
Detection of coherent airstreams using 
cluster analysis: application to an 
extratropical cyclone 
Article 

Accepted Version 

Hart, N. C. G., Gray, S. L. ORCID: https://orcid.org/0000-0001-
8658-362X and Clark, P. A. ORCID: https://orcid.org/0000-
0003-1001-9226 (2015) Detection of coherent airstreams 
using cluster analysis: application to an extratropical cyclone. 
Monthly Weather Review, 143 (9). pp. 3518-3531. ISSN 1520-
0493 doi: 10.1175/MWR-D-14-00382.1 Available at 
https://centaur.reading.ac.uk/40113/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .
Published version at: http://dx.doi.org/10.1175/MWR-D-14-00382.1 
To link to this article DOI: http://dx.doi.org/10.1175/MWR-D-14-00382.1 

Publisher: American Meteorological Society 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


CentAUR 

Central Archive at the University of Reading 
Reading’s research outputs online



Detection of coherent airstreams using cluster analysis: application to an1

extratropical cyclone2

Neil C. G. Hart ∗ and Suzanne L. Gray and Peter A. Clark3

Department of Meteorology, University of Reading4

∗Corresponding author address: Department of Meteorology, University of Reading, Earley Gate,

Reading, United Kingdom

4

5

E-mail: n.c.hart@reading.ac.uk4

Generated using v4.3.2 of the AMS LATEX template 1



ABSTRACT

Flow in geophysical fluids is commonly summarized by coherent streams,

for example conveyor belt flows in extratropical cyclones or jet streaks in the

upper troposphere. Typically, parcel trajectories are calculated from the flow

field and subjective thresholds are used to distinguish coherent streams of in-

terest. This methodology contribution develops a more objective approach to

distinguish coherent airstreams within extratropical cyclones. Agglomerative

clustering is applied to trajectories along with a method to identify the optimal

number of cluster classes. The methodology is applied to trajectories associ-

ated with the low-level jets of a well-studied extratropical cyclone. For com-

putational efficiency, a constraint that trajectories must pass through these jet

regions is applied prior to clustering; the partitioning into different airstreams

is then performed by the agglomerative clustering. It is demonstrated that the

methodology can identify the salient flow structures of cyclones: the warm

and cold conveyor belts. A test focusing on the airstreams terminating at the

tip of the bent-back front further demonstrates the success of the method in

that it can distinguish fine-scale flow structure such as descending sting jet

airstreams.
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1. Introduction6

The structure of a wide range of geophysical flows has often been analyzed in terms of distinct,7

coherent airstreams, such as jet streams, jet streaks and conveyor belts. For example, a conveyor8

belt view of flow within extratropical cyclones is widely accepted (Harrold 1973; Carlson 1980;9

Browning and Roberts 1994; Wernli and Davies 1997; Schultz 2001). Though clearly defined fea-10

tures in satellite imagery or synoptic-scale analyses, the precise definition of these airstreams often11

relies on a relatively arbitrary choice of threshold. The goal of this contribution is to demonstrate12

that cluster analysis of flow trajectories is a successful method to automate the identification of13

coherent airstreams in a more objective way.14

Cluster analysis has gained wide use in geophysical sciences, particularly in applications where15

identifying archetypes is useful. Cheng and Wallace (1993) identified large-scale atmospheric16

flow regimes by applying a hierarchical clustering approach to 500 hPa geopotential height fields.17

Hierarchical clustering has also been used to categorize synoptic-scale rainfall patterns from a18

high-density rain-gauge network (e.g. Tennant and Hewitson 2002; Crétat et al. 2012). Fuzzy19

clustering approaches such as the K-means algorithm have become the favored methods for de-20

termining weather regimes due to the variety of advanced statistical tests that can be used to test21

the robustness of the regimes that are determined (e.g. Michelangeli et al. 1995; Fauchereau et al.22

2009).23

Application of cluster analysis to two-dimensional and later three-dimensional airflow trajecto-24

ries was first carried out in research focusing on understanding variability in atmospheric compo-25

sition at observations sites (eg. Moody and Galloway 1988; Harris and Kahl 1990). Both hierar-26

3



chical and fuzzy clustering approaches have been used to characterize the trajectories computed27

backwards from atmospheric composition observatories (eg. Dorling et al. 1992; Moody et al.28

1995; Cape et al. 2000). Stohl (1998) summarised the strengths and shortcomings of these tra-29

jectory computations and classification techniques. Despite this wide use of cluster analysis, we30

are unaware of an application to the flow in extratropical cyclones. There is an important differ-31

ence between the application we present and the literature noted above: most applications have32

little a priori knowledge of the classifications cluster analysis may produce whereas, extratropical33

cyclones have a wealth of literature describing airflow features.34

The warm conveyor belt (WCB) is a warm moist (high-valued equivalent potential temperature)35

rain-producing ascending airstream advancing polewards ahead of the cold front (Harrold 1973).36

The cold conveyor belt (CCB) is a cool low-level airstream that forms on the cool side of the warm37

front flowing rearwards in relation to cyclone motion (Carlson 1980; Schultz 2001). In extratrop-38

ical cyclones where the warm front bends cyclonically around behind the low pressure center of39

the system, the CCB flow can wrap around to produce very strong earth-relative winds immedi-40

ately south of the cyclone center. This is common in Shapiro-Keyser type cyclones (Shapiro and41

Keyser 1990), producing a “poisonous-tail” of damaging winds (Grønås 1995). In such cyclones,42

finer-scale flow structures have sometimes been found associated with damaging winds ahead of43

the CCB (Browning 2004). Termed “sting jets”, since they occur near the tip of the poisonous tail,44

these airstreams develop less frequently than the CCB and WCB (Martı́nez-Alvarado et al. 2012)45

and can have a more transient nature when they do develop, persisting for periods of only several46

hours (Clark et al. 2005; Baker 2009; Martı́nez-Alvarado et al. 2010).47

Conveyor belt and sting jet airstreams are often identified subjectively or with simple threshold-48

ing techniques applied to Lagrangian trajectories describing these flows (Wernli and Davies 1997;49

Schultz 2001; Clark et al. 2005). This approach has proved particularly effective for automating50
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the identification of the WCBs in climatology studies of extratropical cyclones (Stohl 2001; Eck-51

hardt et al. 2004; Madonna et al. 2014; Pfahl et al. 2014). Trajectories that start near the surface,52

and exceed a total ascent threshold (e.g. 4p > 600 hPa where p is pressure) can be retained as53

the coherent ensembles of trajectories describing the WCB, as demonstrated by Wernli and Davies54

(1997). Madonna et al. (2014) notes that a 600 hPa ascent criterion (within a two-day time period)55

is “fairly strong” and found some changes in the spatial distribution of WCB starting points and56

average evolution of parameter values (such as specific humidity and potential vorticity) along the57

trajectories in sensitivity tests in which the ascent pressure change or time criterion were relaxed.58

Applying thresholds to identify airstreams works well where the airstream is largely similar59

across cyclone populations and has an easily identifiable characteristic such as strong ascent or60

descent. Nevertheless, calculating statistics across the airstreams has the caveat that the thresh-61

olding may admit more or fewer trajectories in the WCB of each cyclone, resulting in statistical62

artifacts. If a study focused on fine differences between WCB flow in, for example an ensemble63

simulation of one storm, this caveat could become a serious issue. Furthermore, if the airstream64

of interest exhibits wide variability in total ascent or descent, such as a sting jet, threshold criteria65

may well prevent detection of valid coherent ensembles of trajectories. This contribution proposes66

cluster analysis as an appropriate tool in such a situation. Clustering trajectories which pass near67

the frontal structures of extratropical cyclones should naturally result in coherent ensembles of tra-68

jectories, based on similarities in their dynamical histories. These could then be classified based69

on the a priori knowledge of conveyor belt flow; e.g. a coherent ensemble of trajectories would70

be identified as a WCB if it was a near-saturated ascending airstream ahead of the cold front. The71

WCB could thus be selected without the need to choose a threshold criterion other than a test of72

ascent.73
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The clustering method is demonstrated here in application to the well-observed and well-studied74

extratropical cyclone Friedhelm (2011). Fig. 1 provides schematic representation of where the75

airstreams formed during the development of cyclone Friedhelm, which developed explosively and76

produced very strong and damaging surface winds over Scotland on 8 December 2011 (Baker et al.77

2013; Martı́nez-Alvarado et al. 2014, (MA14 hereafter)). During the early stages of development78

the WCB was the primary coherent ensemble of trajectories associated with this cyclone (Fig. 1a).79

The CCB became associated with strong Earth-relative winds as the warm front was cyclonically80

bent-back around the low pressure center (Fig. 1b). By this stage the low-level jet associated with81

the WCB was starting to weaken. A sting jet descended on the southern flank of the CCB as the82

cloud head of the cyclone continued to wrap around with the bent-back warm front (Fig. 1c). While83

the schematic shows the evolution of these flows for cyclone Friedhelm, this evolution generally84

occurs for developing cyclones with diagnosed sting jets (Clark et al. 2005, e.g. the Great October85

storm of 1997).86

A general description of the method, independent of application to extratropical cyclones, is87

given in section 2. Section 3 describes the model simulation of Friedhelm, the cyclone used to88

demonstrate and test the methodology. The results of applying this method to the dominant low-89

level conveyor belt airstreams and the mesoscale jet structure near the bent-back front are described90

in sections 3a and 3b respectively. Section 4 provides a summary of these results and concludes91

this study.92

2. Methodology: Agglomerative Clustering93

Agglomerative (also termed hierarchical) clustering depends on assessing the similarity between94

many individual instances which are commonly referred to as observations in clustering algo-95

rithms. In this application each trajectory is one observation. These observations are stored in96
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a matrix W containing J observations each described by N dimensions. A common measure of97

similarity is Euclidean distance, d, computed as the l2-norm. Between two observation vectors in98

W this would be99

d jk =

√
N

∑
n=1

(W j(n)−Wk(n))2, (1)

where j and k index the two observations under comparison and n indexes the dimension of each100

observation. Clustering starts by agglomerating the most similar observations into new cluster101

classes. The algorithm used here is Ward’s variance minimization (Ward 1963); this has a straight-102

forward implementation , which lends itself to automation, a key goal of this study. Its primary103

drawback is the tendency to produce cluster classes containing similar numbers of observations.104

This produces the caveat that coherent streams containing many trajectories may be described by105

more than one cluster class. The SciPy Hierarchical Clustering module for Python (Jones et al.106

2001), used here, implements Ward’s method with the widely-used approach of updating a matrix107

storing the Euclidean distances between each cluster centroid (Wishart 1969). The algorithm108

ensures that, at each iteration, new classes are created such that variance between members within109

a cluster class is minimized across all possible combinations of members of a class, at that step.110

Iteration continues until all observations are agglomerated into a single class. Cheng and Wallace111

(1993) provide a detailed account of the algorithm with additional descriptions available in Crétat112

et al. (2012) and Ramos (2001). The succession of agglomerations are represented graphically by113

dendrograms, as shown in Fig. 2 (a and c).114

Any distinguishing variable can be used in an observation vector. In the context of classifying115

atmospheric flows, building the observation vectors from positional information (x(t),y(t),z(t),116

where t is time) is appropriate (e.g. Dorling et al. 1992). Inclusion of an airmass tracer variable117

(γ(t)) can add further distinguishing information to the flows under consideration. Having com-118

puted trajectories for a given flow field (from start points at time t0) a time period of interest can119
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be chosen, e.g. t = [t0− 3hrs, t0 + 3hrs], and the observation vector for one of these trajectories120

can be specified:121

W j = [x j,y j,z j,γ j], (2)

where bold variables denote rows of values for this time period. This observation vector would122

have dimension N = 28, if the time period was over seven hourly positions.123

Scaling of these variables is necessary due to the different units of the horizontal, vertical and124

airmass variables. We choose to scale the values of each variable by their respective standard125

deviations at time t = t0, giving x̂ j = x j/σ [xall(t0)] and similarly for y,z,γ . The matrix xall rep-126

resents a matrix of x positional vectors for all trajectories and σ represents the standard deviation.127

Thus, x̂ j is the j-th x-coordinate vector scaled with the standard deviation of the x position of all128

trajectories at t = t0. Scaling in such a manner for all variables in each observation produces the129

data matrix that is passed to the clustering algorithm:130

Ŵ j = [x̂ j, ŷ j, ŷ j, γ̂ j]; j = 1 : J. (3)

Two subtleties to these choices bear mention. First, the mean is not removed (if so this would131

be a normalization) as this would remove the ability to distinguish the geographic locality of the132

trajectories, leaving only the shape of each trajectory as the distinction. Second, scaling by the133

standard deviation calculated only at the trajectory start time ensures that the relative time evolu-134

tion of each variable is unmodified, i.e. a trajectory with substantial three-dimensional curvature135

retains its character in relation to more linear trajectory paths.136

The nature of the task requires an approach to automatically decide on the number of clusters137

to retain. This decision would ideally result in a classification with coherent, dissimilar airstreams138

assigned to separate classes, and similar airstreams grouped in one class. This can be achieved139

by exploiting a feature of the clustering algorithm itself. As agglomerative clustering proceeds,140
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d between successive clusters joined at each iteration increases gradually. This distance d can be141

averaged over all the clusters joined at one iteration step to give d. Fig. 2b shows this increase142

in d as a function of agglomeration step. When notably distinct clusters start to be co-joined d143

rapidly increases. The last set of cluster classes present before this sudden jump represents the144

classification of trajectories into classes most distinct from one another, as shown by curvature in145

Fig. 2b. These classes are the classification retained as the salient airstreams in this methodology.146

Dorling et al. (1992) used a similar technique in application of a fuzzy clustering method for 2-147

30 clusters. The number of cluster classes was chosen as that just before a sudden increase in148

intra-cluster variance, as expected when classes contain very different class members. This was149

decided by visual inspection (Dorling et al. 1992). In our method, the decision of cluster numbers150

is automated which leads to the method admitting a caveat as follows. If a maximum in curvature151

occurs two agglomerations or more before only one class is left, the method works as described; if152

not, the last value of the curvature is the highest and the number of classes chosen is forced to be153

the number of classes present in the third-last iteration. This is borne out in comparison of Fig. 2154

(b) and (d). At worst, this caveat results in more cluster classes being selected than would have155

been selected by visual selection. Therefore, no attempt is made to draw conclusions from the156

number of classes.157

Each of these automatically chosen classes contains a population of trajectories from which158

class-median trajectories are calculated by taking the median trajectory properties at each time in159

the coherent ensemble of trajectories. Trajectory classification can be repeated for trajectory pop-160

ulations calculated from start locations defined at consecutive times in the evolution of a weather161

system. Class-median trajectories from each consecutive time can be calculated relative to the162

position of the center of the weather system at the given time. This results in a population of163

system-relative class-median trajectories that summarize the weather system development. This164
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summary class-median-trajectory population can then be classified with same clustering approach165

described above to obtain a ”super” classification of airstreams that form as a weather system166

evolves. In a Shapiro-Keyser type extratropical cyclone, this super-classification should show the167

WCB flow during early cyclone development and the CCB in later stages (Shapiro and Keyser168

1990). This is demonstrated in section 3a.169

3. Coherent ensembles of trajectories in a test case cyclone170

In this section we describe cyclone Friedhelm and demonstrate that the method of clustering171

trajectories can identify both synoptic-scale and mesoscale structures in its flow field. Cyclone172

Friedhelm was observed in-situ using a research aircraft during intensive observing period 8 of the173

Diabatic Influences on Mesoscale Structures in Extratropical Storms (DIAMET) field campaign174

(Vaughan et al. 2014). It was the subject of a detailed case study into the airstreams that that175

constituted the low-level jet in the bent-back frontal region (MA14). MA14 analyzed a numerical176

simulation which was compared to flight data. They defined the low-level jet in this region by the177

45 m s-1 isotach and found three constituent airstreams with distinct equivalent potential temper-178

atures and airflow histories: a primary CCB flow, a secondary CCB flow, and a sting jet descent.179

Comparison with MA14 provides a stringent test for this clustering methodology.180

The cyclone was simulated using the operational numerical weather prediction model used by181

the Met Office, the Unified Model (MetUM). Version 8.2 of the MetUM was used with the (un-182

til recently operational) North Atlantic and European domain configuration which extends from183

approximately 30◦ to 70◦N in latitude and from 60◦W to 40◦E in longitude (figures in this paper184

show a subregion of this domain). This configuration has 0.11◦ (∼ 12 km) grid spacing in the185

horizontal in both latitude and longitude on a rotated grid. The model lid is at ∼80km with the186

70 stretched vertical levels spaced such that slantwise circulations of slope 1:40, with absolute187

10



vertical level spacing of 300m, are resolvable near 600 hPa and slopes shallower than 1:50 are188

resolvable below 750hPa. This compares well with the 1 in 50 slope suggested as necessary to189

simulate the release of conditional symmetric instability by slantwise circulations (Persson and190

Warner 1993) and similarly slantwise sting-jet descents (Clark et al. 2005; Gray et al. 2011).191

The simulation was initialized at 0000 UTC 8 December from the operational North Atlantic192

and European analysis, with boundary conditions provided from the operational global MetUM.193

This modeling setup is nearly identical to that used in MA14; the only differences are the updates194

due to the change in model version from 7.3 to 8.2. Simulations of Friedhelm from the two model195

versions compare very closely (not shown). Model data from the version 8.2 simulation were196

interpolated onto pressure levels (4p = 25 hPa) before calculating the diagnostics used in this197

study.198

The aim is to demonstrate that the clustering methodology can characterize airstreams that flow199

through the low-level jet regions of this cyclone. In principle, the methodology could identify these200

low-level jets from trajectories that describe the full flow around the cyclone. Jet regions of strong201

wind speed would be distinguished by coherent classes of trajectories that trace greater distances202

than those not associated with jet regions. To reduce the computational resources needed, includ-203

ing the computational challenge of clustering ∼ 105 trajectories, we speed up this identification204

process by pre-selecting gridpoints within strong wind regions. However, this pre-selection is a205

practical step, not a necessary one. To this end we choose where to seed trajectories by identifying206

grid points that lie within a threshold isotach in the lower troposphere (950-650 hPa). Considering207

25 hPa pressure increments, trajectories identifying the conveyor belts at each level are started208

within any 40 m s-1 isotach that is vertically contiguous with a 40 m s-1 isotach at 850 hPa, an ar-209

bitrary but reasonable wind speed for low-level jets (results shown in section 3a). For comparison210

with the bent-back front jets studied in MA14, their threshold of 45 m s-1 is chosen (results shown211
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in section 3b). Start points were thus selected hourly from the model output and used to initialize212

both forward and backward trajectories. Trajectories were calculated with the Lagrangian Anal-213

ysis Tool LAGRANTO (Wernli and Davies 1997; Sprenger and Wernli 2015) using the iterative214

Euler scheme applied to hourly model output, with an iteration timestep of 5 minutes.215

The observation vector (W j) for each trajectory is described by latitude, longitude, and pressure216

coordinates with equivalent potential temperature (θe) providing the airmass characteristic. For217

moist flows θe is a conserved variable; however, θe can evolve in time along the trajectories and218

trajectories with similar θe will be preferentially clustered. While other airmass tracers could be219

chosen, a priori knowledge of flow around extratropical cyclones suggests inclusion of a measure220

of the moist entropy of air parcels is worthwhile: Browning and Roberts (1994) describe how the221

warm and cold conveyor belts can be distinguished by their high and low θe values respectively222

(after Carlson 1980); and Clark et al. (2005) show that θe is also approximately conserved during223

the descent of air in sting jets.224

a. Identification of conveyor belts225

To identify the conveyor belts, each trajectory was calculated over the time period [t0−3hrs, t0 +226

3hrs] where t0 is the initialization time from when both forward and backward trajectories were227

calculated. This six hour period was chosen as a minimum time span in which to capture the key228

features of conveyor belt flows, i.e. location relative to the storm center, curvature, and ascending229

or descending character. Tests with a longer time period [t0−6hrs, t0 +6hrs] produced very similar230

results (not shown). As Wernli and Davies (1997) noted, these airstreams are coherent for the231

duration of storm intensification, longer than 12 hours. However, these key features are also232

present on shorter timescales (e.g. Fig. 10 in Schultz 2001).233
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The resulting classification for cyclone Friedhelm is shown for trajectories passing through low-234

level jet regions at 0600 UTC 8 December 2011 (Fig. 3). The full population of trajectories235

is shown in Fig. 3a. Classes with both CCB (class #1) and WCB (class #5) characteristics are236

identified (Fig. 3 b and c, respectively). At this time the cyclone structure was identified as cor-237

responding to stage three of the Shapiro-Keyser conceptual model (Shapiro and Keyser 1990) by238

MA14: the fronts had formed a T-bone structure with the WCB still present and the CCB starting239

to wrap around the cyclone center. Fig. 3d presents a WCB trajectory population obtained by240

thresholding for saturated ascent. Due to the short 21 hr duration of these trajectories, a 600 hPa241

ascent criterion (as applied in previous studies such as Wernli and Davies (1997) for a 48 hr period)242

only admits 183 trajectories. So to provide a comparable population size for comparison to the243

WCB cluster class, a 400 hPa ascent criterion is chosen. The WCBs obtained by the agglomerative244

clustering and thresholding methods match closely (compare Fig. 3 c and d). Obtaining the WCB245

by thresholding was almost instantaneous, whereas cluster analysis of the full 9738 trajectories246

passing through the low-level jet region took ∼ 10min. However, the clustering of the 887 trajec-247

tories passing through the strong wind region at the tip of the bent-back front to produce Fig. 7248

completes in order seconds; this issue is discussed in section 4. Median trajectories for the CCB249

and WCB class populations are overlaid in Fig. 3 (b and c). These median trajectories, along with250

the others resulting from the clustering for this start time, are mapped in Fig. 4a with Fig. 4b, c and251

d displaying their evolution in pressure, relative humidity, and θe respectively. These are shown252

for the full time period of the simulation but, following the previous discussion, classification was253

only performed on trajectory histories from 0300 UTC to 0900 UTC. The dendrogram associated254

with these clusters classes is found in Fig. 2a and shows the distance cutoff used to obtain these255

six classes.256
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The sensitivity of the final classification to variables chosen for clustering was tested (not shown)257

by considering both the number of classes produced and comparison of resulting class-median258

trajectories. This showed that pressure evolution was a strongly distinguishing variable, with259

latitude and longitude less so. Inclusion of θe in the observation vector tended to increase the260

number of final clusters. This implies it assists in distinguishing different air masses constituting261

the airstreams.262

The wind maximum directly south of and closest to the cyclone center is typical of the wrap263

around of the CCB and the associated development of strong surface winds (Fig. 4a). The near-264

surface airstream describing the CCB flow is captured in class #1. This median trajectory remains265

saturated and below 800 hPa while a drier airstream, class #2, follows a more zonal path above266

700 hPa (Fig. 4b and c). Together with class #4, these three classes represent flow in the cool sector267

of the cyclone, northwest of the cold front, as demonstrated in Fig. 4d. The wind maximum some268

distance southeast of the cyclone center in Fig. 4a is associated with the cold front and attendant269

WCB. The classification in Fig. 4 captures the WCB with class #5, as identified by a median270

trajectory that starts near the surface and rises 100 hPa between 0300 UTC and 0900 UTC before271

ascending more rapidly to about 350 hPa (Fig. 4b). Class #6 describes a similar airstream at an272

elevated altitude. These median trajectories remain saturated, along with class #3 which captures273

flow through a lower extension of the upper-level jet. Classes #3, #5, and #6 summarize flow in274

the warm sector of this cyclone (Fig. 4d).275

How coherent are the airstreams summarized by these class medians? Following from Wernli276

and Davies (1997) who used variance, we quantify coherency by the standard deviations of the277

trajectory observation variables at each time and then average this value for all times (Table 1).278

Considering θe, trajectory class #5 (the WCB airstream) is the most coherent relative to other279

classes. Likewise class #1, the CCB has small variance in θe. However, small standard deviations280
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in pressure (∼50 hPa, about 4 times the model vertical level spacing) and θe (∼1 K) in all the281

classes support the assertion that this clustering methodology is capturing coherent ensembles of282

trajectories. These results provide a characterization of airstreams constituting the low-level jets283

at 0600 UTC in the evolution of Friedhelm. We now consider the later hours of development.284

Agglomerative clustering of trajectories was applied separately to the model output for initial285

times set to every hour of the simulation from 0500 UTC–1700 UTC. This resulted in a population286

of class-median trajectories, i.e. the information shown in Fig. 4 for each time. The entire set (for287

all initial times) of class-median trajectories can be classified as follows. Fig. 5a shows an illustra-288

tive selection those class-median trajectories with WCB characteristics. Before classification the289

system-relative (relative to the storm center) class-median trajectories were calculated (Fig. 5b).290

Classification was then performed on all system-relative class-median trajectories, which in this291

case clustered these six trajectories and another seven (not shown for clarity) into a class capturing292

WCB flow during the period 0500 UTC to 1200 UTC of this cyclone. This cluster class can be293

summarized by the mean of all system-relative class-median trajectories. This “super-class” mean294

is shown in Fig. 5b as the dashed black line. Note that for the super-classification the class median295

of the few trajectories is noisy, hence the use of the class mean.296

All the super-class means for this storm are presented in Fig. 6. Analysis of the times of the297

trajectories in the classes (not shown) associated with each super-class mean in Fig. 6 enables298

characterization of the evolution of the conveyor belt airstreams in cyclone Friedhelm. Super-299

class mean #1 contains a population of class-median trajectories present from 0500 UTC until300

1200 UTC. This was the WCB while it was still a part of the low-level jet regions of this cyclone.301

The elevation of this super-class mean (Fig. 6b) indicates that while containing obvious WCB302

class-medians such as class #5 in Fig. 4, it also contains class-median trajectories of elevated303

WCB-like flows such as class #6 in Fig. 4. Super-class mean #4 summarizes the population of304
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CCB class-medians present throughout the period analyzed (0500 UTC until 1800 UTC). The305

weak, late ascent of this class and mean warming (Fig. 6b) of 5K (Fig. 6d) contrast with the306

cooling (∼2K) and sharper ascent of class-mean #1. Classes #2 and #3 capture the low-level307

extensions of upper-level jets above the cold front and bent-back warm front.308

b. Identification of airstreams terminating at the tip of the bent-back front309

For this comparison with airstreams classified in MA14, the focus is on the airstreams that310

enter an intense low-level jet region near the tip of the bent-back front and positioned south of311

the cyclone center (in the frontal fracture zone as defined in MA14). Start points for trajectories312

in this low-level jet were only retained if they were within the isotach that was contiguous with313

the near-surface jet, defined by wind speed exceeding 45 m s-1 at 850 hPa. The trajectories were314

classified based on their positional and thermodynamic histories in the time period [t0−5hrs, t0].315

MA14 describe descending sting jets arriving in this low-level jet at 0900 UTC, 1300 UTC316

and 1600 UTC on 8 December and undercut by two distinct CCB flows. Further analysis of317

these sting jets revealed mesoscale dynamical instabilities (conditional, conditional symmetric,318

and inertial instabilities) associated with the sting-jet descent which were absent in the CCB flows.319

Using convection-permitting (2.2 km horizontal grid spacing) ensemble simulations of cyclone320

Friedhelm, Vaughan et al. (2014) reveal fine-scale banding in the wind and precipitation structure321

in the region where the sting jet airstream emerges from the cloud head.322

Having demonstrated that the clustering algorithm can distinguish conveyor belts in section 3a,323

the following question is now addressed: can the clustering methodology capture a mesoscale324

feature such as the sting jet with minimal use of threshold criteria? Figure 7 presents the results325

of the cluster analysis for trajectories arriving in the low-level jet in the frontal fracture zone326

of cyclone Friedhelm at 1600 UTC. For comparison, Fig. 8 (adapted from MA14) shows the327
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pressure, relative humidity, and θe evolutions of the sting jet (S2) and CCB (S1 and S3) airstreams328

identified in MA14. In MA14, the trajectories were split into coherent ensembles of trajectories329

using subjectively chosen threshold values for θe (Fig. 8a shows the pressure evolutions for four330

arrival times; Fig. 8b shows the relative humidity evolution for arrival at 1600 UTC only). Cluster331

classes #2-5 distinguish nuances of the CCB (Fig. 7a). Together these classes describe similar332

evolutions to those of S1 and S3 in MA14. They remain saturated at low altitude while rising333

weakly and warming ∼3K, characteristic of CCB flow.334

In contrast to the other classes, the median trajectory in class #1 descended more than 150 hPa335

during this period (Fig. 7b). This class-median is most similar to the median trajectory labeled336

S2@16 by MA14 due to its descent from ∼500 hPa to ∼700 hPa, drying to about 50% relative337

humidity and small change in θe (∼1K). These features are characteristic of sting jet descents338

and MA14 demonstrated the presence of mesoscale instability associated with the descent of the339

trajectory population that this class summarizes. Although sting jets are often associated with340

strong surface winds (e.g. in the Great October storm of 1987, Browning 2004), trajectory analysis341

which uses the resolved model wind-field, cannot show the interaction of the sting jet with the342

boundary layer.343

Some differences in evolution of the ensemble median CCB and sting jet trajectories calculated344

here and in MA14 are to be expected as the different clustering methods result in slightly different345

apportioning of individual trajectories to each ensemble. For example, the inclusion into S2 of346

some trajectories assigned to S3 would result in a moister S2 class median. Differences in the347

ensemble-median trajectories would also be expected from slight differences in forecast evolution348

due to the different model version used, the rejection of some trajectories in MA14 using a conser-349

vation of potential temperature criterion (but not in this study), and differences in the start points of350

the trajectories (the windspeed threshold used to identify the start points is the same in this study351
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and MA14, but MA14 used all points exceeding this threshold within a specified box whereas in352

this study points contiguous to the jet at 850 hPa were used). However, the differences are minor;353

the overall resemblance between the full trajectory populations of class #1 and S2 (Fig. 9 a and b354

respectively) is striking. Both contain trajectories that rose from near the surface up to ∼600 hPa355

before joining air parcels with a more westerly and elevated source. These parcels then descended356

together as an airstream into the strong wind region above Scotland. This similarity demonstrates357

that the agglomerative clustering methodology can distinguish mesoscale flow structures such as358

sting-jet descents even in cases such as Cyclone Friedhelm in which the CCB undercuts the sting359

jet.360

4. Summary and conclusions361

This study has demonstrated the ability of cluster analysis to identify the salient airstreams362

of an extratropical cyclone in an automated way. This was possible by making specific choices363

with regards to the time period, distinguishing variables, and cluster algorithm. These choices364

benefit from a priori knowledge of extratropical cyclone structure. Focus on strong wind regions365

introduced a wind magnitude threshold which was applied to limit the number of start points of366

trajectories to be passed through cluster analysis.367

The first test was to identify the primary low-level flows of extratropical cyclone Friedhelm.368

With focus on the low-level jets, the CCB and WCB were identified at a specific time. The cluster-369

determined WCB matched closely to a WCB obtained by thresholding for saturated ascent. The370

automated method was applied to the classification of trajectories passing through the low-level371

wind maxima during a period in which the cyclone continued to develop. Cluster analysis was372

performed on the population of class-medians from classifications at each hour in this period.373
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This produced a ”super-classification” which summarised the Lagrangian flow of this storm in a374

single system-relative figure.375

Following the identification of conveyor belts the second test was to identify flows arriving in376

the strong (>45 m s−1) low-level jet region in the frontal fracture zone, just south of the center377

of cyclone Friedhelm. We demonstrated that the clustering methodology was capable of distin-378

guishing mesoscale flow structure comparable to that identified by careful case study analysis of379

this cyclone and clustering of trajectories using subjectively chosen θe thresholds (MA14). The380

success in passing this second test motivates the use of this clustering methodology in the study of381

mesoscale features of the flow such as sting jets in extratropical cyclones.382

The cluster analysis method successfully passed both these tests and thus provides a more ob-383

jective way of identifying airstreams in extratropical cyclones than the use of threshold criteria.384

We noted that identifying the WCB by an ascent threshold is substantially more computationally385

efficient, but the cluster analysis will be computationally acceptable for many applications. The386

main computational drawback of Ward’s method is due to the implementation using a stored Eu-387

clidean matrix. This contains the distance between each possible pair of trajectories. Therefore,388

the matrix size increases as the square of number of trajectories to be classified, which can lead to389

large memory requirements.390

The caveat of the presented clustering algorithm is that both the choice of number of cluster391

classes and Ward’s clustering algorithm can result in more clusters than the data natural describes392

with large clusters classified into a few clusters of similar size. This may have occurred with393

the multiple CCB clusters in Fig. 7. Further work could experiment with alternative clustering394

methodologies such as, K-means (MacQueen 1967; Hartigan and Wong 1979) or Affinity Prop-395

agation (Frey and Dueck 2007), in order to address these issues. Some of these other clustering396

algorithms also have less computational memory demand, addressing the problem of clustering397
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large numbers (> 104) of trajectories (see Dorling et al. 1992). They can however, demand more398

computational processing time.399

In conclusion, an extratropical cyclone has been used to demonstrate this methodological ap-400

proach to airstream classification. This method has application in studies where the caveats of401

thresholding are unacceptable. For example, sting jets may have strong variability in descent402

rates, so analysis of ensemble simulations of sting jet storms would be a natural application of403

the approach presented here. Furthermore, the method is sufficiently general to be used in other404

contexts where such distinguishing of flows is needed.405
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TABLE 1. Average standard deviation (σ ) of each variable for the ensemble of trajectories in each class

obtained from clustering trajectories passing through low-level wind maxima at 0600 UTC (shown in Fig. 4)

and 1600 UTC (shown in Fig. 7). Average σ for each variable is computed as the mean of σ ’s at each hour for

the classification period chosen: [t0−3hrs, t0 +3hrs] at 0600 UTC and [t0−5hrs, t0hrs] at 1600 UTC.

519

520

521

522

0600 UTC Classes 1600 UTC Classes

#1 #2 #3 #4 #5 #6 #1 #2 #3 #4 #5

σ(Lon.)(deg) 0.53 0.62 0.98 1.43 0.52 0.93 0.35 0.22 0.24 0.31 0.27

σ(Lat.)(deg) 0.70 0.80 0.34 0.63 0.71 0.80 0.27 0.16 0.25 0.22 0.21

σ(Pres.)(hPa) 52.99 45.21 39.78 32.20 43.14 46.40 33.66 39.88 49.09 35.17 47.11

σ(θe)(K) 0.50 1.12 0.90 1.13 0.40 1.18 0.31 0.24 0.30 0.21 0.39

no. trajs 1192 1847 1294 1742 1324 2339 249 89 188 133 228
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Fig. 8. Evolution of (a) pressure and (b) relative humidity and (c) θe with respect to ice along the564

ensemble median trajectories of the subjectively clustered trajectories arriving in the low-565

level jet region in the frontal fracture zone at 1600 UTC 8 December 2011 in MA14. The566

ensemble median trajectories represent airstreams which are labeled as “SX@HH”, where567
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are shown for airstreams arriving at four times whereas relative humidity evolutions are569

only shown for those airstreams arriving at 1600 UTC. Figure adapted from MA14, Fig. 8570

( c©American Meteorological Society. Used with permission.). . . . . . . . . . 37571

Fig. 9. Positional evolution of the trajectories constituting (a) agglomeratively clustered class #1572

and (b) the subjectively clustered S2 airstream (from MA14, Fig. 5 c©American Meteoro-573

logical Society. Used with permission.). The back trajectories are colored by pressure. (a)574
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tours). Black dots in both panels represent the positions of the trajectories at 1500 UTC.577
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FIG. 1. Schematic of the development of airstreams and front locations in extratropical cyclone Friedhelm

during 8 December 2011 overlaid onto infrared imagery at (a) 0300 UTC (MODIS); (b) 1000 UTC (AVHRR);

and (c) 1300 UTC (AVHRR). Light blue region denotes approximate region of strongest low-level (eg. 850hPa)

winds. (Courtesy: Dundee Satellite Receiving Station).
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FIG. 2. (a) Dendrogram indicating the successive agglomeration of clusters from observations (x-axis) with

increasing distance between clusters (y-axis). (b) d as a function of agglomeration step (blue) with the peak value

of curvature ( d2d
dx2 , red) indicated (dashed). See text for definition of d. The mean distance at the agglomeration

step when the peak curvature occurs is the classification cutoff distance as shown by horizontal dashed line in

(a). The resulting 6 clusters are labeled in (a). (a and b) correspond to clustering of trajectories initialized at

06UTC (no. obs. = 9738) shown in Fig. 4. (c and d) correspond to super-clustering (no. obs. = 60) shown in

Fig. 6.
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FIG. 3. (a) Full population of trajectories passing through low-level jet (windspeed exceeding 40 m s−1) at

0600 UTC 8 December 2011. (b) Trajectories assigned to cluster class 1 (CCB) with the class median overlaid

(shaded and black-edged thick line). (c) As in (b) for cluster class 5 (WCB). (d) A WCB trajectory population

obtained from thresholding for saturated (RH > 90%) ascent (4p > 400 hPa in 21 hours). Every 10th trajectory

is plotted in (a) with every 3rd shown in (b-d). Dots indicate 0600 UTC initial locations of displayed trajectories,

with insets showing vertical cross-sections of these start locations between 600hPa and 1000hPa through longi-

tude drawn in bold. Trajectories are clustered over the period 0300-0900 UTC but trajectory histories are shown

for the extended period 0100-2200 UTC.
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FIG. 4. Classification of trajectories arriving in low-level jets (windspeed exceeding 40 m s−1) at 0600 UTC

8 December 2011 labeled in each panel by class number. (a) Class-median trajectories colored by pressure

with the position of the minimum cyclone pressure marked by X at 0600 UTC on the smoothed cyclone track

(black line). The direction of the trajectories can be determined from the numerical trajectory labels which are

positioned near the beginning of the trajectories (at t0 − 3hrs). Contours of 40 and 45 m s−1 windspeed are

marked in gray. (b, c and d) Class-median evolutions of pressure (b) and relative humidity (c) and θe with the

start and end times of the [t0−3hrs, t0 +3hrs] classification period denoted by squares and stars respectively.
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FIG. 5. Illustration of the computation of a WCB super-class mean. (a) class-median trajectories with WCB

characteristics, as in Fig. 4a, but only showing every second class-median trajectory to avoid clutter. Contours

denote 40 m s−1 isotach at 850 hPa at each time, with the corresponding storm center marked on the storm track.

(b) system-relative class-median trajectories and isotachs (as for (a) but in system-relative coordinates) and the

super-class mean (dashed black line in (b)) computed from all system-relative class-median trajectories with

WCB characteristics in the period 0500–1200 UTC.
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FIG. 6. Super-classification of all trajectories arriving in the low-level jet between 0500 UTC and 1700 UTC

8 December 2011. The longitude and latitude coordinates in (a) are relative to the center of the cyclone, marked

by ’L’. Otherwise the figure format is as in Fig. 4
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FIG. 7. Classification of trajectories arriving in the low-level jet region (windspeed exceeding 45 m s−1) in

the frontal fracture zone at 1600 UTC 8 December 2011 labeled in each panel by class number. The format of

the figure is as for Fig. 4.

579

580

581

36



FIG. 8. Evolution of (a) pressure and (b) relative humidity and (c) θe with respect to ice along the ensemble

median trajectories of the subjectively clustered trajectories arriving in the low-level jet region in the frontal

fracture zone at 1600 UTC 8 December 2011 in MA14. The ensemble median trajectories represent airstreams

which are labeled as “SX@HH”, where X indicates the airstream number and HH indicates the arrival hour.

Pressure evolutions are shown for airstreams arriving at four times whereas relative humidity evolutions are only

shown for those airstreams arriving at 1600 UTC. Figure adapted from MA14, Fig. 8 ( c©American Meteorolog-

ical Society. Used with permission.).
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FIG. 9. Positional evolution of the trajectories constituting (a) agglomeratively clustered class #1 and (b)

the subjectively clustered S2 airstream (from MA14, Fig. 5 c©American Meteorological Society. Used with

permission.). The back trajectories are colored by pressure. (a) also shows the position of the minimum pressure

marked by X at 1600 UTC on the smoothed cyclone track (black line) and (b) also shows mean sea level pressure

at 1600 UTC (contours). Black dots in both panels represent the positions of the trajectories at 1500 UTC. The

trajectories in both panels extend backwards to 0100 UTC.
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