Accessibility navigation


Probabilistic downscaling of remote sensing data with applications for multi-scale biogeochemical flux modeling

Stoy, P. C. and Quaife, T. (2015) Probabilistic downscaling of remote sensing data with applications for multi-scale biogeochemical flux modeling. PLoS ONE, 10 (6). e0128935. ISSN 1932-6203

[img]
Preview
Text (Open Access) - Published Version
· Available under License Creative Commons Attribution.
· Please see our End User Agreement before downloading.

4043Kb

To link to this article DOI: 10.1371/journal.pone.0128935

Abstract/Summary

Upscaling ecological information to larger scales in space and downscaling remote sensing observations or model simulations to finer scales remain grand challenges in Earth system science. Downscaling often involves inferring subgrid information from coarse-scale data, and such ill-posed problems are classically addressed using regularization. Here, we apply two-dimensional Tikhonov Regularization (2DTR) to simulate subgrid surface patterns for ecological applications. Specifically, we test the ability of 2DTR to simulate the spatial statistics of high-resolution (4 m) remote sensing observations of the normalized difference vegetation index (NDVI) in a tundra landscape. We find that the 2DTR approach as applied here can capture the major mode of spatial variability of the high-resolution information, but not multiple modes of spatial variability, and that the Lagrange multiplier (γ) used to impose the condition of smoothness across space is related to the range of the experimental semivariogram. We used observed and 2DTR-simulated maps of NDVI to estimate landscape-level leaf area index (LAI) and gross primary productivity (GPP). NDVI maps simulated using a γ value that approximates the range of observed NDVI result in a landscape-level GPP estimate that differs by ca 2% from those created using observed NDVI. Following findings that GPP per unit LAI is lower near vegetation patch edges, we simulated vegetation patch edges using multiple approaches and found that simulated GPP declined by up to 12% as a result. 2DTR can generate random landscapes rapidly and can be applied to disaggregate ecological information and compare of spatial observations against simulated landscapes.

Item Type:Article
Refereed:Yes
Divisions:Faculty of Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
ID Code:40737
Publisher:Public Library of Science

Download Statistics for this item.

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation