low- and high frequency shear moduli over the full temperature range. Hence, we find that the IS
stress corresponds to a non-thermal contribution to the fluctuation term in the Born-Green expression. This
leads to an unphysical divergence of the moduli in the low temperature limit if no proper correction for this
term is applied. Furthermore, we clarify the IS stress dependence on the system size and put its origin on a
more formal basis.

I. INTRODUCTION

Upon decreasing temperature supercooled liquids display
a dramatic increase in their shear viscosity. This effect
can be directly related to an increase of the relaxation
time of shear stress fluctuations. In his seminal work
Goldstein1 pointed out the importance of the potential
energy landscape over the N particle configuration for
the slow relaxation dynamics of supercooled liquids. At
a sufficiently low temperature the system is assumed to
be close to a local minimum of this landscape (called an
inherent structure).

This picture naturally implies the presence of two time
scales in supercooled liquids: a fast relaxation process
associated with vibrational motion of the system around
an inherent structure and a slow relaxation process corre-
sponding to thermally activated hopping to another min-
imum in the potential energy landscape accompanied by
a rearrangement of a relatively small number of particles
in the system. In a non-equilibrium situation applied
strain might induce the disappearance of a local mini-
mum facilitating such a rearrangement and leading to
stress relaxation. While this fact has motivated investi-
gations on the influence of strain on the local potential
minima2–5, several studies have implicitly made use of
residual stresses in inherent structures present even at
equilibrium investigating the magnitude6 and the relax-
ation dynamics7,8 of the inherent stresses as the system
samples different minima. As pointed out by Abraham
and Harrowell, the notion of a shear stress of an inherent
structure is a priori far from obvious:9 if a system which
can be brought arbitrarily close to a local energy mini-
mum (say by an appropriate, numerical energy minimiza-
tion of a simulation), one would naively expect that all

a)Also at School of Mathematical and Physical Sciences, University
of Reading, Reading RG6 6AX

global shear stresses in the system are zeroed by this min-
imization procedure. However, it has been argued that
boundary conditions impose a constraint on the energy
minimization i.e. the shape and the size of the contain-
ment of a supercooled liquid forbids to zero all stresses.
In a computer simulation this constraint amounts to a
particular choice for the simulation box. It is not clear
in which sense this IS shear stress can be considered as a
predecessor of the stresses supported by a deformed su-
percooled liquid/glass or to which extent it determines
the stress relaxation process in a non-equilibrium situa-
tion at all. Therefore, a better understanding of the IS
stress is highly desirable. A first discussion of it has also
been given in [9]. Among other things, the authors found
that the magnitude of the IS stress is surprisingly, essen-
tially independent of temperature, scales with a certain
power of the system density and with the inverse system
size.
The aim of this note is to lift the inherent structure
stress on a more formal footing which will help us to
further clarify its origin and to discuss in what sense it
has an influence on computations of viscoelastic proper-
ties. To this end, we will present a consistent picture for
the proper calculation of low and high frequency shear
moduli of glass-forming liquids. This work is organized
as follows: In section II we begin our discussion by ap-
plying the Irving-Kirkwood formula for IS configurations
and tracing back the remaining stresses to the choice of
boundary conditions in a formal sense. In section III, we
proceed by identifying external mechanisms which bias
the computation of shear moduli upon decreasing tem-
perature in a supercooled liquid and provide calculations
of these moduli for glass forming liquids. In section IV
we summarize our results and conclude with a discussion
of the physical meaning of the IS stresses.
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II. THE IRVING-KIRKWOOD FORMULA FOR
INHERENT STRUCTURE CONFIGURATIONS

According to Irving and Kirkwood, the instantaneous
stress tensor in a configuration with particle mass mi,
positions ri restricted to a volume V is given by10

σαβ =
1

V

N∑
i=1

mivi,αvi,β −
1

2V

N∑
i=1

N∑
j=1

rij,αFij,β , (1)

where rij = ri − rj , vi = ṙi and Fij is the pair forces
exerted on particle i by particle j. The Greek indices
refer to the cartesian component of the corresponding
vector/tensor. In an IS configuration (i.e. in a mechan-
ically stable packing) the particles are at rest and the
inherent structure stress σIS is solely determined by the
second part of (1). We assume periodic boundary condi-
tions in a cubic box with side length L i.e. we redefine
rij,α = ri,α − rj,α + nij,αL. Here, nij denotes the vector
which minimizes the distance between particles i and j
where its components are ±1 or 0. Inserting the peri-
odic boundary conditions in the configurational part of
(1) leads to

σISαβ = − 1

2V

 N∑
i=1

rISi,α

N∑
j=1

Fij,β

−
N∑
j=1

rISj,α

N∑
i=1

Fij,β + L

N∑
i=1

N∑
j=1

nij,αFij,β

 . (2)

By using Newton’s third law Fij = −Fji and renaming
of indices, this can be rewritten as follows.

σISαβ = − 1

V

N∑
i=1

rISi,αFi,β −
L

2V

N∑
i=1

N∑
j=1

nij,αFij,β , (3)

where Fi =
∑N
j=1 Fij is the net force acting on parti-

cle i. This quantity vanishes by definition for an IS. In
a simulation it is arbitrarily small in the sense that the
magnitude of the net force on a particle is bounded by
the smallest force tolerance at which the used minimiza-
tion algorithm (e.g. a conjugate gradient solver) still con-
verges. Therefore, the IS stress is approximately given by

σISαβ ≈ −
L

2V

N∑
i=1

N∑
j=1

nij,αFij,β . (4)

As we will discuss subsequently, expression (4) has a
straightforward physical interpretation. Note, that the
α-component of the vector nij is only nonzero if a parti-
cle close to the α = L/2 boundary of the simulation box
interacts with the periodic image of a particle residing
at the opposite (α = −L/2) boundary or vice versa. For
instance, if we choose α = x, β = y in a cartesian co-
ordinate system, expression (4) is nothing else than the

Figure 1. Variance of inherent structure stress in 2D (top,
soft sphere system) and 3D (bottom, binary LJ system) both
at temperature T=0.5 as a function of system size. Black
circles indicate the full Irving-Kirkwood expression and red
triangles the approximate boundary formula (4). The insets
show the same data on a log-log scale with a linear fit which
has a slope of −1.

total force component in y-direction exerted by the right
boundary layer of the simulation box on its left counter-
part. This shows analytically in which sense the choice
of boundary conditions (i.e. the shape of the simulation
box) determines the IS stress. We test approximation
(4) numerically by comparing the mean squared IS stress
calculated from the full Irving-Kirkwood expression to
the one calculated from approximation (4) by performing
molecular dynamics simulation of glass forming systems
for different system sizes, temperatures and dimensions
(see appendix A for details on the simulations). The to-
tal inherent structure stress is very well approximated by
equation (4) (see Fig.1). As it can be read off from Fig.
1, the fluctuations of σISαβ show a 1/V system size depen-

dence, which has already been described described in [9].
A heuristical explanation is given in appendix C based on
equation (4). The investigation of the IS in amorphous
materials dates back to ideas of Stillinger and Weber11

and has proven to have various applications including the
investigation of rate processes in low-temperature amor-
phous substances, the formulation of equations of state
for supercooled liquids, macroscopic transport proper-
ties etc. (see e.g. [12],[13] and [14]). While equation (4)
seems to identify the IS stress to be a mere (negligible)
boundary effect, we will discuss that it is felt through-
out the system and has a major influence on macroscopic
quantities. Our discussion will focus on the influence of
IS stresses on the numerical computation of elastic con-
stants, more specifically on the shear moduli of a glass
forming material.
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III. ELASTIC CONSTANTS

The shear modulus, G, describes the response of a ma-
terial to shear stress and is defined as the ratio between
shear stress to shear strain. If a material is subjected
to oscillatory shear deformation, the shear modulus is a
function of the excitation frequency ω, i.e. G = G(ω).
Its high- and low frequency limits are characteristic for
a material’s mechanical behavior: the infinite frequency
shear modulus, G∞, describes the response to an instan-
taneous, affine deformation. It is not directly measurable
experimentally, since a deformation at truly infinite fre-
quency cannot be applied in practice. G∞ should not
be confused with the experimentally reported high fre-
quency modulus which always refers to the shear modulus
at the highest obtainable frequencies.15 The temperature
dependence of G∞ is relatively weak and its value mainly
depends on the microscopic details (atomistic potential)
of the system. The zero frequency limit, G0, describes
the ability of relaxing stresses on a long time scale. Since
a liquid in equilibrium does not support any stresses, G0

is zero for a liquid in equilibrium but finite for a solid.
Therefore, the zero frequency modulus can be regarded
as an indicator for solidity. It depends strongly on the
thermodynamic state and is therefore sensitive to tem-
perature changes as a material approaches its melting
point. The situation is more complicated for glassform-
ing materials as they do not show a sharp solidification
transition. In the following, we will summarize and ex-
tend previous results for G∞ and G0 of a supercooled
liquid and discuss their behavior over the full tempera-
ture range. Furthermore, we will investigate the contri-
bution stemming from the IS and discuss in what sense
it contributes to properties of the low temperature glass.
Throughout this section the simulation results are re-
ported for the two-dimensional soft sphere system with
N = 512 particles (see appendix).

A. General remarks

The infinite frequency shear modulus is analytically given
by the so-called Born-Green expression16 which is well
defined and yields non-vanishing results in both the solid
and the fluid phase. This expression is given by

G∞ = ρkBT+〈
1

2V

∑
i,j

r2
ij,xr

2
ij,y

(
φ′′(rij)

r2
ij

− φ′(rij)

r3
ij

)〉
− P , (5)

for an isotropic system with the hydrostatic pressure P
and a pair potential φ(r). Further utilizing isotropy and
performing an orientational average this can be simplified
to17,18

G∞ = ρkBT +
1

8V

〈
1

2

∑
i,j

1

rij

∂

∂rij

[
r3
ijφ
′(rij)

]〉
, (6)

for a two dimensional system. For a soft sphere system
with a purely repulsive pair potential of the type r−n

equation (6) leads to19

G∞ = ρkBT +
n− 2

4
(P − ρkBT ) . (7)

The low frequency shear modulus is given by equation (5)
corrected by the so-called fluctuation term18,20,21, i.e.

G0 = G∞ −
V

kBT

(〈
σ2
xy

〉
− 〈σxy〉2

)
. (8)

In the following we will provide an extensive discussion
of these quantities for a glass forming liquid in different
temperature regimes.

B. High temperature liquid

For temperatures well above the melting point of the
system, the low frequency shear modulus vanishes, i.e.
the system does not sustain non-zero stresses on a long
time scale. In this situation the fluctuation term cancels
the Green-Born expression and the high frequency shear
modulus can be calculated by the shear stress fluctua-
tions:

GL∞ =
V

kBT

(〈
σ2
xy

〉
− 〈σxy〉2

)
. (9)

Note that the ensemble average of the shear stress
〈σxy〉 in equilibrium always vanishes.

C. Supercooled phase

Upon further cooling the system below its melting point,
the supercooled regime is entered. The fluid is not in
its true thermodynamic equilibrium being the crystalline
phase but is said to be in a metastable equilibrium in the
sense that time translational invariance holds and two
time correlation functions (such as the stress-stress au-
tocorrelation function, C(t) = 〈σxy(t)σxy(0)〉) decay to
zero within experimentally available time windows (see
fig. 2). As the particle motion becomes increasingly slug-
gish, relaxation becomes slower and happens on two time
scales: vibrational degrees of freedom lead to a fast re-
distribution of stresses (i.e. an initial decay of C(t) to
the lowest possible value possible for a particular con-
figuration in place). This process is followed by a slow
relaxation associated with particle rearrangements on a
mesoscopic scale. As the system is still (quasi-)ergodic in
the sense that it finds a way to redistribute stresses such
that C(t) fully decays to zero, the formulas for the elastic
moduli (equations (7) and (8)) are still valid. However,
since the relaxation of stress correlations takes an increas-
ingly long time scale, the liquid assumes a viscoelastic
behavior and the low frequency shear modulus departs
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from its zero value. According to equation (8), this is as-
sociated with a decrease in the shear stress fluctuations.
It also means that equation (9) is not appropriate to com-
pute the high frequency modulus anymore, but equation
(5) has to be used. The fact that the common expression
(9) looses its validity in the solid phase has been pointed
out by several authors.9,19,22

D. Glassy phase

If the system is further cooled below the glass transition
temperature Tg a full relaxation of two time correlation
functions cannot be observed anymore within the exper-
imentally available time window. The calculation of the
shear modulus of a material in this glassy state was ex-
tensively discussed by Williams.22,23 We briefly recap the
physical picture considered by the authors there: The
phase space of the system is divided into ND subsys-
tems. Every subsystem is in equilibrium but between
the domains the system is out of equilibrium. The prob-
ability density of the domain a is given by fa(Γ) =

sa(Γ) exp(−βH(Γ))
Za

with Za =
∫
dΓsa(Γ) exp(−βH(Γ)),

where Γ is the phase space coordinate, H the Hamilto-
nian of the system and sa a switching function which
is equal to unity if Γ lies in the domain a and zero
otherwise. The probability distribution of the entire
system is given by a composition of the single-domain
distribution weighted with a nonequilibrium weight, i.e.

f(Γ) =
∑ND

a=1 wafa(Γ) and
∑ND

a=1 wa = 1. Equation (8)
holds for the (equilibrium) subdomains only. The authors
of this study further derived that the infinite frequency
shear modulus of the system is given by

G0 = G∞,f −
V

kBT

ND∑
a=1

wa

(〈
σ2
xy

〉
a
− 〈σxy〉2a

)
, (10)

where the subscript f denotes the rule to average the
Green-Born expression over the distribution f and the
subscript a means an equilibrium average over the do-
main a. This makes an accurate and meaningful calcu-
lation of the low frequency modulus for a glass sample a
very subtle task as it would require to consider the single
phase space domains. Under the assumptions that every
simulation is sampling its own, single domain and that
the set of prepared samples representatively reflects the
distribution of the weights wa, one could estimate (10) by
simple time averages. This approach was seemingly taken
in [9] and in [19]. However, as already pointed out in [22]
this method is very sensitive to the used time over which
averages are taken. Therefore, we mention an alterna-
tive approach, also presented in [22]: the low frequency
modulus is given by the Green-Born expression minus the
stress-stress autocorrelation function C(t) at t = 0 (equa-
tion (8)), which drops to a non-zero plateau value for a
broad class of glass forming liquids. This means that the
stress fluctuations relative to the frozen-in stresses in this

domain are considered. The autocorrelation is now cal-
culated up to a cutoff time tc which is much larger then
the relaxation time of the fast processes in the sample.
Finally, the fluctuation term in (8)) is corrected by C(tc):

G0 = G∞ −
V

kBT

(〈
σ2
xy

〉
− 〈σxy〉2 − C(tc)

)
. (11)

It should be noted that this procedure has the advantage
that it is not sensitive to the chosen cutoff since C(t) is
almost constant for a broad time interval (meaning that
ageing of the glass is negligible on the time scale of in-
terest for the investigated model system). The physical
picture behind this correction is the following: each in-
dividual glass sample contains frozen-in stresses, which
are induced due to the initial conditions and preparation
procedure of the sample. For instance, a fast cooling
protocol pushes a liquid out of equilibrium very rapidly.
This does not leave enough time for stress relaxation pro-
cesses to occur leading to significant stresses in the glass
sample which might not be present if a slower cooling
rate would have been used. While these residual stresses
are sometimes deliberately introduced during the manu-
facturing process24 and influence mechanical/rheological
measurements on individual glassy materials, they are
not a characteristic property of the material but a re-
mainder of its production process. Correcting for the
frozen-in stresses by subtracting the plateau value of the
stress-stress correlation function removes this contribu-
tion from the low frequency modulus such that G0 re-
mains a quantity which is characteristic for the material
irrespectively of its history. As we will see in the next
section, the IS stress may also bias the computation of
the elastic moduli. Since, we want to investigate this
effect in more detail, we focus on systems where correc-
tions for the frozen-in stresses in the form of (8) play
a minor role only. This is the case for the considered
system. While the self-intermediate scattering function
does not decay to zero anymore, when the liquid passes
the glass transition temperature25, the stress-stress au-
tocorrelation function C(t) decays to values which are
negligible for a potential correction according to equa-
tion (8) (see fig. 2). The physical reason for this behav-
ior might be, that stress relaxation events happen only in
local rare events, but the global stress-stress correlation
decays since very few rearrangements on the boundaries
of the simulation box lead to a large change in the IS
stress contribution as discussed in section I.

E. Low temperature limit

The low temperature limit of the amorphous solid is of
wide interest in the research community and subject to
extensive scientific effort (for an overview see the cor-
responding sections in [26)]. In the following, we will
extend our discussion on the calculations of the elastic
properties to the low temperature regime. We will use
the present considerations about the shear moduli as a
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Figure 2. Stress-stress autocorrelation function C(t) =
〈σxy(t)σxy(0)〉 for high (T = 0.6, black) and low tempera-
ture (T = 0.3, red). While at T = 0.6 the systems starts to
develop a two step relaxation process, a pronounced plateau
can be observed at T = 0.3. Note, that for the system under
consideration C(t) drops to values close to zero even at tem-
peratures below the nominated glass transition temperature
T ≈ 0.35. See text for an explanation. Numerical data have
been fit by a stretched exponential a exp(−btc) + d for long
time scales.

tool to identify different mechanism contributing to the
solidification process of a glassy material and clarifying
the role of the IS stress played in it.

For a subdomain a which is assumed to be in equilib-
rium, we follow the calculation of Lutsko27 and compute
the shear stress fluctuation in the canonical ensemble in
the low temperature limit.

〈
σ2
xy

〉
a

=
1

Za

∫
drsaσ

2
xy exp

(
− Φ

kBT

)
, (12)

where Za =
∫
drsa exp

(
− Φ
kBT

)
and Φ is the potential

energy of the system. We expand both potential energy
and stresses around its inherent structure, i.e.,

Φ = Φ|r=rIS
i

+
∂Φ

∂ri,α

∣∣∣∣
r=rIS

i

(ri,α − rISi,α)+

1

2

∂2Φ

∂ri,α∂rj,β

∣∣∣∣
r=rIS

i

(ri,α − rISi,α)(ri,β − rISi,β) + ... , (13)

and

σxy = σISxy +
∂σxy
∂ri,α

∣∣∣∣
r=rIS

i

(ri,α − rISi,α)+

1

2

∂2σxy
∂ri,α∂rj,β

∣∣∣∣
r=rIS

i

(ri,α − rISi,α)(ri,β − rISi,β) + ... , (14)

where we have used the summation convention for in-
dices. In the following, we will use ΦISn and σISxy,n as
a short notation, where the superscript means that the

expression has to be evaluated at the inherent structure
configuration and the number in the subscript refers to
the n-th derivative. Transforming to re-scaled coordi-
nates ri,α − rISi,α = (kBT )1/2r′i,α and inserting (13) and
(14) into equation (12) yields∫

sa

(
σISxy +

√
kBTσ

IS
xy,1r

′ + ...
)2

exp

(
−1

2
ΦIS2 r′r′

)
exp

(
−
√
kBT

6
ΦIS3 r′r′r′ − ...

)
dr′/∫

sa exp

(
−1

2
ΦIS2 r′r′

)
exp

(
−
√
kBT

6
ΦIS3 r′r′r′ − ...

)
dr′ .

(15)

Expanding the second exponential factor in powers of
kBT (in both denominator and enumerator), all integrals
are Gaussian integrals, which are solvable analytically.
Note that odd moments of these Gaussian integrals van-
ish. Finally, expanding the quotient in equation (15) in
powers of kBT leads directly to the following result for
the stress-stress fluctuation in the low temperature limit:

V

kBT

〈
σ2
xy

〉
f
≈

V
∑
a

wa

(
(σIS,axy )2

kBT
+A+BkBT +O((kBT )2)

)
,

(16)

where σIS,axy is the inherent structure contribution from
particles in subdomain a and the subscript f has the same
meaning as in equation ((10)). At this point we have to
make further assumptions in order to estimate the low
temperature limit of the fluctuation term. Again we are
left with the problem of identifying the different subdo-
mains in order to estimate the weights wa and to sum
over

〈
σ2
xy

〉
a

accordingly. We will make the previously
mentioned assumption that the prepared samples reflect
the distribution of these weights and that each simula-
tion predominantly samples its own single domain such
that the total inherent structure stress of one simulation,
σISxy approximates σIS,axy . Therefore, the low temperature
limit of the fluctuation term is estimated by ensemble
averaging over statistically independant starting config-
urations. Hence, the quantity A is the linear term in the
perturbation expansion and given by

A =

(
∂σISxy
∂riα

∂σISxy
∂rjβ

)
〈〈r′iαr′jβ〉〉

− 1

3
σISxy

(
∂3Φ

∂riα∂rjβ∂rkγ

∂σISxy
∂rlδ

)
〈〈r′iαr′jβr′kγr′lδ〉〉

+ σISxy

(
∂2σISxy
∂riα∂rjβ

)
〈〈r′iαr′jβ〉〉 . (17)

The contributions to the linear term B are discussed
later. We have introduced the Gauss bracket of a
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function g which is defined as follows 〈〈g(r′)〉〉 =
1
c

∫
dr′g(r′) exp

(
−ΦIS2 r′r′

)
, where c is a normalization

constant such that 〈〈1〉〉 = 1 holds. Note, that

〈〈riαrjβ〉〉 =
(
(ΦIS2 )iα,jβ

)−1
(18)

where the right hand side is nothing but the inverse of the
Hessian matrix. The Hessian matrix has zero eigenvalues
due to the fact the the net force on the system is zero
and is therfore not invertible. A commonly used solution
to this issue is, physically holding one particle fixed (i.e.
excluding it from the sums in all calculations), which has
no effect on the free energy.28 All higher moments like
〈〈riαrjβrkγrlδ〉〉 can be traced back to (18) using Wick’s
theorem, e.g.:

〈〈riαrjβrkγrlδ〉〉 = 〈〈riαrjβ〉〉〈〈rkγrlδ〉〉+
〈〈riαrkγ〉〉〈〈rjβrlδ〉〉+ 〈〈riαrlδ〉〉〈〈rjβrkγ〉〉 . (19)

We find that the first term in equation (16) is exactly
the inherent structure contribution to the stress fluctu-
ations. Since these fluctuations are essentially tempera-
ture independent, this term would lead to a divergence
of the low frequency shear modulus. This means that,
under the constraint of the given containment (or the
boundary conditions of the simulation box) the particles
possibly cannot be packed in a way which zeros the total
stress as discussed in the previous section. We note that
this constraint is imposed on the entire box so it does
not affect the results of local elastic quantities where the
subvolume is embedded in a larger system (e.g. see [29] or
[30]). At high temperatures this term also does not play
an important role: for formal reasons due to the 1/T
prefactor, for physical reasons due to permanent stress
redistributions activated by thermal motion occurring at
high temperatures. These stress fluctuations are usually
much larger than its IS contribution (see figure (3)). We

0.2 0.3 0.4 0.5 0.6 0.7 0.8 T

0.2

0.4

0.6

XHΣxy
ISL2�Σxy

2 \

Figure 3. Fraction of stress variance stemming from the
IS contribution, increasing over 50% when the system enters
the supercooled regime. At this point stress redistributions
through thermal activation become so slow that the exter-
nal constraint, set by the boundary conditions becomes non-
negligible and requires a correction to the shear moduli.

identify the IS contribution to the shear stress fluctua-
tion as geometric frustration of the system, accompany-
ing the kinematic frustration, which has been discussed in
the previous section on the nonequilibrium glassy state.
Again, this contribution is not an inherent material prop-
erty but reflects external constraints on the relaxation
dynamics becoming significant at low temperatures. The
second term in (16) is temperature independent and the
benefit of equation (17) is that, we can read off how the
stress fluctuations obtained from a simulation should be
corrected to extract the true zero temperature properties
of the material when frozen-in stresses can be neglected.
Alternatively, the material properties can be calculated
from the first term in (17) which does not contain the
IS shear stress itself but only its derivative. The latter
is nonzero irrespectively of any constraint on the system.
This term has already been deduced in [27], however it
has so far not been numerically tested for amorphous sys-
tems to the best of our knowledge. Even though equa-
tion (16) is strictly speaking only valid in equilibrium
at low temperatures, we propose to correct the zero fre-
quency shear modulus even in the glassy regime, since
the inherent structure stress plays a predominant role al-
ready at this temperature range as can be seen in figure
3. The second term, B, in equation (16) describes the
slope at which the fluctuation term departs from its zero
temperature limit. Among all terms contributing to this
order of (kBT ) we neglect those which contain IS con-
tributions (see Appendix B) and obtain the temperature
dependence of the fluctuation term close to T = 0.
As a conclusion, we have obtained a detailed picture of
the computation of the high and low frequency shear
moduli of a glass forming system: While in the high tem-
perature regime the fluctuation term cancels the infinite
frequency shear modulus, it decreases in the supercooled
regime. This means the the glass forming material de-
velops an elastic behavior. Due to the non-thermal IS
contribution the fluctuation term would increase again
upon further cooling in the glassy phase. As we correct
for this contribution, we observe a small decrease of the
fluctuation term towards the low temperature limit (see
figure 4). The difference between G∞ and the fluctua-
tion term is depicted in figure 5. At high temperatures
G0 is essentially zero meaning that the fluid does not
support stresses on a long time scale. Entering the su-
percooled regime the material behaves elastically, which
is mirrored by an increase of the zero frequency modu-
lus. As the temperatures is reduced further this elastic
behavior becomes more pronounced (see figure 5).

IV. CONCLUSION

In this note we discussed the origin of the inherent struc-
ture stress and traced it back to the particular choice
of boundary conditions. In view of equation (4) the IS
stress can be understood as the net forces penetrating
the boundary of the simulation box. Notably, the for-
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Figure 4. High frequency shear modulus (blue, open circles)
according to equation (7). Filled, black circles show simula-
tion results for the fluctuation term from ensemble averaging
with the proper IS corrections applied (see text). The red
square is the zero temperature limit according to the first
term in equation (17). The red line corresponds to perturba-
tion theory results for the fluctuation term of the Born-Green
theory. The low frequency shear modulus is given by the dif-
ference between black and blue data points. We distinguish
four temperature regimes: Regime I is the high temperature
regime at which equations (5) and (9) hold equally to calcu-
late the high frequency modulus. In regime II the system is
supercooled. The fluctuation does not fully cancel G∞ any-
more meaning that the material develops an elastic behavior.
Regime III is the glassy state at which both frozen-in and
IS stresses bias the calculation of the fluctuation term and
are corrected to extract inherent material properties irrespec-
tively of external constraints or history dependence. Regime
IV is the low temperature glass phase at which the fluctuation
term can be computed with equation (16)

0.0 0.2 0.4 0.6 0.8 T
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Figure 5. Zero frequency shear modulus obtained from sub-
tracting the fluctuation term from the high frequency shear
modulus according to equation (8). Black circles show simu-
lation results with proper IS corrections applied and the red
square is the zero temperature limit according to the first
term in equation (16). The red line corresponds to perturba-
tion theory results for the fluctuation term of the Born-Green
theory.

mula (4) exactly coincides with the so-called “Method of
Planes” definition of the stress evaluated at the bound-
aries of the simulation box.31,32 This analytic expression
allowed us to explain the scaling of the IS stress with
the system size (see appendix). Moreover, it might serve
as starting point for understanding other properties of
the IS stress, e.g. its temperature independence or its
absolute magnitude. Finally, we would like to address
the question which physical meaning lies behind the IS
stress. It is obvious that in a sufficiently low tempera-
ture regime the configurational part of the stress tensor
becomes dominant over the kinetic contribution. Start-
ing from the Green-Kubo formula for the viscosity17,
η = V

kBT

∫∞
0
〈σxy(t)σxy(0)〉dt , it has been noted that the

IS stress autocorrelation describes the onset of highly vis-
cous behavior as a liquid enters its supercooled regime.9

Hence, as the system explores the potential energy land-
scape, hopping from one minimum to another, the un-
derlying IS stress fluctuations determine its viscosity in
the linear response regime. In view of equation (4) this
means that a rearrangement of forces at the boundary
of the system contains enough information to character-
ize the inherent structure which the system currently re-
sides in. However, two caveats seem to come along with
this notion. First, the IS stress itself does not provide
any obvious information on which time scale its auto-
correlation will decay or at which frequency the hopping
between the energy minima occurs. It is merely associ-
ated with a geometric frustration which is imposed on
the system by choosing particular boundary conditions.
Secondly, one should not conclude from (4) that cooper-
ative rearrangements taking place at the transition from
one minimum to another primarily happen at the bound-
ary of the system. They occur anywhere in the system
but the energy minimization zeroes all net forces on par-
ticles locally, leading to a redistribution of the boundary
forces. In this sense the boundary conditions introduce
a frustration which is present everywhere in the system.
In view of the previous discussion the following, over-
all picture for the role of the IS stress emerges: the IS
stresses and the redistributions of forces might amount to
a macroscopic, scalar observable which characterizes the
inherent structure such that its autocorrelation mirrors
the path of the system through its configuration space,
but does not contribute to the viscosity via any associ-
ated timescale as it does not contain dynamical informa-
tion itself. However, it affects the elastic properties of
the system as it leads to a diverging contribution to the
fluctuation term of the Born-Green theory. The reason
for this behavior is that the IS contribution to the fluc-
tuation term is of a non-thermal origin. If this term is
divided by kBT , it leads to a divergence of the fluctua-
tion term and therefore to results for the elastic moduli
which are biased by the external constraint imposed on
the system. Since every rheological (or mechanical) mea-
surement goes together with a change of the boundary
of the system and as there is no experimental indication
for a low-temperature divergence of the infinite frequency
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shear moduli in glassy systems33,34, it seems appropriate
to remove the IS contribution to the shear modulus in or-
der to correct for external constraints in the preparation
procedure of the IS.
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Appendix A: Model systems and simulation details

The chosen model system and simulation details es-
sentially correspond to those used by Abraham and
Harrowell9 investigating glass forming model systems in
2D25 and 3D35. Molecular dynamics simulations were
carried out at fixed volume, temperature and parti-
cle number, using the LAMMPS package.36 We used
equimolar, binary mixtures of particles interacting via a

purely repulsive potential in 2D, φij(r) = ε
(σij

r

)12
, with

ε = 1, σ11 = 1, σ12 = 1.2,σ22 = 1.4 and a Lennard-
Jones potential in 3D, φij(r) = 4ε

(
(
σij

r )12 − (
σij

r )−6
)

with ε = 1, σ11 = 1, σ12 = 1.1,σ22 = 1.2. A cut-
off rc was used at 4.5σ11 and the potential were shifted
such that they vanished at rc. The mass of the particles
were m1 = 1 and m2 = 2 and the used densities were
ρ = 0.747 in 2D and ρ = 0.75 in 3D. Both systems were
simulated at T = 0.5 which is below the freezing tem-
perature of both systems and the particle numbers were
chosen to be N = 512, 1024, 2048, 4096, 8192 in 2D and
N = 1024, 2048, 4096, 8192 in 3D. Reduced units are used
for length L∗ = L/σ11, temperature T ∗ = kBT/ε, energy,
E∗ = E/ε and pressure P ∗ = Pσ3/ε. Throughout all
simulations, periodic boundary conditions are applied.

Appendix B: Perturbation calculations

In the following we list the terms which contribute to
the linear order term in equation (16), B =

∑7
i=1Bi.

B1 =
1

24
σxy,α1

σxy,α2
Φα3α4α5α6

〈〈r′α1
r′α2
〉〉

〈〈
6∏
i=3

r′αi

〉〉
B2 =

−σxy,α1
σxy,α2

72
Φα3α4α5

Φα6α7α8〈〈
8∏
i=3

r′αi

〉〉
〈〈r′α1

r′α2
〉〉

B3 =
σxy,α1

σxy,α2

72
Φα3α4α5Φα6α7α8

〈〈
8∏
i=1

r′αi

〉〉

B4 = − 1

24
σxy,α1

σxy,α2
Φα3α4α5α6

〈〈
6∏
i=1

r′αi

〉〉

B5 =
1

4
σxy,α1α2

σxy,α3α4

〈〈
4∏
i=1

r′αi

〉〉

B6 = −1

6
σxy,α1

σxy,α2α3
Φα4α5α6

〈〈
6∏
i=1

r′αi

〉〉

B7 =
1

3
σxy,α1σxy,α2α3α4

〈〈
4∏
i=1

r′αi

〉〉

Note that the calculation of this first order term is a
somewhat lengthy and complicated task: Firstly, higher
derivatives of the total potential Φ and of the Irving-
Kirkwood expression of the stress are required. However,
these can be computed in a straightforward way for sim-
ple pair potentials (like the purely repulsive soft sphere
potential used in this study) by using software which is
capable of performing symbolic computations. Secondly,
some of these objects (e.g. the fourth derivative of the
potential Φα1α2α3α4

) contains a very large number of en-
tries. In the present study we investigate systems with
512 particles in two dimensions meaning that this tensor
has approximately (103)4 = 1012 entries. Summing over
this number of entries and even storing the object itself
seems to be an intractable task. However, the majority
of entries are zero, since the derivative with respect to
three (or more) different particle coordinates vanishes for
a pair potential. Additionally, the sequence of the per-
formed derivatives does not influence its value according
to Schwartz’s theorem. A third problem arises due the
use of Wick’s theorem: the term B3 requires the calcula-
tion of the eighth moment. Splitting this in all possible
pair combinations yields in total 105 terms but the prob-
lem can be simplified using symmetry properties of the
involved objects. In the following we provide further de-
tails on how one of the terms is calculated in practice.
The other terms can be handled in a completely anal-
ogous way. For instance the term B4 can be split as
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follows:

B4 = − 1

24
σxy,α1

σxy,α2
Φα3α4α5α6(〈〈

r′α1
r′α2

〉〉 〈〈
r′α3

r′α4
r′α5

r′α6

〉〉
+〈〈

r′α1
r′α3

〉〉 〈〈
r′α2

r′α4
r′α5

r′α6

〉〉
+ ...

)
. (B1)

The first term of the sum cancels B1. Contract-
ing over α1 and introducing the abbreviation Tα3 =
σxy,α1

〈〈
r′α1

r′α3

〉〉
, this can be rewritten

B4 = − 1

24
σxy,α2

Φα3α4α5α6(
Tα3

〈〈
r′α2

r′α4
r′α5

r′α6

〉〉
+

Tα4

〈〈
r′α2

r′α3
r′α5

r′α6

〉〉
+ ...

)
. (B2)

Since the sequence of the derivatives of Φ does not matter
all terms in the brackets are the same which leads to

B4 = − 4

24
σxy,α2

Φα3α4α5α6

(
Tα3

〈〈
r′α2

r′α4
r′α5

r′α6

〉〉)
.

(B3)

Employing Wick’s theorem another time, i.e.:〈〈
r′α2

r′α4
r′α5

r′α6

〉〉
=
〈〈
r′α4

r′α6

〉〉 〈〈
r′α2

r′α5

〉〉
+〈〈

r′α4
r′α5

〉〉 〈〈
r′α2

r′α6

〉〉
+
〈〈
r′α5

r′α6

〉〉 〈〈
r′α2

r′α4

〉〉
(B4)

and using the permutability of indices again, we conclude:

B4 = −12

24
Tα3

Tα4
Φα3α4α5α6

〈〈
r′α5

r′α6

〉〉
. (B5)

This expression can be handled numerically bearing in
mind that only those entries of Φα3α4α5α6 are non-zero for
which at least three particle indices are identical. With
these simplifications the first order contributions B1 to
B7 can be calculated. We note that, even though the
slope of temperature dependence is in good agreement
with the medium temperature data the sample to sample
fluctuations of the first order term B is much larger than
those of the zeroth order term A.

Appendix C: Volume dependence

In this appendix we provide an intuitive explanation
for the scaling behavior of the IS stress variance. We start
by briefly recapitulating a simple density scaling argu-
ment for plastic flow of amorphous solids made in [37] and
[38], which was used previously9 to explain the density
scaling of the IS stress. We consider a purely repulsive
pair potential φ(r) = (σ/r)n and the force magnitude be-

tween particle i and j is given by Fij =
∂φ(rij)
∂rij

∼ r−n−1
ij .

If we denote the probability distribution of distances
r at density ρ by p(r, ρ), the mean distance is given
r0(ρ) =

∫
rp(r, ρ)dr. Assuming that p(r, ρ) is strongly

peaked around a characteristic distance, it can be esti-
mated that r0 ∼ σ/ρ1/d in d dimensions. Therefore, we
assume the interaction between particle i and j to be
determined solely by density of the system but to be in-
dependent of its size. Summing over the index j in (4),
we obtain

σISxy ≈ −
L

V

Nb∑
i=1

F
x=L/2
i,y , (C1)

where F
x=L/2
i,y is the y-component of the net force act-

ing on a particle i for which xi . L/2 exerted by the
periodic images of the particles residing in the vicinity
of the xj = −L/2 boundary. Nb is the number of par-
ticles in the boundary layer of the simulation box i.e.
(xi, yi) ∈ [L/2− rc, L/2] × [−L/2, L/2], where rc is the
interaction range of the potential. We also multiplied by
a factor of two to account for the reversed situation where
particle i resides at xi & −L/2. Clearly, the average over
different configurations vanishes, 〈σISxy 〉 ≈ 0 but we find
for the average magnitude of the IS stress:

〈
(σISxy )2

〉
≈ L2

V 2

〈
Nb∑
i=1

F
x=L/2
i,y

Nb∑
j=1

F
x=L/2
j,y

〉
. (C2)

The sum in (C2) extends over particles which are in close

vicinity of each other. Therefore, the forces F
x=L/2
i,y can-

not be regarded to be uncorrelated but might be assumed
to be weakly anti-correlated over distance of a few par-
ticle diameters. From a physical point of view, this is
perfectly sensible, as will be made clear by the following
intuitive argument. Assume, a particle i1 is subjected

to a strong, positive force (F
x=L/2
i1,y

= a > 0). Then, a
particle i2, which is not to far away, should push with

the same force F
x=L/2
i1,y

≈ −a in the reverse direction in
order to maintain the mechanical stability in which the
inherent structure configuration resides per definition. It
is clearly not possible that all forces perfectly cancel in
that manner. We denote the number of unbalanced forces
by Nc which should scale as the number of particles in the
corner of the simulation box i.e. Nc ∼ r2

cL
d−2. Applying

this argument to equation (C2) leads to

〈
(σISxy )2

〉
≈ L2

V 2

〈
Nb∑
i=1

F
x=L/2
i,y

Nb∑
j=1

F
x=L/2
j,y

〉

≈ L2

V 2

〈
Nc∑
i=1

(
F
x=L/2
i,y

)2
〉

, (C3)

where the remaining forces in (C3) are uncorrelated.
Invoking the central limit theorem to the presumably in-
dependent remaining forces results in the following scal-
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ing estimate

〈(σISxy )2〉 ≈ L2

V 2

〈
Nc∑
i=1

(
F
x=L/2
i,y

)2
〉
∼ L2

V 2
Ld−2 ∼ L−d ,

(C4)
which interestingly reveals the IS stress fluctuations

to be a V −1 effect although shown to arise from a
contribution originating from a constraint imposed on
the boundary of the box. This scaling behavior coincides
with the one numerically found by the authors of [9].
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