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Plane Wave Discontinuous Galerkin Methods:

Exponential Convergence of the hp-version

R. Hiptmair∗, A. Moiola†, I. Perugia‡
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Abstract

We consider the two-dimensional Helmholtz equation with constant coefficients on

a domain with piecewise analytic boundary, modelling the scattering of acoustic waves

at a sound soft obstacle. Our discretisation relies on the Trefftz-discontinuous Galerkin

approach with plane wave basis functions on meshes with very general element shapes,

geometrically graded towards domain corners. We prove exponential convergence of the

discrete solution in terms of number of unknowns.

Keywords: Helmholtz equation, sound-soft wave scattering, analytic regularity, ap-

proximation by plane waves, Trefftz-discontinuous Galerkin method, hp-version, a priori
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1 Introduction

This article is concerned with a particular type of Trefftz method for 2D scalar wave scattering
problems in the frequency domain, modelled by means of the linear Helmholtz equation with
constant coefficients. In general, Trefftz methods try to incorporate information about the
exact solution into local approximation spaces by requiring that they are contained in the
kernel of the governing differential operator. This policy looks particularly attractive for
wave propagation, which usually involves oscillatory solutions.

It is not straightforward to marry the Trefftz idea with classical conforming finite element
Galerkin discretisations, cf. the partition of unity method [3, 25]. Conversely, discontinu-
ous Galerkin (DG) methods, which do not impose any interelement continuity on the trial
functions, offer a very convenient framework for the implementation of Trefftz methods.

For wave propagation problems in homogeneous media, natural Trefftz functions are plane
waves, which give rise to plane wave discontinuous Galerkin (PWDG) methods. Their oldest
representative is the so-called Ultra Weak Variational Formulation (UWVF), proposed in [7].
It was not recognised as a PWDG method in the beginning, and a comprehensive convergence
theory remained elusive for quite some time. Finally, in [6, 11, 13], the UWVF was recast as
a DG method, thus paving the way for using the powerful arsenal of DG analysis.

The first fruit was harvested in [13] in the form of a complete convergence analysis of
the h-version of PWDG. The h-version was also tackled independently in [6], based on tools
from [35]. It turned out that these tools could also be harnessed to deal with the p-version,
and this was done in [17]. Algebraic convergence in p could be established, though confined
to “quasi-uniform” meshes. Of course, here, instead of designating the polynomial degree, p
should be read as the number of plane waves used for local approximation. Later, in [19],
the p-convergence theory was extended to cover locally refined meshes.
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Based on the techniques from [19], in this article we pursue the ultimate goal of establish-
ing exponential convergence (with respect to the number of degrees of freedom) of PWDG
solutions, when the trial spaces are built following a policy borrowed from standard hp-finite
element methods. Assuming domains and data with sufficient regularity, the idea is to use
large mesh cells equipped with many plane waves where the solution is smooth, whereas small
cells are employed to resolve singularities of the solution at corners of the boundary. This
kind of hp approximation with polynomials has seen an amazing development starting from
the work of Babuška [2,15]; see [38] for a comprehensive exposition. It has also been adapted
to polynomial DG methods by several authors, see, for instance, [21,36,37,41]. Applications
to scalar wave propagation are reported in [10, 28, 29].

Results on the approximation of Helmholtz solutions by plane waves are pivotal for our
estimates. In this direction, major progress has been achieved in [31,32]. These works make
use of Vekua’s theory and, thus, could exploit known results about the approximation of
harmonic functions by harmonic polynomials. Recently, results in this direction targeting
harmonic functions that can be extended analytically were obtained in [20], generalising
earlier work by M. Melenk [25]. A proof of exponential convergence of the hp-version of
(polynomial) Trefftz-DG method for the Laplace problem was included.

The main result of this work (Theorem 6.5, Section 6) is a proof that the L2-norm of
the discretisation error of a special PWDG method on very general, geometrically graded
meshes converges exponentially in the square root of the number of degrees of freedom. This
is the first such result for a numerical method based on plane waves. For the proof, we had
to refine the duality arguments of [19], see Section 4, and combine them with novel L∞-
approximation estimates for plane waves given in Section 5. The reason of the restriction
to two space dimensions is that the approximation estimates for harmonic functions we rely
on (see Proposition 5.1) were derived in [20] using complex analysis arguments, and thus
are proved in 2D only. We find that the error is bounded by a negative exponential of the
square root of the total number of degrees of freedom employed, while typical polynomial hp-
schemes in two dimensions only deliver exponential convergence in the cubic root of the same
parameter, e.g. see [2, Theorem 5.3]. The results of our analysis hold true also when circular
waves are used instead of plane waves. For simplicity we assume that the computational
domain is the set difference between two star-shaped domains with common centre; however,
this geometrical setting can easily be generalised, see Remark 2.2.

At this point we emphasise that our focus is on numerical approximation theory. We
deliberately ignore the key challenge of ill-conditioning of linear systems arising from PWDG
approaches, cf. [22, 23]. We even acknowledge that an implementation of the method inves-
tigated below may severely be affected by numerical instability, see Remark 6.8.

2 Scattering boundary value problem

As in [19, Section 2], let ΩD ⊂ R2 be a bounded, Lipschitz domain occupied by a sound-
soft material, which we assume to be star-shaped with respect to the origin 0. We denote
by ΓD := ∂ΩD its boundary. We introduce another bounded Lipschitz domain ΩR with
boundary ΓR such that ΩD ⊂ ΩR, and dist(ΓD,ΓR) > 01. We set Ω := ΩR \ ΩD and we
assume ∂Ω to be piecewise analytic. It may have finitely many corners cν , 1 ≤ ν ≤ nc, which
we collect in the set C := {cν}nc

ν=1. By scaling we can always achieve diam(Ω) = 1, which we
take for granted throughout the remainder of the article.

We focus on the following boundary value problem (BVP) for the Helmholtz equation:





−∆u− k2u = 0 in Ω,

u = 0 on ΓD,

∇u · n+ ikϑu = gR on ΓR,

(1)

with gR ∈ L2(ΓR), real wavenumber k, and ϑ ∈ R a non-dimensional, non-zero parameter.
Since our focus is on true wave propagation problems, in the sequel we assume k > 1. In (1)
we have written n for the outward-pointing unit normal vector field on ∂Ω.

1For x ∈ R2 and A,B ⊂ R2, we denote by dist(x, A) the set–point distance infy∈A |x− y| and by
dist(A,B) the set–set distance infx∈A,y∈B |x− y|.
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2.1 Stability and Sobolev regularity

We denote by ‖·‖0,D the L2(D)-norm and by |·|ℓ,D the Hℓ(D)-Sobolev seminorm, ℓ ∈ N0

(N0 = {0, 1, 2, . . .}), where D is a Lipschitz domain. For positive non-integer values of
s, we consider the Hs(D)-seminorm as defined by the Sobolev–Slobodeckij integral (see
e.g. [34, Page 43]). On a Lipschitz manifold D we use only the L2(D)-norm and the Hs(D)-
seminorm for 0 < s < 1. It is convenient to make use of the following k-weighted Sobolev
norms:

‖v‖2ℓ,k,D :=

ℓ∑

j=0

k2(ℓ−j) |u|2j,D ∀v ∈ Hℓ(D), ℓ ∈ N.

We assume that ΩR is star-shaped with respect to the ball2 BγR , for some γR > 0. Next,
we sharpen Theorems 2.1, 2.2, and 2.3 of [19] (see also [16, Propositions 3.3 and 3.4]) and
obtain the following stability and elliptic regularity result.

Proposition 2.1. Let u be the solution of the inhomogeneous boundary value problem

−∆u− k2u = f in Ω, (2)

u = 0 on ΓD, (3)

∇u · n± ikϑu = gR on ΓR. (4)

If f ∈ L2(Ω) and gR ∈ L2(ΓR), the weak formulation of (2)–(4) is well-posed in H1(Ω).
Moreover, if gR ∈ Hr(ΓR) for a given 0 < r < 1/2, then there exists sΩ > 0 depending only
on (the corners of) Ω, such that u ∈ H1+t(Ω) for every t satisfying

0 ≤ t < 1

2
+ sΩ, t ≤ r + 1

2
, (5)

and the following bounds hold:

‖u‖1,k,Ω + k ‖u‖0,ΓR
≤ C

(
‖f‖0,Ω + ‖gR‖0,ΓR

)
, (6)

|∇u|t,Ω ≤ C(1 + kt)
(
‖f‖0,Ω + ‖gR‖0,ΓR

)
+ C |gR|t− 1

2 ,ΓR
, (7)

where the constants depend only on t, γR and ϑ, but are independent of k, f , gR and u.

Proof. For the estimate (6) we refer the reader to [12, Theorem 2.18], [33, Section 4] and, in
particular, [33, Remark 4.7].

To prove (7), we first consider ΩD = ∅. In this case we appeal to [8, Corollary 23.5],

to [14, Theorem 2.4.3 & Remark 2.4.5], and interpolation between H̃−1(Ω) and H̃− 1
2+σ(Ω),

and H− 1
2 (ΓR) and H

σ(ΓR) for some σ > 0, to argue that we can find sΩ > 0 depending only
on Ω such that u ∈ H1+t(Ω) for all t satisfying (5), and

|∇u|t,Ω ≤ C
(
‖∆u‖H̃t−1(Ω) + ‖∇u · n‖t− 1

2 ,ΓR

)
, (8)

where ∆ : H1(Ω)→ H̃−1(Ω) is the (Neumann-)Laplacian in weak form. In (8) and through-
out the remainder of the proof, all constants may depend only on t, ΩR, ΩD, and ϑ.

We use the impedance boundary condition (4) to replace the normal derivative in (8) and
find

‖∇u · n‖t− 1
2 ,ΓR

≤ C
(
‖gR‖t− 1

2 ,ΓR
+ k ‖u‖t− 1

2 ,ΓR

)
.

Next, we distinguish two cases: (i) If t ≤ 1
2 , that is t− 1

2 ≤ 0, then from (6)

‖∇u · n‖t− 1
2 ,ΓR

(4)

≤ C
(
‖gR‖0,ΓR

+ k ‖u‖0,ΓR

)
≤ C

(
‖gR‖0,ΓR

+ ‖f‖0,Ω
)
. (9)

(ii) If t > 1
2 , we resort to an interpolation estimate in the Sobolev scale [24, Lemma B.1] and

find (0 < t− 1
2 ≤ 1

2 )

k ‖u‖t− 1
2 ,ΓR

≤ Ck ‖u‖2t−1
1
2 ,ΓR
‖u‖2(1−t)0,ΓR

.

2We set Br(x0) := {x ∈ R2 : |x− x0| < r}, and Br := Br(0).
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We bound ‖u‖ 1
2 ,ΓR

by the trace theorem [24, Theorem 3.37], and ‖u‖0,ΓR
by a multiplicative

trace estimate [5, Theorem 1.6.6] and get

k ‖u‖t− 1
2 ,ΓR

≤ Ck
(
‖u‖0,Ω + ‖∇u‖0,Ω

)2t−1 ‖u‖1−t0,Ω

(
‖u‖0,Ω + ‖∇u‖0,Ω

)1−t

≤ Ckt
(
‖f‖0,Ω + ‖gR‖0,ΓR

),

(10)

where we used (6) in the last step.
Another interpolation estimate in the dual Sobolev scale, see [24, Theorems 3.30 and B.9],

yields

‖∆u‖H̃t−1(Ω) ≤ C ‖∆u‖
t
0,Ω ‖∆u‖

1−t
H̃−1(Ω)

(2)

≤ C
(
‖f‖0,Ω + k2 ‖u‖0,Ω)t ‖∇u‖

1−t
0,Ω

(6)

≤ C
(
‖f‖0,Ω + k(‖f‖0,Ω + ‖gR‖0,ΓR

)
)t(‖f‖0,Ω + ‖gR‖0,ΓR

)1−t

≤ C(1 + kt)
(
‖f‖0,Ω + ‖gR‖0,ΓR

)
.

Combining this with (8) and using (9) together with (10), we arrive at (7) in the situation
ΩD = ∅.

To extend the estimate to the presence of a scatterer occupying ΩD 6= ∅ we can continue
exactly as in the second part of the proof of [19, Theorem 2.3].

Remark 2.2 (Non star-shaped domains). In the case of an interior impedance problem (i.e.
where Ω = ΩR and ΩD = ∅), k-explicit stability bounds have been proved in [9, Theorem 2.4]
and improved in their k-dependence in [39, Theorem 1.6], without assuming Ω to be star-
shaped. If the scatterer ΩD is Lipschitz but trapping, thus not star-shaped, the constants
in the stability bounds may grow exponentially in k, as shown in [4, Theorem 2.8] (note in
particular equation (2.22) in [4], and that the functions vm in the proof of [4, Theorem 2.8]
are compactly supported thus satisfy the boundary value problem (2)–(4) in a suitable ΩR).
The Sobolev regularity of u is not affected as long as Ω is Lipschitz.

2.2 Analytic regularity

In this section, we state an analytic regularity result for the solution u to problem (1). This
result is derived within the setting of [26, Chapters 4 and 5], which extends the theory of
Babuška and Guo [2] to the case of general elliptic equations with a perturbation parameter.
We essentially combine the L2-estimates of the derivatives of u given in [26, Chapter 5] with
the L∞-estimates of [2, Theorem 2.2].

To translate our problem into the notation of [26], as in [29, proof of Lemma 4.13], we set

A(x) = 1, f(x) = 0 (Cf = 0), b(x) = 0 (Cb = 0), c(x) = 1 (Cc = 1);

the perturbation parameter is

ε =
1

ik
,

and therefore the length scale is E =
1

k + 1
, and

E
|ε| ≤ 1. Comparing the expression of the

Robin boundary condition, we also set

G1 =
1

ik
gR

(
CG1 =

1

k
‖gR‖H1/2(ΓR)

)
, G2 = −ϑ (CG2 = |ϑ|).

Recalling that nc is the number of corner points of ∂Ω, given β ∈ [0, 1)nc and ℓ ∈ N0, let

Bℓβ,E(Ω) be the countably normed spaces defined in [26, Chapter 4] (see also [29, Section 1,1]),

with weights given by

Φ̂p,β,E(x) =
nc∏

ν=1

Φp,βν ,E(x− cν) ∀p ∈ N0,

where

Φp,β,E(x) = min

{
1,

|x|
min{1, E(|p|+ 1)}

}p+β
.

We set Φ̂(x) := Φ̂1,0,1(x)=
∏nc

ν=1 |x− cν |, which, obviously, is independent of k.
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Theorem 2.3. There exists a weight vector β ∈ (0, 1)nc such that, if gR ∈ B1
β,E(ΓR), the

solution u to problem (1) belongs to B2
β,E(Ω). Moreover, there exists a constant γ > 0

independent of k such that u admits a real analytic continuation to the set

N (u) :=
⋃

x0∈Ω\⋃nc
ν=1 cν

{
x ∈ R

2 : |x− x0| <
Φ̂(x0)

4e γ

}
⊂ R

2. (11)

Proof. (Sketch) Within the general setting of [26, Chapter 5], since ΓD∩ΓR = ∅ (thus Dirich-
let and Robin boundaries do not affect one another), Theorem 5.3.10 and Proposition 5.4.5
(see also Remark 5.3.11 and Remark 5.4.6) of [26] can be applied and, taking into account (6),
one can conclude that ku ∈ B2

β,E(Ω) for some β ∈ (0, 1)nc . In particular, denoting by ∇ℓ the
derivatives of order ℓ (more precisely,

∣∣∇ℓu(x)
∣∣2 =

∑
α∈N2

0,|α|=ℓ
ℓ!
α! |Dαu(x)|2),

∥∥∥Φ̂p,β,E∇p+2u
∥∥∥
0,Ω
≤ C

(
γ max{p+ 2, k}

)p+2
k−1 ∀p ∈ N0,

in addition to
‖u‖0,Ω ≤ Ck−1, ‖∇u‖0,Ω ≤ C

(see also [29, Lemma 4.13]); here and in the remainder of this proof, C and γ are positive
constants independent of k (C depends on the norm of the boundary datum gR).

Along the lines of the proof of [2, Theorem 2.2], making use of the property of the
weight functions stated in Equation (4.2.4) of [26], and of the Sobolev embedding of [26,
Lemma 4.2.5], one obtains that, for any x0 ∈ Ω,

|Dαu(x0)| ≤ C k2
(
γ max{j + 2, k}

)j+2
(
Φ̂j−1,β,E(x0)

)−1

≤ C k2
(
γ max{j + 2, k}

)j+2
(
Φ̂j,0,E(x0)

)−1
(12)

for all α ∈ N2
0, |α| = j ≥ 1; in the last step we have used the bound Φ̂j−1,β,E(x0) ≥ Φ̂j,0,E(x0),

which holds true since 0 < βν < 1; similar L∞-estimates were derived in [26, Theorem 4.2.23].

Whenever j ≥ k, min{1, E(j + 1)} = 1, and thus Φ̂j,0,E(x0) =
(
Φ̂(x0)

)j
; moreover,

max{j + 2, k} = j + 2. By Stirling’s formula, (j + 2)j+2 ≤ 2ej(j + 2)2j! which, for large j,
gives (j+2)j+2 ≤ 2(2e)jj!. Therefore, we find the following point-wise bounds for all partial
derivatives of u:

|Dαu(x0)| ≤ C k2
(

2e γ

Φ̂(x0)

)j
j! ∀α ∈ N

2
0, |α| = j ≥ k. (13)

The analytic continuation to the set in (11) is deduced as in [2, Page 841].

Lemma 2.4. With a constant C > 0 independent of the wave number k (but dependent of
the boundary datum gR), the solution u of (1) satisfies

k ‖u‖L∞(N (u)) + ‖∇u‖L∞(N (u)) ≤ Ck5 exp(k/4e).

Proof. From (12) and (13) we glean the bounds

|Dαu(x0)| ≤ Ck2 ·





k2
(

γk

Φ̂(x0)

)j
, if |α| =: j ≤ k − 2,

j!
(

2eγ

Φ̂(x0)

)j
, if |α| =: j > k − 2,

α ∈ N
2
0, x0 ∈ Ω \

nc⋃

ν=1

cν , (14)

with C > 0 merely depending on the data gR.

For x ∈ N (u) let x0 ∈ Ω satisfy |x− x0| ≤ Φ̂(x0)
4eγ . The existence of such a point is

guaranteed by the definition on N (u). We have seen that u(x) can be expressed by means
of a Taylor series expansion around x0, which paves the way for the following estimate:

|u(x)| ≤

∣∣∣∣∣∣

∞∑

j=0

1

j!
Dju(x0)(x− x0, . . . ,x− x0)

∣∣∣∣∣∣
≤

∞∑

j=0

1

j!
max
|α|=j

|Dαu(x0)| |x− x0|j
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(14)

≤ Ck2




⌊k⌋−2∑

j=0

k2

j!

(
γk |x− x0|

Φ̂(x0)

)j
+

∞∑

j=⌊k⌋−1

(
2eγ |x− x0|

Φ̂(x0)

)j


≤ Ck2



⌊k⌋−2∑

j=0

k2

j!

(
k

4e

)j
+ 2−(⌊k⌋−2)


 ≤ Ck4 exp

( k
4e

)
.

The same technique based on a Taylor series shifted by 1 provides a similar estimate for
|∇u(x)|.

3 Trefftz discontinuous Galerkin method

We start from a general mesh Th on Ω, whose elements are curvilinear Lipschitz polygons.
For any element K ∈ Th, we denote by hK its diameter, and set hmax := maxK∈Th

hK .
Moreover, we define various sets of interfaces Fh := ∪K∈Th

∂K, and FIh := Fh \ ∂Ω.
On the mesh Th, we introduce the Trefftz space

T (Th) :=
{
v ∈ L2(Ω) : ∃s > 0 s.t. v ∈ H 3

2+s(Th) and ∆v + k2v = 0 in each K ∈ Th
}
,

with Hr(Th) a shorthand notation for elementwise Hr-functions on Th. The solution u of
the BVP (1) belongs to T (Th) and will be approximated in a finite-dimensional Trefftz-DG
trial and test space Vp(Th) ⊂ T (Th). At this stage we need not worry about the details of
constructing Vp(Th); these are postponed to Section 6.2.

We fix bounded functions α, β > 0, 0 < δ ≤ 1/2, bounded away from zero and defined
on appropriate subsets of Fh. Alluding to the construction of the Trefftz-DG method in [13,
Section 2], we call them flux parameters. We introduce the following sesquilinear form and
antilinear functional defined on T (Th), cf. [19, Section 3.2], [17, Section 2], [13, Section 2],

Ah(u, v) :=
∫

FI
h

(
{{u}} − β

ik
[[∇hu]]N

)
[[∇hv]]N dS −

∫

FI
h

(
{{∇hu}} − αik[[u]]N

)
· [[v]]N dS

+

∫

ΓR

(
u− δ

ikϑ
(∇hu · n+ ikϑu)

)(
∇hv · n− ikϑv

)
dS −

∫

ΓD

(
∇hu · n− αiku

)
v dS,

ℓh(v) := −
∫

ΓR

δ (ikϑ)−1gR∇hv · n dS +

∫

ΓR

(1 − δ) gR v dS.

These are the building blocks of the Trefftz-DG variational problem:

find uhp ∈ Vp(Th) such that Ah(uhp, vhp) = ℓh(vhp) ∀vhp ∈ Vp(Th). (15)

For its analysis it is convenient to make use of the mesh-dependent DG-norms:

‖v‖2DG := k−1
∥∥∥β 1

2 [[∇hv]]N
∥∥∥
2

0,FI
h

+ k
∥∥∥α 1

2 [[v]]N

∥∥∥
2

0,FI
h

+ k−1
∥∥∥δ 1

2ϑ−
1
2∇hv · n

∥∥∥
2

0,ΓR

+ k
∥∥∥(1− δ) 1

2ϑ
1
2 v
∥∥∥
2

0,ΓR

+ k
∥∥∥α 1

2 v
∥∥∥
2

0,ΓD

,

‖v‖2DG+ := ‖v‖2DG + k
∥∥∥β− 1

2 {{v}}
∥∥∥
2

0,FI
h

+ k−1
∥∥∥α− 1

2 {{∇hv}}
∥∥∥
2

0,FI
h

+ k
∥∥∥δ− 1

2 ϑ
1
2 v
∥∥∥
2

0,ΓR

+ k−1
∥∥∥α− 1

2∇hv · n
∥∥∥
2

0,ΓD

.

Here, as in [13,17,19], we have used the standard DG notation for averages {{·}} and normal
jumps [[·]]N across interelement boundaries, and ∇h designates the element-wise gradient.
Since α, β, δ and (1 − δ) are positive, ‖·‖DG (and thus also ‖·‖DG+) is actually a norm in
T (Th), see [17, Proposition 3.2].

In [19, Propositions 4.1 and 4.3] (see also [17, Section 3.1]), we proved the following con-
sistency, continuity and coercivity properties for the variational problem (15): for u solution
of the BVP (1) and for all v, w ∈ T (Th)

Ah(u, v) = ℓh(v), |Ah(v, w)| ≤ 2 ‖v‖DG+ ‖w‖DG , Im[Ah(v, v)] = ‖v‖2DG .
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This ensures that (15) is well-posed, stable and that the Trefftz-DG method enjoys quasi-op-
timality in the DG-norm, i.e.,

‖u− uhp‖DG ≤ 3 inf
vhp∈Vp(Th)

‖u− vhp‖DG+ , (16)

where uhp is the solution of the discrete variational problem (15). The Trefftz-DG is therefore
unconditionally stable, i.e. the quasi-optimality bound (16) holds with the same constant for
any wavenumber k > 0, any mesh Th, any discrete Trefftz space Vp(Th) and any admissible
choice of the flux parameters; on the other hand, the DG-norms used to measure the error
in (16) depend on k, Th, α, β and δ (but not on the specific discrete space Vp(Th)).
Remark 3.1. In the case of homogeneous Neumann boundary conditions along the inte-
rior boundary now denoted by ΓN (scattering by a sound-hard material), the bilinear form

Ah(·, ·) in the formulation (15) contains the term

∫

ΓN

(
u− β(ik)−1∇hu · n

)
∇hv · n dS in-

stead of −
∫

ΓD

(
∇hu · n− αiku

)
v dS. Wavenumber-explicit stability and regularity results

for solutions in this case, analogue to the one for the Dirichlet case discussed in Section 2,
are not available at present.

4 L2-Estimates

Our principal goal is to study the convergence of the discretisation error of the Trefftz-DG
method not only in the mesh-dependent DG-norm ‖·‖DG, but also in the L2(Ω)-norm. This
is made possible by a key duality technique originally introduced in [35, Theorem 3.1] and
improved in [17, Section 3.2] and [19, Section 4.2]. In Lemma 4.5 we further modify this
duality argument to allow for different flux parameters.

4.1 Assumptions on the meshes

We study the convergence of Trefftz-DG methods for an infinite family of meshes T := {Th}
whose members enjoy certain properties uniformly:

(M1) star-shapedness: there exist 0 < ρ0 < ρ ≤ 1/2 such that, for all the meshes Th ∈ T and
for all K ∈ Th, there exists xK ∈ K such that BρhK (xK) ⊂ K, and K is star-shaped
with respect to Bρ0hK (xK);

(M2) local quasi-uniformity: there exists a constant τ ≥ 1 such that, for all the meshes
Th ∈ T,

τ−1 ≤ hK1

hK2

≤ τ ∀K1,K2 ∈ Th s.t. |∂K1 ∩ ∂K2| 6= 0;

(M3) boundedness of the skeleton measure: there exists a constant CF > 0 such that, for all
the meshes Th ∈ T,

|FIh | ≤ CF .

Here and in the following, we adopt the notation |·| for the volume (area or length) of one- or
two-dimensional sets. Assumptions (M1)–(M3) are instrumental for achieving abstract error
estimates in the L2(Ω)-norm in Section 4.4. In Section 6.1 they will be supplemented with
more specific requirements for hp-approximation.

An important tool is the similarity transformation x 7→ x̂ := h−1
K (x − xK), which takes

an element K ∈ Th to a domain K̂ with diam(K̂) = 1, which contains Bρ and is star-shaped
with respect to the ball Bρ0 .

4.2 Flux parameters

We still have the freedom to fix the so-called flux parameters α, β, δ entering Ah and ℓh.
Linking them to the local mesh width in a judicious fashion was essential for coping with
locally refined meshes in [19]. Hardly surprising, the right choice of the flux parameters is
also key to a successful analysis of the hp-version of the Trefftz-DG method. It differs slightly
from what was used in [19, Formula (21)].
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We fix the function α on any face f ⊂ FIh ∪ ΓD as follows:

α|f := a
hmax

hf
, (17)

where a is a positive universal constant, in particular independent of the local mesh sizes,
the local Trefftz spaces, and the wavenumber k. The symbol hf stands for the local mesh
width at the interface f defined as

hf :=

{
min{hK1 , hK2} if f = ∂K1 ∩ ∂K2,

hK if f = ∂K ∩ ∂Ω.

Notice that this definition works also in the case of hanging nodes (compare with assumption
(M2)). Moreover, we choose

β, δ as fixed positive universal constants, (18)

of course, with the additional constraint δ ≤ 1/2.

Remark 4.1. The choice of β and δ independent of the local mesh sizes, as opposed to
β|f , δ|f ≃ hmax

hf
as in [19], ensures that the coefficients in front of the gradient terms in

the DG-norm do not blow up in regions where the mesh is refined. This permits us to
accomplish convergence estimates on strongly locally refined meshes in Section 6. To that
end, in Section 4.4 we modify the duality argument of [19].

Remark 4.2. The orders of h- and p-convergence of the Trefftz-discontinuous Galerkin method
posed on quasi-uniform meshes are identical to those presented in [17, 19], since for these
meshes all flux parameters α, β and δ are constant. To improve the orders of convergence in
h, the parameters of [13] may be used.

4.3 Trace inequalities

As technical tools we use the following trace inequalities:

‖v‖20,∂K ≤ C1

(
h−1
K ‖v‖

2
0,K + hK |v|21,K

)
∀v ∈ H1(K), (19)

‖∇v‖20,∂K ≤ C2

(
h−1
K ‖∇v‖

2
0,K + h2sK |∇v|21

2+s,K

)
∀v ∈ H 3

2+s(K), s ∈ (0, 1/2), (20)

where C1 depends only on ρ0, and C2 on ρ0, ρ and s. Taking v = 1 in (19), we can also see
that

|∂K| ≤ C1 hK , (21)

with the same C1 as above, depending only on ρ0.

Remark 4.3. The dependences of the constants show that the parameters ρ, ρ0 and hK
capture all the geometrical information that is relevant for the trace inequalities, since both
the “roughness” of ∂K (i.e., its Lipschitz constant in some parametrisation) and the “fatness”
of K (i.e., the maximal distance of the interior points from the boundary and the relation
between its measure and that of its boundary) are controlled by their values.

The bound (19) is standard (see, e.g., [5, Theorem (1.6.6)]), while (20), for simplicial
elements, can be proved using [27, Theorem A.2]. Under our Assumption (M1) on the
star-shapedness of the mesh element K, the trace inequalities (19) and (20), with explicit
dependence of the constants on ρ, ρ0 and s, readily follow from the following lemma by
scaling arguments.

Lemma 4.4. Let K̂ ⊂ R
2 be such that diam(K̂) = 1 and let there exist 0 < ρ0 < ρ ≤ 1/2

such that Bρ ⊂ K̂, and K̂ is star-shaped with respect to Bρ0 . Then,

‖v‖20,∂K̂ ≤
1 +
√
2

ρ0

(
‖v‖20,K̂ + |v|21,K̂

)
∀v ∈ H1(K̂), (22)

‖w‖20,∂K̂ ≤ CB1

1

ρ2

(
3

ρ0ρ2

)4+2s(
‖w‖20,K + |w|21

2+s,K̂

)
∀w ∈ H 1

2+s(K̂), s ∈ (0, 1/2), (23)

where CB1 depends on s but not on K̂.
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Proof. We start with (22). Denoting by nK the outward normal unit vector to ∂K̂, since K̂
is star-shaped with respect to Bρ0 , we have

nK(x) · x ≥ ρ0 a.e. on ∂K̂, (24)

where the inequality is meant to hold for every point x at which nK(x) is defined (see [18,
Lemma 3.1]). Thus,

‖v‖20,∂K̂ =

∫

∂K̂

|v|2 dS

(24)

≤ 1

ρ0

∫

∂K̂

nK · x |v|2 dS

=
1

ρ0

∫

K̂

div(x |v|2) dx =
1

ρ0

∫

K̂

(2 |v|2 + x · ∇ |v|2) dx

=
1

ρ0

∫

K̂

(2 |v|2 + 2x ·Re{v∇v}) dx

diam(K̂)=1
⇒|x|≤1

≤ 2

ρ0

(
‖v‖20,K̂ + ‖v‖0,K̂ ‖∇v‖0,K̂

)

≤ 2

ρ0

(
‖v‖20,K̂ +

1

2(1 +
√
2)
‖v‖20,K̂ +

(1 +
√
2)

2
‖∇v‖20,K̂

)

=
1 +
√
2

ρ0

(
‖v‖20,K̂ + ‖∇v‖20,K̂

)
,

which gives (22).
For the bound (23) we recall Assumption (M1) and, without loss of generality, place the

centre of K at the origin, that is, xK = 0. We identify R2 and C and make use of the polar
parametrisation Ψ : C→ C such that

Ψ(B1) = K̂, Ψ(reiθ) = ψ(θ)reiθ , ψ : [−π, π)→ [ρ, 1− ρ].

The function ψ is Lipschitz continuous with constant Lψ satisfying

Lψ = sup
θ∈[−π,π]

ψ′(θ) ≤ (1− ρ)2
ρ0

(25)

(see [20, Lemma 4.1]), and the function Ψ−1 : C → C is Lipschitz continuous as well, with
constant LΨ−1 satisfying

LΨ−1 = sup
w,v∈C,w 6=v

|w − v|
|Ψ(w) −Ψ(v)| ≤

2(2ρ+ Lψ)

ρ2
(26)

(see [20, Lemma 4.2]).
We have

‖w‖20,∂K̂ =

∫

∂Ψ(B1)

|w|2 dS =

∫ π

−π

∣∣(w ◦Ψ)(eiθ)
∣∣2 |ψ′(θ)| dθ

≤ Lψ
∫ π

−π

∣∣(w ◦Ψ)(eiθ)
∣∣2 dθ

(25)

≤ (1 − ρ)2
ρ0

∫ π

−π

∣∣(w ◦Ψ)(eiθ)
∣∣2 dθ

=
(1− ρ)2
ρ0

‖w ◦Ψ‖20,∂B1
≤ (1− ρ)2

ρ0
CB1

(
‖w ◦Ψ‖20,B1

+ |w ◦Ψ|21
2+s,B1

)
,

where the last inequality can be proved using [27, Theorem A.2]; clearly, the constant CB1 ,
which corresponds to that appearing in the analogous of the trace inequality (23) for the unit
ball B1, depends on s and not on K̂.

By definition of the (12 + s)-seminorm by the Sobolev–Slobodeckij integral, the Lipschitz
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property of Ψ−1, and by changing variables within integrals, we obtain

|w ◦Ψ|21
2+s,B1

=

∫

B1

∫

B1

|(w ◦Ψ)(xB)− (w ◦Ψ)(yB)|2

|xB − yB |3+2s dxB dyB

≤
∫

B1

∫

B1

L3+2s
Ψ−1

|(w ◦Ψ)(xB)− (w ◦Ψ)(yB)|2

|Ψ−1(xB)−Ψ−1(yB)|3+2s dxB dyB

≤
∫

K̂

∫

K̂

L3+2s
Ψ−1

|w(x) − w(y)|2

|x− y|3+2s

∣∣detDΨ−1(x)
∣∣ ∣∣detDΨ−1(y)

∣∣ dxdy,

and

‖w ◦Ψ‖20,B1
=

∫

B1

|w ◦Ψ(xB)|2 dxB =

∫

K̂

|w|2
∣∣detDΨ−1(x)

∣∣ dx.

From the expression of the Jacobian DΨ−1 in Cartesian coordinates given in the proof of [20,
Lemma 4.2], we compute

∣∣detDΨ−1
∣∣ = 1

ψ(θ)2
≤ 1

ρ2
.

Therefore,

‖w‖20,∂K̂ ≤ CB1

(1− ρ)2
ρ0ρ2

(
‖w‖20,K̂ +

L3+2s
Ψ−1

ρ2
|w|21

2+s,K̂

)

(26),(25)

≤ CB1

(1− ρ)2
ρ0ρ2

(
‖w‖20,K̂ +

1

ρ2

(
3

ρ0ρ2

)3+2s

|w|21
2+s,K̂

)
,

from which we get (23).

4.4 Duality argument

By using a similar argument as in [6,17,19,35], we bound the L2-norm of any Trefftz function
by its DG-norm, with explicit dependence of the bounding constant on the wavenumber. The
first part of the proof of the following lemma is identical to that of [19, Lemma 4.4]. We
report the whole proof for completeness.

Lemma 4.5. For any ε > 0 there exists a constant C > 0 depending only on the shape of
Ω, ϑ, ρ0, ρ, a, β, δ and ε (in particular independent of Vp(Th), Th and k) such that, for any
w ∈ T (Th),

‖w‖0,Ω ≤ C
[

1

khmax
+ k1+2ε(CF + |ΓR|)

] 1
2

‖w‖DG .

Proof. Let φ be in L2(Ω). Let v be the solution to the (adjoint) problem (2)–(4) with f = φ,
gR = 0 and “−” in the impedance condition on ΓR. From Proposition 2.1 we know that
v ∈ H1+t(Ω) for all 0 ≤ t < 1/2 + sΩ (with sΩ defined in Proposition 2.1), and that

|v|1,Ω + k ‖v‖0,Ω ≤ C ‖φ‖0,Ω , |∇v|t,Ω ≤ C (1 + kt) ‖φ‖0,Ω , (27)

with C > 0 depending only on s, γR and ϑ, but independent of k, φ and v. In particular,
v ∈ H 3

2+s(Ω) for all 0 < s < sΩ.
Multiplying by w ∈ T (Th), integrating by parts twice the equation (2) element by element

(using ∆w + k2w = 0 in each K ∈ Th), and taking into account that ∇v · n = ikϑv on ΓR
and v = 0 on ΓD, we obtain

|(w, φ)0,Ω| =
∣∣∣∣∣
∑

K∈Th

∫

∂K

(
∇w · n v − w∇v · n

)
dS

∣∣∣∣∣

=

∣∣∣∣∣

∫

FI
h

(
[[∇hw]]Nv − [[w]]N · ∇v

)
dS +

∫

ΓR

(∇hw · n+ ikϑw) v dS −
∫

ΓD

w∇v · n dS

∣∣∣∣ ,

10



from which, by the Cauchy–Schwarz inequality,

|(w, φ)0,Ω|

≤
∑

f⊂FI
h

(
k−

1
2

∥∥∥β 1
2 [[∇hw]]N

∥∥∥
0,f

k
1
2

∥∥∥β− 1
2 v
∥∥∥
0,f

+k
1
2

∥∥∥α 1
2 [[w]]N

∥∥∥
0,f

k−
1
2

∥∥∥α− 1
2∇v · n

∥∥∥
0,f

)

+
∑

f⊂ΓR

(
k−

1
2

∥∥∥δ 1
2 ϑ−

1
2∇w · n

∥∥∥
0,f

k
1
2

∥∥∥δ− 1
2ϑ

1
2 v
∥∥∥
0,f

+k
1
2

∥∥∥δ 1
2ϑ

1
2w
∥∥∥
0,f

k
1
2

∥∥∥δ− 1
2 ϑ

1
2 v
∥∥∥
0,f

)

+
∑

f⊂ΓD

k
1
2

∥∥∥α 1
2w
∥∥∥
0,f

k−
1
2

∥∥∥α− 1
2∇v · n

∥∥∥
0,f

≤ ‖w‖DG G(v)
1
2 ,

where we have set

G(v) :=
∑

f⊂FI
h

(
k
∥∥∥β− 1

2 v
∥∥∥
2

0,f
+ k−1

∥∥∥α− 1
2∇v · n

∥∥∥
2

0,f

)

+
∑

f⊂ΓR

2k
∥∥∥δ− 1

2ϑ
1
2 v
∥∥∥
2

0,f
+
∑

f⊂ΓD

k−1
∥∥∥α− 1

2∇v · n
∥∥∥
2

0,f
.

We need to bound G(v) in terms of ‖φ‖20,Ω. We exploit the fact that v ∈ L∞(Ω), together
with the Assumption (M3) on the mesh family, in order to bound the terms containing β
and δ. Since ∇v does not necessarily belong to L∞(Ω), we cannot use the same argument for
the terms containing α. We report, for completeness, the estimate of the terms containing α
from [19].

Using the trace inequality (20) and taking into account the local quasi-uniformity as-
sumption (M2), we obtain

∑

f⊂FI
h

k−1
∥∥∥α− 1

2∇v · n
∥∥∥
2

0,f
+
∑

f⊂ΓD

k−1
∥∥∥α− 1

2∇v · n
∥∥∥
2

0,f

(20)

≤ C
∑

K∈Th

∥∥∥α− 1
2

∥∥∥
2

L∞(∂K∩(FI
h∪ΓD))

[
1

khK
‖∇v‖20,K +

h2sK
k
|∇v|21

2+s,K

]
,

with C > 0 depending only on ρ0, ρ and s. The assumption (17) on α implies

∥∥∥α− 1
2

∥∥∥
2

L∞(∂K∩(FI
h∪ΓD))

≤ hK
a hmax

,

which leads to the estimate

∑

f⊂FI
h

k−1
∥∥∥α− 1

2∇v · n
∥∥∥
2

0,f
+
∑

f⊂ΓD

k−1
∥∥∥α− 1

2∇v · n
∥∥∥
2

0,f

(20)

≤ C
∑

K∈Th

[
1

khmax
‖∇v‖20,K +

h2s+1
K

khmax
|∇v|21

2+s,K

]
,

where, now, C also depends on a. By definition, hK ≤ hmax, and therefore (27) (taken with
t = 1/2 + s) gives

∑

f⊂FI
h

k−1
∥∥∥α− 1

2∇v · n
∥∥∥
2

0,f
+
∑

f⊂ΓD

k−1
∥∥∥α− 1

2∇v · n
∥∥∥
2

0,f
≤ C

(
k−1h−1

max + (khmax)
2s
)
‖φ‖20,Ω .

(28)

We proceed now with the estimate of the terms in G(v) containing β and δ. Let us start
with the term containing β. From the Sobolev embedding H1+ε(Ω) ⊂ C0(Ω), for any ε > 0
(see e.g. [24, Theorem 3.26]), we have v ∈ L∞(Ω) and

∑

f⊂FI
h

k
∥∥∥β− 1

2 v
∥∥∥
2

0,f
≤ k

∣∣FIh
∣∣
∥∥∥β− 1

2 v
∥∥∥
2

L∞(FI
h)
≤ β−1k

∣∣FIh
∣∣ ‖v‖2L∞(Ω) ,
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Provided that ε < 1/2 + sΩ, v ∈ H1+ε(Ω), and there exists C > 0 depending only on the
shape of Ω and ε such that

‖v‖2L∞(Ω) ≤ C
(
‖v‖20,Ω + ‖∇v‖20,Ω + |∇v|2ε,Ω

)
.

By using (27) with t = ε, we obtain

‖v‖2L∞(Ω) ≤ C
(

1

k2
+ 1 + k2ε

)
‖φ‖20,Ω ,

and thus ∑

f⊂FI
h

k
∥∥∥β− 1

2 v
∥∥∥
2

0,f
≤ C

∣∣FIh
∣∣ (k−1 + k1+2ε

)
‖φ‖20,Ω , (29)

with C only depending on the shape of Ω, ϑ, ε and β.
We bound the term containing δ similarly:

∑

f⊂ΓR

2k
∥∥∥δ− 1

2ϑ
1
2 v
∥∥∥
2

0,f
≤ 2k |ΓR|

∥∥∥δ− 1
2ϑ

1
2 v
∥∥∥
2

L∞(ΓR)
≤ 2k δ−1 ‖ϑ‖L∞(ΓR) |ΓR| ‖v‖

2
L∞(Ω) ,

≤ C |ΓR|
(
k−1 + k1+2ε

)
‖φ‖20,Ω , (30)

with C only depending on the shape of Ω, ϑ, ε and δ.
Thus, collecting the bounds (28), (29) and (30) on the terms containing α, β and δ in the

definition of G(v), for all φ ∈ L2(Ω), we have

G(v) ≤ C
(
k−1h−1

max + k2s +
∣∣FIh ∪ ΓR

∣∣ (k−1 + k1+2ε)
)
‖φ‖20,Ω ,

and thus, due to assumption (M3) and 2s < 1,

|(w, φ)0,Ω|
‖φ‖0,Ω

≤ C
[

1

khmax
+ k1+2ε(CF + |ΓR|)

] 1
2

‖w‖DG .

For larger values of ε the same bound holds.

We note that in the assertion of Lemma 4.5 we can take an arbitrarily small ε > 0 to
reduce the dependence on k, but the constant C may blow up in the limit ε→ 0 as it contains
the continuity constant of the embedding of H1+ε(Ω) in L∞(Ω).

Since u − uhp ∈ T (Th), from Lemma 4.5 and the quasi-optimality (16), we immediately
deduce the following result.

Theorem 4.6. Assume the mesh properties (M1)–(M3) and that the solution u of (1) belongs
to T (Th), and let uhp be the solution of (15). Then, for any ε > 0 there exists a constant
C > 0 depending only on the shape of Ω, ϑ, ρ0, ρ, a, β, δ and ε (in particular independent
of Vp(Th), Th and k) such that

‖u− uhp‖0,Ω ≤ C
[

1

khmax
+ k1+2ε(CF + |ΓR|)

] 1
2

inf
vhp∈Vp(Th)

‖u− vhp‖DG+ .

5 Approximation properties of plane wave spaces

In this section we consider a Helmholtz solution u defined in the neighbourhood

Kη :=
{
x ∈ R

2, dist(x,K) < ηhK
}
, 0 < η ≤ 1/2,

of an (open) element K satisfying the star-shapedness assumption (M1); for simplicity we
take K to be centred at the origin, i.e. BρhK ⊂ K and n(x) · x ≥ ρ0hK a.e. on ∂K. We
note that Kη contains B(ρ+η)hK

and is star-shaped with respect to B(ρ0+η)hK
. Following the

theory developed in [20,30,31] we prove approximation bounds for finite dimensional spaces
made of circular and plane wave functions.

The main ingredients are three: (i) the explicit approximation bounds for harmonic
functions and harmonic polynomials proved in [20] (improving on [25]) and reported in

12



Proposition 5.1; (ii) the Vekua operators, which permit to transfer these approximation
properties to Helmholtz solutions and circular waves (see a detailed discussion [32] and the
continuity bounds in Lemma 5.2 below); (iii) the approximate inversion of the Jacobi–Anger
expansion, which allows to prove bounds for plane waves (see (39) below, which was proved
in [31, Lemma 4.3]). The interplay of these ingredients is outlined in Figure 1.

We consider only W j,∞-type norms (as opposed to Hj-type) in our bounds; moreover,
since u is analytic in Kη, its possible singularities lie at least at distance η from K: these
two facts make the proofs easier than those in [31] (even though here we obtain exponential
convergence as opposed to algebraic). On the other hand, we want to control the dependence
of the constants on the geometry of K, through ρ and ρ0, thus we need the sharper bounds
of [20].

{
u ∈W 1,∞(Kη),∆u + k2u = 0

} {
φ ∈W 1,∞(Kη),∆φ = 0

}

span
{
einψJ|n|(|x|)

}N
n=−N span

{
einψ|x||n|

}N
n=−N

span
{
eikx·dm

}q
m=−q

V2

V1 = (V2)
−1

Prop. 5.1, holom. intp.

(Jacobi–Anger)−1, (39)

Prop. 5.3

∆-ineq.

Figure 1: The idea behind the approximation estimates of Section 5: plane waves approx-
imate circular waves (Fourier–Bessel functions), which are Vekua transforms of harmonic
polynomials, which approximate harmonic functions, which in turn are inverse Vekua trans-
forms of Helmholtz solutions. The→ arrow denotes the Vekua operators, which are bijective
mappings, and the ։ arrow can be read as “is approximated by”; the curved arrows are
consequences of the straight ones.

In the following, for any j ∈ N0 and for a Lipschitz open set D ⊂ R2, we define the
Sobolev seminorms |φ|W j,∞(D) := supα∈N2

0,|α|=j ‖Dαφ‖L∞(D).

5.1 Exponential approximation by circular waves

The results in Section 4 of [20] give the following harmonic approximation estimates.

Proposition 5.1. Under the above assumptions on ρ, ρ0, η,K, for any real-valued harmonic
function φ ∈ W 1,∞(Kη), there exists a sequence of harmonic polynomials {PN}N∈N0 of degree
at most N such that

|φ− PN |W j,∞(K) ≤ C h
1−j
K e−bN ‖∇φ‖L∞(Kη)

, (31)

for all j ∈ N0, where C > 0 and b > 0 depend only on ρ, ρ0, η and j. Moreover, PN
interpolates φ in at least (N + 1) points on ∂K.

Proof. The proof is a slight improvement of that of Theorem 4.10 and Corollary 4.11 of
[20]. Using the same notation of the proof of [20, Theorem 4.10] (u = φ harmonic to be
approximated, f = u + iv holomorphic in D), we define f̃ := f − u(x0, y0) and q̃p :=

qp − u(x0, y0). We have f − qp = f̃ − q̃p, ũ(x0, y0) = v(x0, y0) = 0, |∇ũ| = |∇u| = |∇v| and
∥∥∥f̃
∥∥∥
L∞(D)

≤ ‖ũ‖L∞(D) + ‖v‖L∞(D)

≤ diam(D)
(
‖∇ũ‖L∞(D) + ‖∇v‖L∞(D)

)
= 2diam(D) ‖∇u‖L∞(D) ,

which shows that the W 1,∞-norm at the right-hand side of the bounds in the assertion
of [20, Corollary 4.11] can be substituted by the similar seminorm.

The factor hj−1
K follows from a simple affine scaling.
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The explicit values of the constants C and b can easily be computed following the proofs
in [20].

In [32], following [40], the k-dependent Vekua operators V1, V2 : C0(K) → C0(K) were
introduced. They are inverses of each other, i.e. they satisfy V1 = V −1

2 , and are bijective and
bicontinuous between the following pairs of spaces (see [32, Theorems 2.5 and 3.1]):

Hj(K) :=
{
φ ∈ Hj(K), ∆φ = 0

} V1−−→←−−
V2

Hjk(K) :=
{
u ∈ Hj(K), ∆u+k2u = 0

}
∀j ∈ N0.

In [32, Theorem 3.1] the continuity of these operator in L∞(K)-norm was also stated. Here
we generalise this result to higher order W j,∞(K)-norms, maintaining an explicit expression
of the continuity constants.

Lemma 5.2. For any j ∈ N and φ, u ∈ W j,∞(K) such that ∆φ = ∆u + k2u = 0 in K, we
have the continuity bounds:

‖V1[φ]‖L∞(K) ≤
(
1 + (khK)2

)
‖φ‖L∞(K) , (32)

‖V2[u]‖L∞(K) ≤
(
1 +

(khK)2e
1
2khK

4

)
‖u‖L∞(K) , (33)

|V1[φ]|W j,∞(K) ≤ (1 + (khK)2ej) |φ|W j,∞(K) + k2hKe
j |φ|W j−1,∞(K) (34)

+ (1 + j)
(
j + khK

)
ej

j−2∑

ℓ=0

kj−ℓ |φ|W ℓ,∞(K) ,

|V2[u]|W 1,∞(K) ≤ k2hKe1+
1
2khK ‖u‖L∞(K) + (1 + k2h2Ke

1
2khK ) |u|W 1,∞(K) . (35)

Proof. The two bounds in L∞(K)-norms are simpler versions of [32, Equations (18) and (19)].
To prove the remaining ones, we recall that the operators Vξ, with ξ = 1, 2, were defined as

Vξ[φ](x) := φ(x)+
∫ 1

0
Mξ(x, t)φ(tx) dt for two suitable kernel functions Mξ ∈ C∞(K × [0, 1])

(see [32, Section 2]). Thus, using the properties of multi-indices α = (α1, α2) ∈ N2
0 and the

Leibniz rule for multidimensional derivatives Dα = ∂|α|

∂x
α1
1 ∂x

α2
2

, we have

|Vξ[φ]|W j,∞(K) = sup
α∈N2

0,|α|=j

∥∥∥∥D
αφ+

∫ 1

0

Dα
(
Mξ(x, t)φ(tx)

)
dt

∥∥∥∥
L∞(K)

= sup
α∈N2

0,|α|=j

∥∥∥∥∥∥
Dαφ+

∫ 1

0

∑

β∈N2
0,β≤α

(
α

β

)(
DβMξ(x, t)

)
t|α−β|(Dα−βφ

)
|tx
)
dt

∥∥∥∥∥∥
L∞(K)

≤ |φ|W j,∞(K) + sup
α∈N2

0,|α|=j

∑

β∈N2
0,β≤α

(
α

β

)
sup
t∈[0,1]

|Mξ(·, t)|W |β|,∞(K×[0,1]) |φ|W |α−β|,∞(K)

≤ |φ|W j,∞(K) +

j∑

ℓ=0

(1 + ℓ)ej sup
t∈[0,1]

|Mξ(·, t)|W ℓ,∞(K×[0,1]) |φ|W j−ℓ,∞(K) ,

where in the last step we used
(
α
β

)
=
(
α1

β1

)(
α2

β2

)
≤ α

β1
1 α

β2
2

β1!β2!
≤ e|α| and the multi-index count [30,

Equation (B.10)]. The final estimates follow from the bounds on the kernels Mξ in [30,
Lemma 2.3.3].

The results of Lemma 5.2 hold if K is replaced by Kη by substituting hK with hK(1+2η),
since Kη is star-shaped with respect to the origin.

Following [25], we say that uN ∈ C0(K) is a generalised harmonic polynomial of degree
N ∈ N0 if its inverse Vekua transform V2[uN ] is a harmonic polynomial of degree N . As
described in [30, Section 2.4], generalised harmonic polynomials are nothing else than circular
waves (often called Fourier–Bessel functions), i.e. smooth solutions of the Helmholtz equation
that are separable in polar coordinates: they are linear combinations of

x = (|x| cosψ, |x| sinψ) 7−→ einψJ|n|(k|x|), −N ≤ n ≤ N,

where Jn is a Bessel function of the first kind and order n.
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In the next proposition, we exploit the mapping properties of the Vekua operators proved
in Lemma 5.2 to transfer the approximation result for harmonic polynomials and harmonic
functions of Proposition 5.1 to generalised harmonic polynomials and Helmholtz solutions
(compare with [30, Proposition 3.3.3]).

Proposition 5.3. Under the above assumptions on ρ, ρ0, η,K, for any u ∈ W 1,∞(Kη) solu-
tion of ∆u+k2u = 0, there exists a sequence of generalised harmonic polynomials {QN}N∈N0

of degree at most N such that

|u−QN |W j,∞(K) ≤ C e−bN h
1−j
K

(
1 + (khK)j+4

)
ekhK

(
k2hK ‖u‖L∞(Kη)

+ ‖∇u‖L∞(Kη)

)
,

(36)
for all j ∈ N0, where C > 0 and b > 0 depend only on ρ, ρ0, η and j.

Proof. For any N ∈ N, define QN = V1[PN ] where PN is the harmonic polynomial of degree
N associated to V2[u] by Proposition 5.1. Then, for all j ≥ 0,

|u−QN |W j,∞(K)

(32),(34)

≤ ej
((

1 + (khK)2
)
|V2[u]− PN |W j,∞(K) + 2j(j + khK)

j−1∑

ℓ=0

kj−ℓ |V2[u]− PN |W ℓ,∞(K)

)

(31)

≤ C e−bNh1−jK

(
1 + (khK)j+2

)
‖∇V2[u]‖L∞(Kη)

(35),η≤1/2

≤ C e−bNh1−jK

(
1 + (khK)j+4

)
e

1
2khK(1+2η)

(
k2hK ‖u‖L∞(Kη)

+ ‖∇u‖L∞(Kη)

)
.

5.2 Exponential approximation by plane waves

In Proposition 5.4 we prove approximation bounds for plane wave spaces and Helmholtz
solutions. The main result is given by the “inversion” of the Jacobi–Anger expansion ob-
tained in [30, Lemma 3.4.3]; this allows to approximate circular waves with plane waves with
more than exponential convergence in the number of plane waves. The final bound is then
obtained with a triangular inequality argument, Cauchy’s estimates for Helmholtz solutions
and Proposition 5.3.

The whole proof is just a modification of those in Sections 3.4.2 and 3.5 of [30] (see in
particular Remark 3.5.8 therein). The main differences are: (i) here we never use Hj-type
Sobolev norms but onlyW j,∞-type, (ii) we aim for exponential convergence and require that
the function to be approximated be defined in a neighbourhood of the element, and (iii) the
bounds coming from [20] allow to reduce the dependence of the bounding constant on the
element shape to the parameters ρ and ρ0 only.

Proposition 5.4. Fix q ∈ N and p = 2q+1 different unit vectors (the propagation directions)
{dm = (cos θm, sin θm)}qm=−q. Assume there exists 0 < ζ ≤ 1 such that

min
m,m′=−q,...,q

m 6=m′

∣∣θm − θm′

∣∣ ≥ 2π

p
ζ. (37)

Fix u ∈ W 1,∞(Kη) solution of ∆u + k2u = 0. Then, under the above assumptions on ρ, ρ0,
η, K, there exists a linear combination of plane waves with propagation directions {dm}qm=−q
which approximates u with the following error bound:

∣∣∣∣∣u−
q∑

m=−q
αme

ikx·dm

∣∣∣∣∣
W j,∞(K)

≤ C
(
1 + (khK)j+7

)
e3khKh−jK

[
(khK)e−bq +

hK(khK)⌊q/2⌋+1
(
1 + (khK)⌊

q−1
2 ⌋)

(
c0ζ4(q + 1)

) q
2

]

·
(
k ‖u‖L∞(Kη)

+ ‖∇u‖L∞(Kη)

)

for all j ∈ N0, where C > 0 and b > 0 depend only on ρ, ρ0, η and j, while c0 > 0 is
independent of all the other parameters.
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Proof. We consider N ∈ N such that N ≤ ⌊(q−1)/2⌋ and, using plane waves, we approximate
the circular wave QN given by Proposition 5.3.

First we note that Vekua’s theory allows to extend Cauchy’s estimates for harmonic
functions to Helmholtz solutions. In particular, we can control the W j,∞(K)-norm at the
left-hand side in the assertion’s bound with the L∞(Kη)-norm of the same function: for any
w ∈ L∞(Kη), ∆w + k2w = 0,

|w|W j,∞(K)

(34)

≤ (1 + j)
(
1 + j + (khK)2

)
ej

j∑

ℓ=0

kj−ℓ |V2[w]|W ℓ,∞(K)

Cauchy est.
[30, (2.29)]

≤ (1 + j)
(
1 + j + (khK)2

)
ej

j∑

ℓ=0

kj−ℓ
(

2ℓ

ηhK

)ℓ
‖V2[w]‖L∞(Kη)

(33),η≤1/2

≤ (1 + j)
(
1 + j + (khK)2

)(
1 + (khK)2e

1
2 khK

)
ej ‖w‖L∞(Kη)

j∑

ℓ=0

kj−ℓ
(

2ℓ

ηhK

)ℓ

≤ C
(
1 + (khK)j+4e

1
2khK

)
η−jh−jK ‖w‖L∞(Kη)

(38)

where the constant C depends only on j.
We obtain the order of convergence of the plane wave approximation of QN from Lemma

3.4.3 of [30] (together with Kη ⊂ B(1−ρ+η)hK
, ‖·‖L2(K) ≤ hK ‖·‖L∞(K), and setting K = 0

in the notation of [30, Lemma 3.4.3]): there exists ~α ∈ C
p such that

∥∥∥∥∥QN −
q∑

m=−q
αme

ikx·dm

∥∥∥∥∥
L∞(Kη)

≤
∥∥∥∥∥QN −

q∑

m=−q
αme

ikx·dm

∥∥∥∥∥
L∞(B(1−ρ+η)hK

)

≤ e3

π
3
2 ρN+1

(
e

5
2

2
√
2 ζ2

)q (
2N
√
N + 1

) (
1 + (khK)−N

)
e

(1−ρ+η)khK
2

(
(1− ρ+ η)khK

)q+1

(q + 1)
q+1
2

· ‖V2[QN ]‖L∞(K) . (39)

The norm of the harmonic polynomial V2[QN ] is immediately controlled by that of u using
the triangle inequality and recalling the definition of QN :

‖V2[QN ]‖L∞(K) ≤ ‖V2[u]‖L∞(K) + ‖V2[u]− V2[Qn]‖L∞(K)

(31)

≤ C
(
‖V2[u]‖L∞(Kη)

+ hK ‖∇V2[u]‖L∞(Kη)

)
(40)

(33),(35)

≤ C
(
1 + (khK)2

)
e

1
2 (1+2η)khK

(
‖u‖L∞(Kη)

+ hK ‖∇u‖L∞(Kη)

)

where C > 0 only depends on ρ, ρ0 and η.
We now put together the various bounds: the plane wave approximation error is split using

the triangle inequality in a Fourier–Bessel approximation error (controlled in Proposition 5.3)
and in a remainder term controlled by (39) (using (38) to reduce the order of the norm):
∣∣∣∣∣u−

q∑

m=−q
αme

ikx·dm

∣∣∣∣∣
W j,∞(K)

≤ |u−QN |W j,∞(K) +

∣∣∣∣∣QN −
q∑

m=−q
αme

ikx·dm

∣∣∣∣∣
W j,∞(K)

(38)

≤ |u−QN |W j,∞(K) + C
(
1 + (khK)j+4e

1
2khK

)
h−jK

∥∥∥∥∥QN −
q∑

m=−q
αme

ikx·dm

∥∥∥∥∥
L∞(Kη)

(36),(39)

≤ Ce−bNh1−jK

(
1 + (khK)j+4

)
ekhK

(
k2hK ‖u‖L∞(Kη)

+ ‖∇u‖L∞(Kη)

)

+ C
(
(khK)−N + (khK)j+4

)
h−jK

(
3e

5
2

4
√
2 ζ2

)q (
2N
√
N + 1

)
e

5
4khK

(khK)q+1

(q + 1)
q+1
2

‖V2[QN ]‖L∞(K)

(40)

≤ C
(
1 + (khK)j+7

)
e

9
4khKh−jK

·
[
(khK)e−bN +

(
1 + (khK)−N

)
(

3e
5
2

4
√
2 ζ2

)q (
2N
√
N + 1

) hK (khK)q

(q + 1)
q+1
2

]
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·
(
k ‖u‖L∞(Kη)

+ ‖∇u‖L∞(Kη)

)
,

where C and b depend on j, ρ, ρ0, η only. We now fix N := ⌊ q−1
2 ⌋ and obtain the assertion

(with c0 > 0.0119)

∣∣∣∣∣u−
q∑

m=−q
αme

ikx·dm

∣∣∣∣∣
W j,∞(K)

≤ C
(
1 + (khK)j+7

)
e3khKh−jK

[
(khK)e−

b
2 q +

(
3e

5
2

4ζ2

)q
hK(khK)⌊q/2⌋+1

(
1 + (khK)⌊

q−1
2 ⌋)

(q + 1)
q
2

]

·
(
k ‖u‖L∞(Kη)

+ ‖∇u‖L∞(Kη)

)
.

Remark 5.5. If khK ≫ 1, the numerator of the fraction in the bound in Proposition 5.4
behaves like 2hK(khK)q and can badly affect the convergence of the approximation by gen-
erating a long pre-asymptotic regime in q (compare with the “step” in Figure 3.1 of [17]).
This term comes from bound (3.42) in [30], which can be improved to

sup
t∈[0,khK ]

∑

ℓ>q

|Jℓ(t)| ≤
∑

ℓ>q

(khK/2)
ℓ

ℓ!
≤ ekhK/2 γ(q + 1, khK/2)

q!
,

where γ(a, x) :=
∫ x
0 e

−tta−1 dt = Γ(a)xae−x
∑
n≥0

xn

Γ(a+n+1) is the lower incomplete gamma

function [1, 6.5.2, 6.5.4, 6.5.29]. Using this, the numerator can be reduced to hKq2
q+1 ·

γ(q, khK/2), which has similar behaviour to 2hK(khK)q for large values of khK and q, but
is considerably smaller.

6 Exponential convergence

As in the case of standard polynomial finite elements, we establish exponential convergence of
‖u− uhp‖0,Ω in terms of the number of degrees of freedom for particular families of meshes.

6.1 Geometric meshes

We restrict ourselves to special instances of families of meshes given by sequences {TL}L∈N of
so-called geometrically graded meshes indexed by a refinement level L denoting the number
of element layers in the mesh, see Assumption 6.1 below. Meshes of this type with sim-
ple polygonal or polyhedral elements have universally been used for conventional hp-finite
element methods [38]. Conversely, we demand only compliance of {TL}L∈N with Assump-
tions (M1) and (M2) from Section 4.1, and, thus, rather general shapes of the elements are
admitted. We impose the following properties on admissible geometrically graded meshes.

Assumption 6.1. Let 0 < σ < 1 be a fixed grading parameter. The elements of every mesh
TL, L ∈ N, can be grouped into layers LLℓ , 0 ≤ ℓ ≤ L, that is,

TL =

L⋃

ℓ=0

LLℓ , LLℓ ∩ LLℓ′ = ∅ if ℓ 6= ℓ′,

such that:

(GM1) the Lth layer LLL contains the set of elements abutting a corner;

(GM2) except for the elements in LLL, the distance of an element from the nearest corner
point depends geometrically on its layer index (recalling that C = {cν}nc

ν=1 is the set of
corner points):

∃C > 0 : C−1σℓ ≤ dist(K, C) ≤ Cσℓ ∀K ∈ LLℓ , 0 ≤ ℓ ≤ L− 1, L ∈ N; (41)
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(GM3) the size of an element depends geometrically on its layer index:

∃C > 0 : C−1 ≤ hK ≤ C ∀K ∈ LL0 , L ∈ N,

C−1σℓ−1(1− σ) ≤ hK ≤ Cσℓ−1(1− σ) ∀K ∈ LLℓ , 1 ≤ ℓ ≤ L− 1,

C−1σL−1 ≤ hK ≤ CσL−1 ∀K ∈ LLL;
(42)

(GM4) for ℓ ≥ 2, TL is obtained from TL−1 by refining only elements of LL−1
L−1 (i.e., LLℓ = LL′

ℓ

for all ℓ < min{L,L′}).

Here and in the sequel, we adhere to the convention that a “generic constant” C > 0
must depend neither on refinement levels ℓ and L, nor on the grading parameter σ, nor on
the solution u.

We remind that (GM2) and (GM3) imply that the diameter of an element in the ℓth layer
is proportional to its distance from the nearest corner:

∃C > 0 : C−1 dist(K, C) ≤ hK ≤ C dist(K, C) ∀K ∈ LL0 , L ∈ N,

C−1 1− σ
σ

dist(K, C) ≤ hK ≤ C
1− σ
σ

dist(K, C) ∀K ∈ LLℓ , 1 ≤ ℓ ≤ L− 1.

(43)
Appealing to (M1) and (GM3), we can control the area of the elements in a particular layer:

∃C > 0 : C−1 ≤ |K| ≤ h2K ≤ C ∀K ∈ LL0 , L ∈ N,

C−1σ2(ℓ−1)(1 − σ)2 ≤ |K| ≤ h2K ≤ Cσ2(ℓ−1)(1− σ)2 ∀K ∈ LLℓ , 1 ≤ ℓ ≤ L− 1,

C−1σ2(L−1) ≤ |K| ≤ h2K ≤ Cσ2(L−1) ∀K ∈ LLL.

As a consequence of the mesh construction, the area occupied by the ℓth layer is bounded as
follows:

area(LL0 ) ≤ C, area(LLL) ≤ Cσ2(L−1)

area(LLℓ ) = area(Lℓ+1
ℓ ) = area(Lℓℓ)− area(Lℓ+1

ℓ+1) ≤ Cσ2ℓ 1− σ2

σ2
, 1 ≤ ℓ ≤ L− 1.

Taking the ratio of the areas in the last two formulae, we thus conclude that the number of
elements per layer is uniformly bounded in ℓ:

∃C > 0 : ♯LLℓ ≤ C
1 + σ

1− σ , 1 ≤ ℓ ≤ L− 1,

♯LLL, ♯LL0 ≤ C, L ∈ N.

(44)

Immediate from (44) is the fact that geometrically graded meshes satisfy (M3) because,
retaining the notation FIh for the set of interior edges of some TL,

∣∣FIh
∣∣ (21)≤ C

∑

K∈TL

hK ≤ C


 ∑

K∈LL
0

hK +
∑

K∈LL
L

hK +
L−1∑

ℓ=1

∑

K∈LL
ℓ

hK




(GM3),(44)

≤ C

[
1 + σL−1 +

L−1∑

ℓ=1

1 + σ

1− σ σ
ℓ−1(1− σ)

]

= C

[
1 + σL−1 + (1 + σ)

1− σL−1

1− σ

]
0 < σ < 1
≤ C

1

1− σ =: CF ,

(45)

with all constants independent of L.

6.2 Plane wave hp-spaces

The gist of hp-approximation is to raise the number of plane waves used on each element
along with refining the mesh. This is reflected in the construction of the plane wave hp-spaces
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based on a sequence of geometrically graded meshes {TL}L∈N
as introduced in Section 6.1.

To begin with, we set the dimension of the local plane wave spaces to

p(L) := 2L+ 1, L ∈ N. (46)

For the sake of simplicity, we opt for equi-spaced plane wave directions (i.e., ζ = 1 in Propo-
sition 5.4)

dpm =

(
cos(2πp m)

sin(2πp m)

)
, 0 ≤ m < p, p ∈ N,

which give rise to the local plane wave spaces

PWp,k(K) :=

{
v ∈ C∞(R2) : v(x) =

p−1∑

m=0

αm exp (ikdpm · (x− xK)) , αm ∈ C

}
, p ∈ N.

where xK was defined in Assumption (M1), Section 4.1. Then, the trial and test spaces for
the hp-version of the Trefftz-DG method of Section 3 are defined as

VL :=
{
v ∈ L2(Ω) : v |K ∈ PWp(L),k(K) ∀K ∈ TL

}
,

and the corresponding solution will be denoted by uL ∈ VL. Obviously, thanks to the bound
on the number of elements per layer (44), the total number of degrees of freedom, which is
dimVL, is bounded by

dimVL ≤ C
1

1− σL p(L) ∀L ∈ N. (47)

According to Theorem 4.6 and the bound on |FIh | (45), an L-uniform bound of the dis-
cretisation error ‖u− uL‖0,Ω is provided by ‖u− vL‖DG+ for any vL ∈ VL. A concrete choice
of vL will rely on particular local approximations of u chosen differently for elements away
from corners, see Section 6.3, and elements at corners, see Section 6.4.

Before we give details, we elaborate a simpler bound for ‖u− vL‖DG+ . Immediate from
the definition of ‖·‖DG+ is

‖u− vL‖2DG+ ≤C
∑

K∈TL

(
k−1

∥∥∥β1/2∇(u− vL) · n
∥∥∥
2

0,∂K\∂Ω
+ k

∥∥∥α1/2(u− vL)
∥∥∥
2

0,∂K\ΓR

+ k
∥∥∥β−1/2(u− vL)

∥∥∥
2

0,∂K\∂Ω
+ k−1

∥∥∥α−1/2∇(u− vL) · n
∥∥∥
2

0,∂K\ΓR

+ k−1
∥∥∥δ1/2ϑ−1/2∇(u − vL) · n

∥∥∥
2

0,∂K∩ΓR

+ k
∥∥∥(1 − δ)1/2ϑ1/2(u− vL)

∥∥∥
2

0,∂K∩ΓR

+ k
∥∥∥δ−1/2ϑ1/2(u− vL)

∥∥∥
2

0,∂K∩ΓR

)
.

Thanks to the particular choice of the parameters α, β and δ made in (17) and (18), we thus
arrive at the bound

‖u− vL‖2DG+ ≤ C
∑

K∈TL

(
k−1 ‖∇(u− vL) · n‖20,∂K +

khmax

hK
‖u− vL‖20,∂K

)
, (48)

where we have used the fact that the local quasi-uniformity assumption (M2) implies hf ≤
τhK for any face f of the element K; thus, in the estimate (48), C depends on the local
quasi-uniformity of the mesh.

6.3 Estimates away from corners

A simple consequence of Theorem 2.3 is the possibility to extend u analytically beyond ∂K,
provided that K does not abut a corner. The solution can be extended to a distance from
K proportional to the distance from the closest domain corner, thus proportional to the
diameter of K itself, thanks to relation (43). The proof is similar to that of [20, Lemma 5.4]
and given for convenience.
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Lemma 6.2. There exists η∗ > 0 depending only on the shape of Ω and on σ, in particular,
independent of u, k and L ∈ N, such that the solution u of (1) is analytic in

Kη∗ :=
{
x ∈ R

2 : dist(x,K) < η∗hK
}
,

and belongs to W 1,∞(Kη∗) for all K ∈ TL \ LLL, that is, for all elements not adjacent to a
corner.

Proof. It goes without saying that we will rely on (11) from Theorem 2.3. For x ∈ Ω, by the
geometric triangle inequality we have the simple estimate

Φ̂(x) =

nc∏

ν=1

|x− cν | ≥ |x− cµ| 21−nc

nc∏

ν=1
ν 6=µ

|cµ − cν |,

if µ is the index of the corner closest to x. Hence, for x ∈ K, K ∈ TL \ LLL, we find the lower
bound

Φ̂(x) ≥ CC dist(K, C), CC := 21−nc min
µ∈{1,...,nc}

nc∏

ν=1
ν 6=µ

|cµ − cν |.

Thus, from (11) we conclude that u is analytic in

⋃

x0∈K

{
x ∈ R

2 : |x− x0| <
CC dist(K, C)

4eγ

}
=

{
x ∈ R

2 : dist(x,K) <
CC
4eγ

dist(K, C)
}
.

The distance dist(K, C) is related to the size of K by (43), which provides C−1 σ
1−σhK ≤

dist(K, C), if K ∈ LLℓ , 1 ≤ ℓ ≤ L − 1, or C−1hK ≤ dist(K, C), if K ∈ LL0 , where the
constant C is that in (43). This yields the assertion of the lemma, for instance, for the choice
η∗ = min{1, σ

1−σ } CC

8eγC .

From this lemma, it is immediate that u ∈ L∞(K) and ∇u ∈ L∞(K)2 for every element
K ∈ TL \ LLL. Now we fix such an element K. If w ∈ L∞(K), the consequence (21) of the
star-shapedness of K gives

‖w‖20,∂K ≤ |∂K| ‖w‖
2
L∞(K) ≤ C hK ‖w‖

2
L∞(K) .

Hence, the contribution of the elements K ∈ TL \ LLL to the right hand side of estimate (48)
can be bounded by

∑

K∈TL\LL
L

(
k−1 ‖∇(u − vL) · n‖20,∂K +

khmax

hK
‖u− vL‖20,∂K

)

≤
∑

K∈TL\LL
L

C

(
hK
k
‖∇(u− vL)‖2L∞(K) + khmax ‖u− vL‖2L∞(K)

)
. (49)

Along with Lemma 6.2, this paves the way for using the approximation result of Proposi-
tion 5.4 for ζ = 1 (defined in (37)) locally on each element K ∈ LLℓ , 0 ≤ ℓ ≤ L − 1: picking
vL ∈ PWp(L),k(K) as a suitable linear combination of equispaced plane waves according to
Proposition 5.4, we find

hK
k
‖∇(u− vL)‖2L∞(K) + khmax ‖u− vL‖2L∞(K) (50)

≤ C (khmax)
16e6khK (khK)−1

[
(khK)e−bL +

hK(khK)⌊L/2⌋+1
(
1 + (khK)⌊

L−1
2 ⌋)

(
c0(L+ 1)

)L
2

]2

·
(
k ‖u‖L∞(Kη∗ )

+ ‖∇u‖L∞(Kη∗ )

)2
,

≤ C (khmax)
17e6khK hK

[
e−bL +

hK
(
1 + (khK)L−1

)
(
c0(L+ 1)

)L
2

]2(
k ‖u‖L∞(Kη∗)

+ ‖∇u‖L∞(Kη∗)

)2
.

The constant C essentially agrees with the constant C in the assertion of Proposition 5.4
and inherits its dependency on ρ, ρ0, and η∗. The exponential rate b is the same as in
Propositions 5.1 and 5.4.
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6.4 Estimates at corners

On K ∈ LLL, we can neither take for granted ∇u ∈ L∞(K), nor analyticity of u beyond
∂K. Fortunately, since the combined area of these elements is very small for large L, simple
local estimates suffice. Our aim is to control the terms relative to K in (48) with some
bounded function of u, independent of K, multiplied with any positive powers of hK ; then
the geometric scaling (42) for ℓ = L provides exponential convergence in L.

The first tool we need are the polynomial quasi-interpolation operators Qm, m = 1, 2,
introduced in [5, Chapter 4], which project onto the spaces Pm−1 of 2-variate polynomials of
degree at most m− 1. In particular, we make use of Q1

K̂
and Q2

K̂
for each K̂, where K̂ is the

scaling of the element K ∈ T LL as introduced in Section 4.1. We remind that the projectors
Qm rely on Taylor expansions averaged over Bρ0 . Then [5, Corollary (4.1.15)] gives us

∣∣Qm
K̂
ŵ
∣∣
j,B1
≤ Cm,j ‖ŵ‖0,Bρ0

∀ŵ ∈ Hm−1(K̂), j = 0, 1, m = 1, 2, (51)

with constants Cm,j depending only on ρ0. Moreover, by the Bramble–Hilbert Lemma from
[5, Lemma (4.3.8)] we know

∥∥ŵ −Qm
K̂
ŵ
∥∥
0,K̂
≤ Cm |ŵ|m,K̂ ∀ŵ ∈ Hm(K̂), m = 1, 2, (52)

where Cm depends on ρ0 only. By interpolation between H2(K̂) and L2(K̂) of the operator
(Id−Qm

K̂
) taking values in L2(K̂), we conclude from (51) and (52) for m = 2 and j = 0

∥∥ŵ −Q2
K̂
ŵ
∥∥
0,K̂
≤ C |ŵ| 3

2+s,K̂
∀ŵ ∈ H 3

2+s(K̂), s ∈ (0, 1/2), (53)

with, as before, C depending on ρ0 only. Next, [5, Lemma (4.1.17)] asserts that ∇ ◦ Q2
K̂

=

Q1
K̂
◦ ∇, which yields, by interpolation between H1(K̂) and L2(K̂), applying (51) and (52)

to ∇ŵ with m = 1 and j = 0,
∥∥∇(ŵ −Q2

K̂
ŵ)
∥∥
0,K̂
≤ C |∇ŵ| 1

2+s,K̂
∀ŵ ∈ H 3

2+s(K̂), s ∈ (0, 1/2). (54)

The second tool is a set of special results about the approximation of polynomials by
plane waves which can be derived combining Lemma 3.10 and Proposition 3.9 in [13]. In
that article, the estimates target a family of triangles and the unit square, here we need the
estimates on the unit disk only.

Lemma 6.3. For odd p ≥ 5, k̂ > 0, and any p̂1 ∈ P1(B1), we can find v̂p ∈ PWp,k̂(B1) such
that

‖p̂1 − v̂p‖0,B1
≤ Ck̂2 ‖p̂1‖0,B1

, (55)

|p̂1 − v̂p|1,B1
≤ C(k̂ + 1)k̂2 ‖p̂1‖0,B1

, (56)

|v̂p|2,B1
≤ C(k̂ + 1)2k̂2 ‖p̂1‖0,B1

. (57)

Based on this lemma, we prove other auxiliary estimates.

Lemma 6.4. Fix odd p ≥ 5 and s ∈ (0, 1/2). For every K ∈ TL and u ∈ H 3
2+s(K), we can

find vp ∈ PWp,k(K) such that

‖u− vp‖20,K ≤ C
(
h3+2s
K |u|23

2+s,K
+ h4Kk

4 ‖u‖20,K
)
, (58)

|u− vp|21,K ≤ C
(
h1+2s
K |u|23

2+s,K
+ (khK + 1)2k4h2K ‖u‖20,K

)
, (59)

|∇(u − vp)|21
2+s,K

≤ C
(
|u|23

2+s,K
+ (1 + hKk)

4h1−2s
K k4 ‖u‖20,K

)
, (60)

with constants C > 0 independent of u, K, and L (depending only on ρ0 and ρ from As-
sumption (M1)).

Proof. Set p̂ := Q2
K̂
û and write v̂p ∈ PWp,k̂(K̂), with k̂ := hKk, for the plane wave approxi-

mation of p̂ according to Lemma 6.3. Its transformation back to K provides vp ∈ PWp,k(K).
Simple transformations of norms yield

‖u− vp‖0,K = hK ‖û− v̂p‖0,K̂ ≤ hK
(
‖û− p̂‖0,K̂ + ‖p̂− v̂p‖0,K̂

)
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(53)

≤ ChK

(
C |û| 3

2+s,K̂
+ ‖p̂− v̂p‖0,B1

)

(55), (51)

≤ ChK

(
|û| 3

2+s,K̂
+ h2Kk

2 ‖û‖0,Bρ0

)

≤ C
(
h

3
2+s

K |u| 3
2+s,K

+ h2Kk
2 ‖u‖0,K

)
.

Rather similar arguments establish the second assertion of the lemma for the same vp:

|u− vp|1,K = |û− v̂p|1,K̂ ≤ |û− p̂|1,K̂ + |p̂− v̂p|1,K̂
(54)

≤ C
(
|∇û| 1

2+s,K̂
+ |p̂− v̂p|1,B1

)

(56)

≤ C
(
|∇û| 1

2+s,K̂
+ (hKk + 1)h2Kk

2 ‖p̂‖0,B1

)

(51)

≤ C
(
|û| 3

2+s,K̂
+ (hKk + 1)h2Kk

2 ‖û‖0,Bρ0

)

≤ C
(
h

1
2+s

K |u| 3
2+s,K

+ (hKk + 1)hKk
2 ‖u‖0,K

)
.

The third estimate follows along the same lines, using |∇p̂| 1
2+s,K̂

= |p̂|2,K̂ = 0:

|∇(u− vp)| 1
2+s,K

= h
− 1

2−s
K |∇(û− v̂p)| 1

2+s,K̂

≤ h
− 1

2−s
K

(
|∇(û − p̂)| 1

2+s,K̂
+ |∇(p̂− v̂p)| 1

2+s,K̂

)

(54)

≤ Ch
− 1

2−s
K

(
|∇û| 1

2+s,K̂
+ ‖p̂− v̂p‖2,K̂

)

(57)

≤ Ch
− 1

2−s
K

(
|∇û| 1

2+s,K̂
+ (hKk + 1)2h2Kk

2 ‖p̂‖0,B1

)

(51)

≤ Ch
− 1

2−s
K

(
|û| 3

2+s,K̂
+ (hKk + 1)2h2Kk

2 ‖û‖0,Bρ0

)

≤ C
(
|u| 3

2+s,K
+ (hKk + 1)2h

1
2−s
K k2 ‖u‖0,K

)
.

The natural candidate for a local plane wave approximating u on K ∈ LLL is vL |K := vp
with vp supplied by the previous lemma. Then we can tackle the terms on the right-hand
side of (48) invoking Lemma 6.4 and the trace inequalities (19) and (20), respectively:

khmax

hK
‖u− vp‖20,∂K

(19)

≤ C
khmax

hK

(
1

hK
‖u− vp‖20,K + hK |u− vp|21,K

)

≤ Ckhmax

(
1

h2K
‖u− vp‖20,K + |u− vp|21,K

)

(58), (59)

≤ Ckhmax

(
h1+2s
K |u|23

2+s,K
+ (k2h2K + 1)k4h2K ‖u‖20,K

)
,

1

k
‖∇(u − vp)‖20,∂K ≤ C

k

(
h−1
K ‖∇(u − vp)‖

2
0,K + h2sK |∇(u− vp)|21

2+s,K

)

(59), (60)

≤ C

k

(
h2sK |u|23

2+s,K
+ (1 + hKk)

4hKk
4 ‖u‖20,K

)
.

Therefore, taking into account the geometric scaling of the elements (GM3), the contribution
of K to the right hand side of (48) can be bounded as

1

k

∥∥∇(u− vp) · n‖20,∂K +
khmax

hK
‖u− vp‖20,∂K

≤ Cσ2sL
(
k−1(1 + k2h2max) |u|23

2+s,K
+ h1−2s

max k
3(1 + k4h4max) ‖u‖20,K

)

≤ Cσ2sL (1 + k4h4max)
(
k−1 |u|23

2+s,K
+ k3 ‖u‖20,K

)
.

(61)
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6.5 Main a priori error bound

Now we combine the estimates obtained in Sections 6.3 and 6.4 into a final best approximation
estimate for u in VL in terms of the DG+-norm, on families of geometric meshes complying
with Assumptions (GM1)–(GM4). The focus is on asymptotic behaviour with respect to
the depth L of refinement. Hence we do not look for the best possible k-dependence of the
bounding constants. An explicit expression of the dependence on k, σ and u of the constant
C̃, the exponential rate b̃ and the minimal number of layers L̃ in the assertion of next theorem
is shown in the proof.

Theorem 6.5. Denote by u the solution of BVP (1), modelling the scattering by a
sound-soft star-shaped obstacle, and by uL its approximation obtained by the Trefftz-
DG method (15) defined on a mesh TL with L refinement levels belonging to a family
of geometric meshes with grading parameter σ as in Assumption 6.1, and with local
approximating plane wave spaces of dimension p(L) = 2L+ 1.

Then, there exists a threshold L̃ ∈ N and two constants C̃, b̃ > 0 with b̃ and L̃
independent of k, such that

‖u− uL‖0,Ω ≤ C̃ e−b̃
√
dimVL ∀L > L̃.

Proof. Combining the result of Theorem 4.6 with (48), for all ε > 0, we have with a constant
C > 0 independent of L, k, and u

‖u− uL‖20,Ω
Thm. 4.6
≤ C

(
k−1 + k1+2ε(CF + |ΓR|)

)
inf

vL∈VL

‖u− vL‖2DG+

(45),(48)

≤ C
k1+2ε

1− σ
∑

K∈TL

inf
vL∈PWp(L),k(K)

(
k−1 ‖∇(u− vL) · n‖20,∂K +

khmax

hK
‖u− vL‖20,∂K

)
.

Next, we split the sum into two parts comprising the small cells of layer LLL and cells away
from corners, respectively:

∑

K∈LL
L

inf
vL∈PWp(L),k(K)

(
k−1 ‖∇(u − vL) · n‖20,∂K +

khmax

hK
‖u− vL‖20,∂K

)

(61)

≤ Cσ2sL (1 + k4h4max)
(
k−1 |u|23

2+s,K
+ k3 ‖u‖20,K

)

Prop. 2.1

≤ Cσ2sL k (1 + k4h4max)
(
‖gR‖20,ΓR

+ |gR|2s,ΓR

)
,

for all s ∈ (0,min{sΩ, r}), with sΩ and r as in Proposition 2.1. For an element K away from
corners, with Kη∗ as introduced in Lemma 6.2, B(u) := (k ‖u‖L∞(Ωη∗ )

+ ‖∇u‖L∞(Ωη∗ )
)2,

Ωη∗ :=
⋃

K∈TL\LL
L

Kη∗ ⊂ N (u),

∑

K∈TL\LL
L

inf
vL∈PWp(L),k(K)

(
k−1 ‖∇(u − vL) · n‖20,∂K +

khmax

hK
‖u− vL‖20,∂K

)

(49),(50)

≤ C (khmax)
17e6khmax B(u)

∑

K∈TL\LL
L

hK

[
e−2bL +

h2K
(
1 + (khK)2L−2

)
(
c0(L + 1)

)L

]

= C(khmax)
17e6khmax B(u)

[
∑

K∈TL\LL
L

hKe
−2bL +

1
(
c0(L+ 1)

)L
∑

K∈TL\LL
L

h3K
(
1 + (khK)2L−2

)
]

=: C (khmax)
17e6khmax B(u)

[
(I) + (II)

]
.

We bound separately (I) and (II):

(I) =

L−1∑

ℓ=0

∑

K∈LL
ℓ

hK e
−2bL

(42)

≤ C
(
#LL0 +

L−1∑

ℓ=1

#LLℓ σℓ−1(1− σ)
)
e−2bL
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(44)

≤ C
(
1 + (1 + σ)

L−2∑

ℓ=0

σℓ
)
e−2bL ≤ C

(
1 +

(1 + σ)(1 − σL−1)

(1 − σ)
)
e−2bL ≤ C

1− σ e
−2bL;

(II) =
1

(
c0(L+ 1)

)L
L−1∑

ℓ=0

∑

K∈LL
ℓ

h3K
(
1 + (khK)2L−2

)

(42)

≤
C
(
#LL0 (1 + (khmax)

2L−2) +
∑L−1
ℓ=1 #LLℓ σ3ℓ−3(1 − σ)3

(
1 + (khK)2L−2

))

(
c0(L + 1)

)L

(44)

≤
C
(
(1 + (khmax)

2L−2) + (1 + σ)(1 − σ)2∑L−2
ℓ=0 σ

3ℓ
(
1 + (khK)2L−2

))

(
c0(L+ 1)

)L

≤
C
(
(1 + (khmax)

2L−2
) + (1 + σ)(1 − σ)2 1−σ3L−3

1−σ3

(
1 + (khmax)

2L−2
))

(
c0(L+ 1)

)L
1−σ

1−σm ≤ 1

≤ C
(
c0(L+ 1)

)L
(
1 + (khmax)

2L−2
)
≤ C(c0 L)−L

(
1 + (khmax)

2L
)

= C
(
(c20 L)

−L/2 + (c20 L/(khmax)
4)−L/2

)
L−L/2 ≤ C

(
e1/(2c

2
0e) + e(khmax)

4/(2c20e)
)
L−L/2,

where in the last step we have used the bound (aL)−L/2 ≤ e1/(2ea) which holds for all a, L > 0.
Combining the above estimates, taking into account that B(u) ≤ C k10ek/2e due to

Lemma 2.4, gives

‖u− uL‖20,Ω ≤C
k1+2ε

1− σ
(
1 + (khmax)

17
)

·
(
k σ2sL + k10 e6khmax+k/2e

(
e−2bL

1− σ +
(
e1/(2c

2
0e) + e(khmax)

4/(2c20e)
)
L−L/2

))
,

where we have incorporated in C the dependence on gR. We have

σ2sL = e−L(−2s log σ), L−L/2 = e−L(log
√
L),

Assuming L̃ ≥ e4b all the exponentials are bounded from above by e−2min{−s log σ,b}L. Thus

‖u− uL‖0,Ω ≤ C(k) e−min{−s log σ,b}L,

with

C(k) ≤
C′ [k6ek/4e

][(
1 + (khmax)

17/2
)
e3khmax+max{1,(khmax)

4}/(4c20e)
]

1− σ ,

with C′ independent of σ, k and L. Since, by (46) and (47), L ≥ C((1 − σ) dimVL)
1
2 , with

C only depending on the constants appearing in assumptions (M1), (GM2) and (GM3), the
assertion of the theorem follows with

b̃ = C
√
1− σmin{−s logσ, b}.

The proof of Theorem 6.5 shows that the rate b̃ of exponential convergence of the Trefftz-
DG method and the layer number threshold L̃ depend only on: (i) the regularity parameter
s relative to the solution u; (ii) the mesh grading parameter σ; (iii) the parameter b from
Proposition 5.1 (and [20, Corollary 4.11]), which is the exponential convergence rate for the
approximation of certain harmonic functions by harmonic polynomials and which in turn
depends on the star-shapedness parameters ρ and ρ0 in Assumption (M1) and again on σ
via Lemma 6.2.

Remark 6.6. If we monitor the dependence on k throughout the proof of Theorem 6.5, we
see that if the “scale resolution” condition khmax ≤ 1 on the initial mesh T1 is satisfied, then
the the constant C̃ in the error bound of the theorem grows in k as k6ek/4e. The bound in
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Lemma 2.4 on the analytic extension of u is responsible for a factor k5ek/4e; we expect that
a refinement of this argument might make the constant of the final bound of Theorem 6.5
linear in k under the above scale resolution condition.

If the scale resolution condition is not satisfied, the constant C̃ may increase like exp(k4)
for k → ∞. (We note that the more-than-exponential term in k only appears multiplied to
the fastest converging term in L, i.e. L−L/2.) This bound can easily be improved to exp(k2+ǫ)
for any ǫ > 0 (substituting the assumption logL ≥ 4b with logL ≥ 2(2 + ǫ)b/ǫ). However,
we believe that also this prediction is way too pessimistic.

Remark 6.7. The Trefftz-DG method with a basis composed by circular waves (i.e. Fourier–
Bessel functions) can be considered in the same setting examined here (graded meshes, flux
parameters). Using Proposition 5.3 instead of Proposition 5.4, the same exponential conver-
gence in the square root of the total number of degrees of freedom, as in the plane wave basis
case, is achieved.

Remark 6.8. For piecewise polynomial hp-approximation, it is possible to use local degrees
on K ∈ LLℓ linearly increasing with L − ℓ without affecting overall exponential convergence
[15,37]. If σ is sufficiently small, the same result is possible in the present setting, by a slight
modification of the analysis of §6. If in (46) we chose to use

p(L, ℓ) := 2(L− ℓ) + 5

plane waves in each element K ∈ LLℓ (recall that we need p ≥ 5 in Lemma 6.4), the bound
of the terms (I) and (II) in the proof of Theorem 6.5, which are the crucial points to obtain
the exponential convergence in L, are modified as follows, provided that σ < e−2b,

(I) =

L−1∑

ℓ=0

∑

K∈LL
ℓ

hK e
−2b(L−ℓ+2)

(42)

≤ C
(
#LL0 +

L−1∑

ℓ=1

#LLℓ σℓ−1(1− σ)e2bℓ
)
e−2b(L+2)

(44)

≤ C
(
1 + (1 + σ)

L−2∑

ℓ=0

(σe2b)ℓ
)
e−2b(L+2) ≤ C

1− σe2b e
−2b(L+2),

(II) =
∑

K∈TL\LL
L

h3K
(
1 + (khK)2(L−ℓ)+2

)
(
c0(L− ℓ + 3)

)L−ℓ+2

≤ C(1 + (khmax)
2L+2)

(
c0(L+ 3)

)L+2
+ C

L−1∑

ℓ=1

e−6b(ℓ−1)
(
1 + (khK)2(L−ℓ)+2

)
(
c0(L− ℓ+ 3)

)L−ℓ+2

The first term in (II) can be bounded with an exponential by proceeding as in the proof of
Theorem 6.5. For the second term, simply using the partial sum of the exponential function
and (m+ 2)−m ≤ 1/m!, we have

L−1∑

ℓ=1

e−6b(ℓ−1)
(
1 + (khK)2(L−ℓ)+2

)
(
c0(L− ℓ+ 3)

)L−ℓ+2

(m:=L−ℓ+1)
=

L∑

m=2

e−6b(L−m)
(
1 + (khK)2m

)
(
c0(m+ 2)

)m+1

≤ e−6bL

2c0

L∑

m=2

(
e6b max{1, (khmax)

2}
c0

)m(
1

m+ 2

)m

≤
(
e−6bL

2c0
ee

6b max{1,(khmax)
2}/c0

)
e−6bL.

Such a reduction of the plane wave number in the small elements near the corners seems to
be inevitable in practice to curb the instability of the plane wave basis, see [22].
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[2] I. Babuška and B. Q. Guo, The h-p version of the finite element method for domains
with curved boundaries, SIAM J. Numer. Anal., 25 (1988), 837–861.
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