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Twin experiments with the equivalent weights particle filter and
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This paper investigates the use of a particle filter for data assimilation with a full scale
coupled ocean-atmosphere general circulation model. Synthetic twin experiments are
performed to assess the performance of the equivalent weights filter in such a high-
dimensional system. Artificial 2-dimensional sea surface temperature fields are used
as observational data every day. Results are presented for different values of the free
parameters in the method. Measures of the performance of the filter are root mean
square errors, trajectories of individual variables in the model and rank histograms.
Filter degeneracy is not observed and the performance of the filter is shown to depend
on the ability to keep maximum spread in the ensemble.
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1. Introduction

1.1. The forecasting problem

One of the major goals of modelling in the geosciences is to use
numerical models to make predictions of the system in question.
There are two major components to such a prediction: firstly,
ensuring that the model is representative of the dynamics of the
system. Secondly, the model must be initialised to capture the
current state, from which the prediction can begin.

To initialise a climate model, observations alone are not
enough. Observation networks do not currently (and will probably
never) have the capability to observe all of the state variables at
every single grid point, and so climate model initialisation is a
classic under-determined problem. Data assimilation (DA) is the
process by which the observations of the real system will update
an initial guess of the state in order to initialise the model.

Bayes’ Theorem is the mathematical description of the data
assimilation problem. If x represents a model state, and y some
observations of it, then

p(x | y) = p(x)p(y | x)
p(y)

. (1)

This states that the probability density function (PDF) of the state
given some observations (the posterior PDF) can be written as the
product of the PDF of the state itself (the prior) and the PDF of
the observations given the state (the likelihood) normalised by the
probability of the observations themselves.

Different data assimilation methods have varying approaches
to finding a representation of the posterior PDF. For example, a

variational DA method will simply try and find the mode of the
posterior (see, for example, Cohn (1997)).

1.2. Particle filters and the posterior PDF

A particle filter is a fully nonlinear data assimilation method
which seeks to represent the full posterior PDF. For an overview
of particle filters, see for example, van Leeuwen (2009). They
represent the prior PDF as an ensemble of delta functions, and
propagate this using the dynamical model.

Each of these ensemble members, or particles, has an associated
weight referring to its contribution in the posterior PDF, i.e.

p(x | y) ≈
m∑
i=1

wiδ(x− xi) (2)

where xi and wi are a pair denoting the ensemble member and its
weight for each of the m ensemble members. The weights must
satisfy

m∑
i=1

wi = 1, (3)

which leads to an issue when wj ≈ 1 for some particle j ∈
1, . . . ,m. This situation is known as filter degeneracy and in such
a case, the posterior PDF reduces to effectively being represented
by the single ensemble member xj . Hence the mean of p(x) ≈ xj
and all estimated higher order moments of the distribution will be
close to 0.

It is well known that for a simple (no proposal density or
resampling) particle filter, the number of ensemble members
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needed to avoid filter degeneracy grows exponentially with the
number of independent observations of the system used (Snyder
et al. 2008; Bengtsson et al. 2008). This shows that for high
dimensional systems, without using a more sophisticated method,
these sizes of ensembles are not possible. In this context this
drawback is referred to as the curse of dimensionality.

Other data assimilation methods make certain assumptions
which make the representation of the posterior tractable.
Famously, the Kalman filter results from assuming that the
posterior PDF is Gaussian, and hence can be represented by
its first two moments (Meinhold and Singpurwalla 1983). Since
a climate model is strongly nonlinear due to several feedbacks
it is unlikely that these Gaussian assumptions are valid in the
initialisation of a climate model. For example, Figure 1 shows
a reconstruction of the marginal PDF of eastward surface winds
in the mid atlantic. In the left panel it can be seen that in the
early states of the model evolution the PDF is unimodal and the
Gaussian approximation would suffice. However, the panel on
the right shows the PDF of the same variable after the model
has evolved further in time. These marginal PDFs appear to be
bimodal and hence exploring data assimilation methods that do
not assume Gaussian PDFs is of interest.
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(a) Gaussian-like PDFs in first 20 days of model run
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(b) Non-Gaussian-like PDFs in later stages of model run

Figure 1. PDFs of eastward surface wind variable at (1.25N,189.375E)

In this paper we shall consider the equivalent weights particle
filter (van Leeuwen 2010; Ades and van Leeuwen 2013, 2015)
which makes use of “clever” proposal densities and resampling
in order to avoid the curse of dimensionality. The advantages of
using such a particle filter scheme include the lack of assumptions
about the posterior PDF, its fully nonlinear nature, and the fact

that, if it can still avoid filter degeneracy in a system of the size
we consider here, it will quantify the uncertainty in the posterior
PDF and hence a subsequent forecast.

1.3. Current climate model initialisation strategies

An excellent overview of the initialisation techniques for climate
models used for seasonal to decadal prediction was given by
Meehl et al. (2014), in relation to those models used as part
of CMIP5. Many of the models considered are simply nudged
towards some reanalysis product. Others are initialised with a
form of 3DVAR in the ocean. In a few cases, the Ensemble
Kalman Filter (EnKF) and Ensemble Optimal Interpolation
(EnOI) are used. Many of the models are initialised using different
methods for the atmosphere and the ocean.

When a variational method is used, only a mode of the PDF
is found and so there is very limited information about the
uncertainty in the solution. 4DVar applied to a coupled model
with components having different timescales has difficulties as
it is unclear how long the assimilation window should be. For
example, the accuracy of the tangent linear and adjoint models
will be much worse for a faster, more nonlinear component when
applied over the same period as a slower component in the
coupled model. This is the case in a coupled ocean-atmosphere
model where the atmosphere evolves substantially quicker than
the ocean, and is the subject of much current research (eg (Smith
et al. 2015)).

The EnKF methods assume that the posterior can be classified
by the mean and covariance only, i.e. the posterior is assumed to be
Gaussian. This may not be the case and so it is worth investigating
whether this is a valid assumption. Use of the EnKF in a high
dimensional system typically requires localisation and inflation of
error covariance matrices (see for example (Hamill et al. 2001)),
something that is not required in the equivalent weights particle
filter which we investigate in this paper. Many researchers are
attempting to address these complications with the EnKF, for
example Bocquet (2011) has developed a version of the EnKF
which does not use inflation.

In this paper we consider the model a fully coupled system. In
this sense, we do not treat the ocean and atmosphere separately.
Hence we use covariance information from one to influence
the other. This is useful in guarding against having unbalanced
initial states for the forecast, and hence should reduce the chance
of encountering initialisation shock (Chen and Zebiak 1997;
Balmaseda et al. 2009).

There has been some work done to apply particle filters to
climate models in the field of paleoclimatology. Dubinkina et al.
(2011), (Goosse et al. 2012a) and (Goosse et al. 2012b) have
applied the Sequential Importance Resampling (SIR) particle filter
to LOVECLIM, a more simple climate model than HadCM3
which we shall introduce in Section 2. Using a particle filter on
a system the size of LOVECLIM one might expect to encounter
filter degeneracy, however as Ades and van Leeuwen (2013)
showed, filter degeneracy is a consequence of the number of
independent observations, not the size of the state vector. In
the experiments with LOVECLIM, the number of independent
observations used were small, due to considering spatial averages
over very large areas. Apart from this, the weights of the particles
had a specified minimal value to avoid filter degeneracy. The
negative result of this procedure is that not all information is
extracted from the observations. Recently Dubinkina and Goosse
(2013) have applied applied a nudging proposal particle filter to

c⃝ 0000 Royal Meteorological Society Prepared using qjrms4.cls
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LOVECLIM, i.e. simply not using the weight equalising step of
the equivalent weights particle filter (see (8)), with the justification
that filter degeneracy does not occur in the low dimensional
system. In this paper the size of the observation vector, 27, 370,
is much too large to apply the filters above.

1.4. Paper structure

The rest of this paper is organised as follows. In section 2 we
discuss the properties of the coupled climate model we use in this
study. In section 3 we give a brief description of the particle filter
method we consider. In section 4 we describe how we generate
two different model evolution error covariance matrices for use in
subsequent experiments. section 5 describes the technical details
of the setup of the experiments. section 6 gives the results from
various assimilation experiments. Finally in section 7 we finish
with some conclusions about the efficacy of applying such a
particle filter to initialise a coupled climate model.

2. HadCM3

HadCM3 is a coupled ocean-atmosphere general circulation
model which has been extensively used in IPCC reports (Gordon
et al. 2000; Solomon 2007; Stocker et al. 2013) and does not
require flux adjustments (Collins et al. 2001). The atmosphere
component has 5 prognostic variables: surface pressure, zonal and
meridional velocities, potential temperature and humidity. These
are stored on a 3.75◦ × 2.5◦ staggered B-grid with 19 vertical
levels. The ocean component has 4 distinct prognostic variables:
zonal and meridional velocities, temperature and salinity. These
are stored on a 1.25◦ × 1.25◦ staggered B-grid with 20 vertical
levels, horizontally aligned with the atmospheric grid.

The total number of state variables in the model is 2, 314, 430.
The model’s timestepping scheme works on a 24-hour cycle.
Firstly it integrates the atmosphere over the 24-hour period with
a timestep of 30 minutes. Then the ocean is integrated over the
same 24-hour period with a timestep of 60 minutes. The coupling
between the ocean and atmosphere occurs once every 24 hours, or
equivalently every 72 model timesteps.

We consider the climate model HadCM3 to act as the function
f in the equation

xk+1 = f(xk) + βk, (4)

where xk represents the model state at time k. βk is a stochastic
term which represents missing or incorrect physics in the model,
the distribution of which we will have to specify (see Section 4).
We denote the covariance of βk by Q. If βk were not present, and
the model were purely deterministic, this would restrict the ability
to modify the state of the system and hence would limit the data
assimilation methods we wish to use. Specifically, βk is required
in order to satisfy the conditions to use the equivalent weights
particle filter.

3. The equivalent weights particle filter

In order to describe a method in which the ensemble member in
a particle filter can be directed in state space, the concept of a
proposal density must be introduced. Rewriting Bayes’ theorem
(1) as

p(x | y) = p(x)p(y | x)q(x, y)
p(y)q(x, y)

, (5)

where q(x, y) is the proposal density, is possible so long as q(x, y)
has support larger than p(x). The key concept is that the proposal
density can be a function not just of the model state x, but also
(future) observations y. In this sense the ensemble members can
be directed towards the future observations by using a proposal
density which modifies the increment of the deterministic model
to achieve this goal. This is the basis of particle filters such as the
Implicit Particle Filter (Chorin and Tu 2009) and the equivalent
weights particle filter. When the weights, wi, in a particle filter
are calculated, they can be decomposed into those coming from
the prior (p(x)), the likeihood (p(y | x)) and the proposal density
q(x, y). The component of the weight associated with the proposal
density is weighted by a term involving the distribution of the
model error term, β. If β ≡ 0 then these weights would become
infinite, thus there would be no freedom to direct the particles
anywhere other than to where the deterministic model suggests.

The equivalent weights particle filter is a fully nonlinear DA
method which works in a two-stage process which we describe
subsequently. For a comprehensive overview of the equivalent
weights particle filter see van Leeuwen (2010) and Ades and van
Leeuwen (2013). Suppose that an observation occurs at timestep
n. Then for each model timestep k before an observation occurs
(k ∈ {0, . . . , n− 2}), the model state of each ensemble member,
xki , is updated via the equation

xk+1
i = f(xki ) +A(yn −H(xki )) + βk

i (6)

where βk is a random vector, yn is the next observation in time,
H is the observation operator that maps the model state onto
observation space with associated observation error covariance
matrix R and A is a relaxation term. In this work we consider

A = pQHTR−1 (7)

where the matrices Q and R correspond to the model evolution
error covariance and observation error covariance matrices
respectively. In this paper we consider p constant, however it is
possible to make p a function of the time between observations.

The second stage of the equivalent weights filter involves
updating each ensemble member at the observation time n via the
formula

xni = f(xn−1
i ) + αiQHT (HQHT +R)−1(yn −H(f(xn−1

i ))) + βn
i

(8)
where αi are scalars computed so as to make the weights of the
particles equal. This is done for a given proportion (0 < κ ≤ 1)
of the ensemble which can make the desired weight. After this
equivalent weights step all ensemble members are resampled from
the members with the desired weight using stochastic universal
sampling (Baker 1987).

It is important to realise that the covariance of the model state
plays no role in the equivalent weights particle filter (apart from
the beginning of the experiments, but that is forgotten quickly).
Instead, the covariance of the error in the model evolution Q is
crucial.

4. Specification of model evolution error covariance
matrices

We must specify a model evolution error covariance matrix Q to
use within the equivalent weights particle filter. As in this work we
are considering twin experiments, it is safe to assume that there are
no biases in the model, and hence we can take the mean of βk to
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be 0. Now we consider the model evolution error to be Gaussian
with zero mean and covariance Q so that

βk ∼ N (0, Q). (9)

In order to estimate Q, we consider a long model run and
assume that the variance in the model evolution error will be
related to the variance in the model itself. Considering the daily
variance in the model over a 5 year control run, we can decompose
the covariances in the model as follows.

Cov(x) = Λ1/2ΣΛ1/2 (10)

where Σ is a correlation matrix and Λ is a diagonal matrix of
variances. Due to its large size, we only compute a localised
version of Cov(x), taking covariances of each variable within 2

gridpoints of each other. This has the effect of removing spurious
long-range correlations that arise due to under-sampling and
makes the calculation computationally feasible. Note that in this
coupled system there are no known control variable transforms
which allow efficient application of functions of covariance
matrices as used in fields such as atmospheric data assimilation.

As we can only compute the highly localised entries in
Cov(x), we seek a method to increase the length-scales that
will be present in the model evolution error covariance matrix.
Repeatedly applying the dimensionless correlation matrix Σ has
this effect.

Hence we model Q as

Q ∝ Λ1/2Σ2Λ1/2. (11)

The short length-scales present in Q defined in this manner
means that the information from observations will be passed over
longer length-scales indirectly via the nudging term (7) and the
propagation of these terms in the dynamical model (4).

Unfortunately very little previous work has been done in
the field to quantify model errors. We have taken a pragmatic
approach and ensured the model errors are large enough to
influence the evolution of the system, but not too large to destroy
the physics represented in the deterministic evolution. Hence the
coefficient, or proportionality, is chosen so that the size of the
random perturbations for each of the separate variables is, in
the L2-norm, less than 0.1 times that of the deterministic model
update. We shall refer to this matrix as Q1. Note that (11) does
directly give the decomposition of Q into standard deviations
and a correlation matrix, however such a decomposition is
unnecessary for the computations. For efficiency, matrix vector
multiplication of a vector by the matrix Q1/2 has been implmented
using the sparse BLAS library LIBRSB (Martone et al. 2010).

Note that there is very little experience in modelling Q. In
this paper we shall test different variants of the model evolution
error covariance matrix in order to investigate the sensitivity of
the assimilation results to Q. The modelling of Q we have just
described assumes that the variance of the errors in the model were
related to the variances in the model. However the variances in
the model are dominated by the seasonal cycle. It is unrealistic
to suggest that the errors in the model also follow directly the
seasonal cycle and so we have removed the seasonal cycle from
the samples we used to determine it. This was done by subtracting
a running mean from each sample, with the mean taken 7 days
either side of the sample. This matrix we shall refer to as Q2.

Figure 2 gives a representation of some of the correlations
contained within Σ. For instance we see from Figure 2a and

Figure 2b the effect of Ekman transport (see e.g. Price et al.
(1987)), noting the change in sign at the equator. Figure 2c and
Figure 2d captures the strong relationship between SSTs and near
surface humidity, in that increasing the sea surface temperature
permits more moisture to be transferred to the atmosphere. As
seen in Figure 2d, the areas either side of the equator in the
western pacific showing very little correlation may be due to a
precipitation feedback mechanism present in HadCM3.

It can be seen from Figure 2 that the correlations contained
within Q1 and Q2 have broadly the same structure, with
those calculated without the seasonal cycle showing stronger
correlations. However the variances within these 2 matrices have
a somewhat different structure.

Figure 3 shows the unscaled standard deviations in Λ
1
2 that

correspond to variability in surface air pressure, surface eastward
winds and subsurface sea water temperatures respectively, for both
Q1 and Q2. In the case of Q2, Figure 3b showing the standard
deviations of the surface pressure variables no longer has the large
variance in the southern ocean that is seen with Q1 in Figure 3a.
Figure 3b retains the large variance over the northern Pacific as
seen in Figure 3a but the variances over Europe are reduced.

The variances of the eastward winds shown in Figure 3d are not
a maximum over the northern Atlantic and northern Pacific as in
Figure 3c. Instead the maximum is in the northern Indian ocean
and the maritime continent.

Comparing the variances in the ocean temperatures in Figures
3e and 3f we can see that they have broadly the same spatial
distribution. However the scaling is very different. In Q1 which
has the seasonal cycle (Figure 3e), the Kuroshio current off the
east coast of Japan is the strongest signal and dominates the
variance that you can see. In Q2 where we have removed the
seasonal cycle (Figure 3f), the Kuroshio still remains the area of
highest variability, but it is markedly less strong in comparison
with the flow in the rest of the oceans.

5. Experimental setup

5.1. EMPIRE coupling

To allow HadCM3 to be used within the a data assimilation
system, the EMPIRE coupling has been used (Browne and Wilson
2015). This involves inserting a small number of MPI commands
(Gropp et al. 1996) into the model in order to send the state
vector to a different piece of software which acts to implement the
equivalent weights particle filter while considering the model as
a “black-box”. In doing so the climate model remains a separate
executable from the data assimilation system.

5.2. Twin experiment truth run

In order to perform an identical twin experiment, we must first run
the model in order to obtain a truth which we wish to recover using
the equivalent weights particle filter. For statistical consistency
the model is evolved stochastically according to (4). That is, at
each step (k) of the truth run, stochastic noise (βk) is added to the
deterministic model where βk ∼ N (0, Q). Synthetic observations
from this truth run will be taken as defined in subsection 5.3 and
used within the data assimilation method to try to constrain the
system.
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(c) Correlations between atmospheric humidity and ocean θ for Q = Q1 (d) Correlations between atmospheric humidity and ocean θ for Q = Q2

Figure 2. Representative point correlations between a variable in the atmosphere at the lowest level and the variable in the top layer of the ocean directly below it. Dark
red regions correspond to strong negative correlations, white regions no correlation and dark grey corresponds to regions of strong positive correlations.

When assimilating real data, the model used to evolve the state
would then be imperfect. That is, the approximation made in
defining the model error evolution covariance Q would likely be
incorrect, and so the model and reality would evolve in different
ways. For using the equivalent weights particle filter with real
data, the approximation of Q becomes crucial, in a similar way to
approximating the background error covariance matrix B and the
observation error covariance matrix R required for many classical
data assimilation techniques.

5.3. Observing network

We observe only the sea surface temperature (SST) in the coupled
system. The SSTs are stored as the top level ocean temperature
variable. As we are considering only twin experiments we are
free to choose full coverage of SST observations, and so the
observation operator will be simply the linear operator that
restricts the whole state space to the upper level ocean temperature
variables.

We assume that the observation errors are Gaussian, so that for
a given model state x, the corresponding observation y will be of
the form

y = Hx+ η. (12)

Thus η ∼ N (0, R) is a realisation of observation noise. Note here
that, written in this form, the observation operator is assumed
unbiased and linear. For simplicity this work will consider only
uncorrelated observation errors, i.e. R is assumed diagonal. This
is unlikely to be true in practice, and future works will be devoted
to investigating the effect of assimilating correlated observations
using this model together with the equivalent weights particle
filter.

Moreover, we assume that the variance in the observations are
spatially uniform so that

R = σ2I (13)

with σ taken to be
√
0.3K. This gives a total of 27, 370

independent observations every day.

5.4. Creating an initial ensemble

The generation of the initial ensemble is ad hoc. However, as the
particle filter is a sequential method, an initial ensemble has to
be generated only once, after which the ensemble will just evolve
over time, updated whenever observations are available, year after
year. Because of the random forcing the memory of the system
is limited and the exact details of the initial ensemble become
irrelevant.

A typical method of creating an initial ensemble for a twin
experiment would be to have the ensemble perturbed around the
truth. Assuming that the initial PDF is Gaussian with covariance
B then given some truth state xt, each of the m ensemble members
xi would be created as follows.

xi = xt +B1/2ξi (14)

for all ensemble members ∀i ∈ 1, . . . ,m, where ξi are realisations
of an uncorrelated random variable. A more statistically consistent
manner of generating the initial ensemble would be to ensure that
the initial distribution is not centred on the truth, but rather the
truth follows the same stochastic distribution as each ensemble
member. This requires some reference state xr then

xt = xr +B1/2ξt (15)
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Figure 3. Standard deviations in Λ
1
2 . In the left column are variables from Q = Q1 showing the seasonal variability and in the right column variables from Q = Q2 with

seasonal variability removed.

and

xi = xr +B1/2ξi (16)

where ξt, ξi ∼ N (0, I) for all i ∈ 1, . . . ,m. In this way the truth
would be statistically indistinguishable from any of the ensemble
members as xt, xi ∼ N (xr, B)

With HadCM3 we do not have B, instead we experimented with
the approximation that B = β2Q, for some scalar β. However this
technique has been unable to produce a realistic amount of spread
in the initial ensemble. If the coefficient β is large enough to create
sufficient spread, the perturbation to the reference state βQ1/2ξi
destroys the delicate balances present in the model (eg hydrostatic
and geostrophic balance) causing the model to crash.

The strategy which we adopt in this paper is to take each

initial ensemble member to be an instantaneous state of a long

control run. In order for each ensemble member to be plausibly

representative of the truth, they are all sampled at the same time of

year. The advantage of this procedure is to eliminate the seasonal

cycle in our initial conditions. Initialising the ensemble in such

a way gives each ensemble member a dynamically consistent

(balanced) state, and the desired spread is achieved by ensuring

the samples are taken enough years apart within the control run.

Note that the initial state for the truth is also taken as one of the

instantaneous states from the control run.

c⃝ 0000 Royal Meteorological Society Prepared using qjrms4.cls
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5.5. Further technical aspects

The linear solve required in the equivalent weights step,

find x such that (HQHT +R)x = b, (17)

is performed with HSL MA87 (Hogg et al. 2009), a direct linear
solver optimized for shared memory systems.

6. Results

In this section we compare the results of assimilation runs with
different parameters chosen in the equivalent weights particle
filter, namely the strength of the nudging p and the proportion
of particles, κ, kept by the equivalent weights step, for the more
physically realistic Q matrix Q2. Corresponding results for Q1,
i.e. the model error covariance matrix dominated by the seasonal
cycle. can be found in the supplementary material online.

We have run the model for 6 months, beginning on 1 Dec
1859, assimilating artificial SST data at the end of each day.
Hence there were 180 assimilation cycles. We have arbitrarily
chosen an ensemble of 32 members as this was as many as could
be practically afforded for the experiments. Ideally, to reduce
statistical noise in the results, we would run all the experiments
multiple times with different random forcing. However due to the
computational complexity of these runs we have been limited to
a single instance. For example, running 32 ensemble members
required the use of 1152 processors for approximately 3 hours on
ARCHER, the UK national supercomputer. For full details on the
timings of the run see Browne and Wilson (2015).

6.1. Root Mean Squared Errors

Throughout this section we shall use root mean squared error
(RMSE) to mean the square root of the spatial mean of the square
of the error between the ensemble mean and the truth.

Figure 4 shows root mean square errors for 3 different variables
with different parameters used in the EWPF. In green is shown
the RMSE for a stochastically forced ensemble, i.e. simply
forecasting from the initial conditions. Figure 4a shows the root
mean squared errors for the observed variables. We can see
that sufficient nudging brings the ensemble closer to the truth
than the stochastic ensemble. The stronger the nudging the more
reduced the RMSE is, until the nudging term becomes too large
and the model breaks. In this case we were unable to increase
the size of the nudging beyond what is shown here without the
model crashing. This shows the sensitive nature of the model to
perturbations.

The long term performance of the assimilation is improved
when κ = 1 when compared to κ < 1. In Figure 4b and 4c only
the assimilation runs with κ = 1 give RMSEs comparable with
the stochastic ensemble.

Figure 4b shows the root mean squared errors of the specific
humidity at the surface. Note that in this variable the assimilated
ensemble behaves in a similar manner to the stochastic ensemble.
This is indicative of the fact that the atmosphere is poorly
constrained by the sea surface temperatures. Subsequent results
will provide more evidence that the atmosphere is not well
constrained and is behaving like the stochastic ensemble.

Figure 4c shows the root mean squared errors of the zonal
sea water flow at the surface. In this case we can see that
only assimilation runs with strong nudging and κ = 1 follow the
stochastic ensemble. In the other case, when κ < 1 the ensembles
lose their spread as the resampling step replaces some particles
with copies of other, better performing particles. This has been
observed for many other cases of κ < 1 which we do not include in
Figure 13b. With the stochastic error term that we have introduced
to HadCM3, this does not provide a sufficient spread in the
remaining ensemble to encompass the truth. In this way, the
RMSE increases markedly as the truth then lies outside of the
ensemble. This is evidenced further by the rank histograms shown
later in Section 6.3.
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Figure 5. RMSE of sea water temperature at various model levels. Note that at 96m,
the RMSE of the assimilation becomes larger than that of the stochastic ensemble
(SE).

To show the effect of using the EWPF for assimilating SSTs
on the other variables in the coupled ocean-atmosphere system,
Figures 5 to 9 are plots of RMSEs for different levels in the
model across different physical variables. For all these plots we
are displaying the results of the experiment with p = 3.5d7 and
κ = 1.

Figure 5 shows the seawater temperatures for levels of
increasing depth. It can be see that the SSTs are significantly
constraining these variables for at least the top 50m of the ocean,
at which point the influence of the observations becomes much
less significant. At the 96m level, the seawater temperatures
appear to behave in a similar manner to the stochastic ensemble.

Figure 6 shows the seawater meridional flow for levels of
increasing depth. The effect of the assimilation on the near surface
fields is clearly stronger than those deeper in the ocean, with
visible reductions in RMSE seen to a depth of 35m. Below this
depth the RMSEs of the EWPF and the stochastic ensemble are
qualitatively similar.

Figure 7 shows the seawater zonal flow for levels of increasing
depth. If we compare this to Figure 6 we can see that the zonal
flow is much less constrained by the SSTS. The reasons for this
are currently not well understood and require further investigation
into the physical reasons for this. The RMSE plots shown in
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(a) Observed SST
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(b) Unobserved surface humidity
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(c) Unobserved sea water northward velocity
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Figure 4. Root mean squared errors through time for different types of variable in the coupled climate model for different parameters, with the model evolution error
covariance matrix Q2 – the model evolution error covariance matrix not containing the seasonal cycle.

Figures 6 and 7 are global averages, and to understand this

behaviour would mean to look into regional differences, which

is beyond the scope of this paper.

Figure 8 shows the atmospheric temperature for levels of

increasing height. Note that the variables are stored in pressure

levels within HadCM3. These RMSE results indicate that only

assimilating SSTS with the EWPF is not constraining the

atmospheric temperatures. However for this specific experiment

(κ = 1) there remains sufficient ensemble spread so as not to make

the errors worse than the stochastic ensemble.

Figure 9 shows the atmospheric humidity for levels of

increasing height. At the surface, there is improvement in the

RMSE over the stochastic ensemble. As we might expect, this

improvement is reduced as we consider levels higher up in the

atmosphere further from the SST observations.

6.2. Trajectories of individual state variables

Figure 10 shows trajectories of two different observed variables
and one unobserved variable for the same parameter configura-
tions as shown in Figure 4. Figures 10a to 10c show a sea surface
temperature variable in the southern hemisphere and Figures 10d
to 10f show a sea surface temperature variable in the northern
hemisphere. Figures 10g to 10i show a surface wind variable that
is not observed. In yellow is the stochastic ensemble, blue the
results of the assimilation with the specified parameters, and red
the truth run.

Considering Figures 10a to 10c we can see that all the
assimilation runs are constraining the ensemble to be a lot closer
the the truth than the stochastic ensemble. However, when κ = 0.8

in Figure 10a we see that the truth is quite often outside of the
ensemble and the spread of the ensemble is poor at times, when
compared with σ, the observation error standard deviation. In
Figure 10c we can see that there is a better spread but the ensemble
does not completely track the truth as it is not nudged as strongly
as the other two assimilation runs shown. Figure 10b is performing
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Figure 6. RMSE of sea water meridional flow at various depths. Note that the
absolute errors reduce at lower depths as there is less variability in the deeper ocean.
Note also that at levels deeper than 67m, the EWPF is performing similarly to the
stochastic ensemble.
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Figure 7. RMSE of sea water zonal flow at various depths.

best in this case as the ensemble is following the truth while
retaining a good degree of spread.

For the other observed sea surface temperature variable shown
in Figures 10d to 10f we can see that the final two ensembles
with κ = 1 are performing in a broadly similar manner. Figure
10d however, with κ = 0.8 again shows too small a spread in the
ensemble and for a disproportionately large number of timesteps
the truth falls outside of the ensemble.

Considering now the trajectories of ensembles with κ = 1, we
can see that the observed variables follow the truth well. However,
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after day 150, when the truth diverges from the stochastic
ensemble in the second observed SST trajectory (Figures 10e and
10f) it can be seen that the spread in the ensemble increases. This
shows an increase in the uncertainty of the assimilation which we
may not see with other assimilation methods that do not use an
ensemble.

In the final row, Figures 10g to 10i show trajectories of an
unobserved zonal wind variable at the surface. Consistent with
the previous trajectories, Figure 10g shows an ensemble with
reduced spread compared to the others. However, none of these
assimilated ensembles appear to accurately track the truth, further
showing that the atmospheric component of the model is not well
constrained by the sea surface temperature observations.
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6.3. Rank histograms

In Figure 11, the columns correspond to the same columns as
in Figure 10, i.e. the different parameter values in the equivalent
weights particle filter. Figures 11a to 11c are rank histograms of
the observed variables, Figures 11d to 11f rank histograms of
eastward sea water flow in the deep ocean and Figures 11g to
11i rank histograms of northward wind in the high atmosphere.
The histograms are formed by summing the rank histograms at a
number of well separated grid points through all the timesteps of
the experiment. In the ocean these are 10 latitude and 19 longitude
grid points apart, getting increasingly sparse towards the poles. In
the atmosphere these are 4 latitude and 16 longitude grid points
apart, again getting increasingly sparse towards the poles.

Figures 11a, 11d and 11g when κ = 0.8 show clearly that the
ensemble is under-dispersive in all the variables. This is vastly
improved as shown in the other plots with κ = 1. Figures 11h and
11i appear to be flat. This shows again that, in the atmosphere,
the truth is indistinguishable from the ensemble members. This
is consistent with the atmosphere being unconstrained by the
observations.

In the experiments with κ = 1, the observed SST variables
(Figures 11b and 11c) the rank histograms appear slightly
underdispersive. The remaining plots (Figures 11e and 11f) show
that the ensembles are underdispersive in other ocean variables.
This is no doubt compounded by the small amount of stochastic
noise we were able to introduce to the system.

6.4. Delta function representation of marginal PDFs

In this section we show the delta function representation of the
(marginal) posterior distribution as defined in (2). The height
of each particle in Figure 12 correspond to the weights of the
particles. These marginal pdfs are shown after resampling, so by
definition these particles have weight 1

m . Had filter degeneracy
occured, no spread would be seen in the ensemble. This is not the
case as, by construction, the equivalent weights step (8) avoids
this and hence keeps the ensemble well spread.

Figure 12 shows the delta function representation of marginal
PDFs arising from the assimilation run with p = 3.5d7 and κ = 1

in the experiment with Q = Q2. Figures 12a, 12b and 12c show
the representations of specific humidity at the surface, sea water
temperature at 47m depth and 3347m depth respectively. Figures
12d to 12f show the same ocean eastward velocity variable at 3
different points in time.

These marginal PDFs are the main motivation for using the
nonlinear particle filter to initialise the climate model. From these
PDFs we can get an estimate of the uncertainty in the posterior
PDF at and given point, not just a maximum a posteriori estimate
that we would get from using a variational method. With only 32
particles it is unclear if any of these PDFs are truly multimodal,
however Figures 12d to 12f suggest they may be bimodal.

7. Conclusions

In this paper we have applied a fully nonlinear data assimilation
method to a coupled climate model. The equivalent weights
particle filter was applied to a system with 2,314,430 variables and
27,370 independent observations per timestep. The particle filter
did not degenerate at any stage thanks to the equivalent weights

step. This model is over 35 times larger than any other model that
the method has been applied to before (Ades and van Leeuwen
2015).

We have been able to constrain the model well in the observed
variables. This constraining of model variables extended into
the ocean temperatures a number of model levels below the
observed SST fields, but had little effect in the atmosphere and the
non-temperature prognostic variables in the ocean. This suggests
that, to further constrain the other variables, we require different
observations to be used. For instance, observations from ARGO
profiles to have observations in the deep ocean may be of great
benefit for stronger uncertainty quantification of a subsequent
prediction.

The best results we have obtained have come in the cases in
which we applied the strongest nudging. However, the amount of
nudging we could use was restricted by the numerical sensitivity
of the model. Too much nudging would lead to catastrophic
failure of the model and hence the assimilation process could not
continue. Applying the EWPF to a model with less numerical
sensitivity may allow for stronger nudging to be employed,
although this should still be smaller than the increment from the
dynamical model.

We found it hard to attain an appropriate spread in the
ensemble. Indeed, simply to achieve a reasonable spread in a
stochastically forced ensemble required a non-standard method
of initialising it. Because of this lack of spread available from
the stochastic forcing, we achieved the best results when we kept
all of the ensemble members in the equivalent weights step. This
is different behaviour than has been observed in the equivalent
weights filter when compared to its application in previous models
(Ades and van Leeuwen 2013, 2015). We conjecture that this is
due to an increase in degrees of freedom in this larger model,
allowing equivalent weights to be achieved with a relatively
smaller change to the model state, however this requires much
more thorough investigation.

Using the equivalent weights particle filter, being a sequential
data assimilation scheme, avoided any potential difficulties
associated with the different timescales in the various components
of the coupled climate system. For instance, in a 4DVar data
assimilation method, the time period over which observations
of the ocean and atmosphere are assimilated would typically
be different. Naively one would think that the window of
observations in the relatively fast moving atmosphere should be
shorter than that of the relatively slow moving ocean. This can
bring challenges to solving the fully coupled variational data
assimilation problem, leading to “weakly-coupled” variational
solution methods (Smith et al. 2015). Other sequential methods
such as the EnKF would similarly avoid the issues of multiple
timescales that variational methods face.

The performance of the whole assimilation system is dependent
on the specification of the model evolution error covariance
matrix. In this paper, doing twin experiments, we have been able
to prescribe this. However in reality a great deal of work would
be required to approximate this matrix. This is an area which is in
need of much research, which has largely been neglected by the
wider community up to now.

The EWPF has been applied to a high dimensional system and
as a result the posterior PDF has been approximated, which is not
possible with single-run data assimilation methods like a simple
nudging, or variational methods like 4DVar. The computational
cost of this method is similar to using an EnKF with a stochastic
model. This cost would be comparable to the computational cost
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of 4DVAR, where the repeated iterations and running of the slower
tangent linear and adjoint models would offset the cost of the
ensemble of model runs. An additional issue with 4DVar is that
if the ocean and atmosphere are treated as one in the adjoint
calculations their different time scales lead to difficulties when
specifying the optimal optimization window length. To avoid this
problem and to avoid having to generate an adjoint of the full
ocean-atmosphere system two separate adjoint are often used.
Treating the coupled system together minimizes the effects of
initialisation shock that is known to affect methods that treat the
ocean and atmosphere separately.

The use of the EWPF, a fully nonlinear data assimilation
method, has shown that some marginal PDFs could be
multimodal. This is a result of both the dynamics of the model,
and the observations which we have used. In other circumstances,
the posterior PDF may be Gaussian, in which case using a
method such as the EnKF would be advantageous as it is
designed specifically for these cases. However if the variables of
interest clearly do not follow a Gaussian distribution (for example
bounded humidity variables) then the EWPF should be seriously
considered as a data assimilation method to be used.

Incorporating a new data assimilation scheme into a GCM
could be a daunting task. However the use of the EMPIRE
(Browne and Wilson 2015) coupling system allowed us to do so
extremely quickly within a particularly small team. This system,
along with the open source codes implementing the equivalent
weights particle filter, should encourage the community that it is
possible to quickly and easily use fully nonlinear data assimilation
methods with new models of ever increasing size and complexity.
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Figure 10. Trajectories of 3 separate state variables when using different parameters in the equivalent weights particle filter. In the background in yellow are the trajectories
of the stochastic ensemble. In blue are the assimilated trajectories and in red is the truth
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Figure 11. Rank histograms of different model variables at a given model level when using different parameters in the equivalent weights particle filter for the case that
Q = Q2.
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3347m depth on day 161

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

(f) Meridional seawater flow at (15S,100.625E) at
3347m depth on day 177

Figure 12. Delta function representations of the marginal PDFs for different variables at a given instance in time for the experiment Q = Q2, p = 3.5d7 and κ = 1. In
red are shown the particles and in cyan we show the truth (raised for clarity). To guide the eye, we have overlaid in blue the results of fitting a Gaussian kernel, where the
standard deviation of each Gaussian function is given by the quotient of the range in the marginal PDF and half the number of ensemble members.
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A. Results with Q = Q1

In this supplementary section we show the results from using the
model error covariance matrix that retains the seasonal cycle.

A.1. Root Mean Squared Errors

Figure 13 shows the root mean square errors for a different
variables in the case Q = Q1. In green is shown the RMSE for
a stochastically forced ensemble, i.e. simply forecasting from the
initial conditions.

Figure 13a shows the root mean squared errors for the
observed variables. We can see that sufficient nudging brings the
ensemble closer to the truth than the stochastic ensemble. The best
performing assimilations are those that have a strong nudging and
set the proportion of particles kept in the equivalent weights step,
κ to 1.0. In this case we were unable to increase the size of the
nudging beyond what is shown here without the model crashing.
This shows the sensitive nature of the model to perturbations.

Figure 13c shows the root mean squared errors of the northward
sea water velocities at the surface. In this case we can see that
only assimilation runs with strong nudging and κ = 1 follow the
stochastic ensemble. In the other case, when κ < 1 the ensembles
lose their spread as the resampling step replaces some particles
with copies of other, better performing particles. This has been
observed for many other cases of κ < 1 which we do not include in
Figure 13b. With the stochastic error term that we have introduced
to HadCM3, this does not provide a sufficient spread in the
remaining ensemble to encompass the truth. In this way, the
RMSE increases markedly as the truth then lies outside of the
ensemble. This is evidenced further by the rank histograms shown
later in Section 6.3.
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Figure 14. RMSE of sea water temperature at various model levels. Note that
at 96m, the RMSE of the assimilation becomes larger than that of the stochastic
ensemble (SE).
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Figure 15. RMSE of sea water meridional flow at various depths. Note that the
absolute errors reduce at lower depths as there is less variability in the deeper ocean.
Note also that at levels deeper than 67m, the EWPF is performing similarly to the
stochastic ensemble.
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Figure 16. RMSE of sea water zonal flow at various depths.

A.2. Trajectories of individual state variables

Figure 19 shows the trajectories of the same points as shown in
Figure 10 but for Q = Q1. Figure 19a shows that with κ < 1 we
have lost the appropriate spread in the ensemble. After around 130
days, the truth diverges from the ensemble and the nudging is not
strong enough to bring the ensemble back to the truth. Figure 19d
shows similar behaviour, but note that in this variable, in the
final 30 days, the truth is far away from the stochastic ensemble.
In this case, although the spread is still poor, the ensemble is
significantly closer to the truth than the stochastically forced
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(c) Unobserved sea water northward velocity
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Figure 13. Root mean squared errors through time for different types of variable in the coupled climate model for different parameters, with the model evolution error
covariance matrix Q1 – the model evolution error covariance matrix containing the seasonal cycle.

ensemble. Figure 19g is behaving broadly similarly to Figure 10g,
in that the truth is not well constrained and the spread in the
ensemble has been reduced.

As in Figure 10, Figures 19h and 19i show how the unobserved
wind variables are poorly constrained by the SST observations

In Figure 19c a single particle in the ensemble can be seen
to drop substantially below the rest of the ensemble. Even with
κ = 1 we still perform Universal Importance Resampling after
each equivalent weights step. This provides a small chance that the
particle will be replaced by a copy of another from the ensemble.
This can be seen happening at around the 112 day mark where
the trajectory of the low particle is brought up back into the main
body of the ensemble. This resampling was found to happen less
than 0.1% of the possible times it could occur.

A.3. Rank histograms

In Figure 20, the columns correspond to the same columns as in
Figure 19, i.e. the different parameter values in the equivalent

weights particle filter but with the different model evolution
error covariance matrix Q = Q1. Figures 20a to 20c are rank
histograms of the observed variables, Figures 20d to 20f rank
histograms of eastward sea water flow in the deep ocean and
Figures 20g to 20i rank histograms of northward wind in the high
atmosphere.

Considering Figures 20a 20d and 20g, where κ = 0.8 we
can see that these are marginally more underdispersive than the
corresponding plots in Figure 11.

Figures 20b and 20c, rank histograms of the observed variables,
show signs of being underdispersive, unlike the corresponding
plots 11b and 11c. The remaining Figures 20e, 20f, 20h and 20f
appear to be qualitatively similar to their counterparts in Figure
20.

A.4. Delta function representation of marginal PDFs

Figure 21 shows the delta function representation of marginal
PDFs arising from the assimilation run with p = 4d7 and κ = 1
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Figure 17. RMSE of atmosphere temperature at various heights.
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Figure 18. RMSE of atmosphere humidity at various heights.

for the experiment with Q = Q1. The variables are the same as
shown in Figure 12. If we compare these figures to Figure 12,
we can see that the spread of the sea water temperature variables
close to the surface (Figure 21b) is increased. As in the case that
Q = Q2, the variables shown in Figures 21e and 21f appear to
be bimodal, however in this case with Q = Q1, this bimodality
occurs later as it is not seen in Figure 21d.
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Figure 19. Q = Q1: Trajectories of 3 separate state variables when using different parameters in the equivalent weights particle filter. In the background in yellow are the
trajectories of the stochastic ensemble. In blue are the assimilated trajectories and in red is the truth
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(i) Air meridional flow at 0.2p∗

Figure 20. Rank histograms of different model variables at a given model level when using different parameters in the equivalent weights particle filter for the case that
Q = Q1.
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(e) Meridional seawater flow at (15S,100.625E) at
3347m depth on day 161
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(f) Meridional seawater flow at (15S,100.625E) at
3347m depth on day 177

Figure 21. Delta function representations of the marginal PDFs for different variables at a given instance in time for the experiment Q = Q1, p = 4d7 and κ = 1. In
red are shown the particles and in cyan we show the truth (raised for clarity). To guide the eye, we have overlaid in blue the results of fitting a Gaussian kernel, where the
standard deviation of each Gaussian function is given by the quotient of the range in the marginal PDF and half the number of ensemble members.

c⃝ 0000 Royal Meteorological Society Prepared using qjrms4.cls


	Introduction
	The forecasting problem
	Particle filters and the posterior PDF
	Current climate model initialisation strategies
	Paper structure

	HadCM3
	The equivalent weights particle filter
	Specification of model evolution error covariance matrices
	Experimental setup
	EMPIRE coupling
	Twin experiment truth run
	Observing network
	Creating an initial ensemble
	Further technical aspects

	Results
	Root Mean Squared Errors
	Trajectories of individual state variables
	Rank histograms
	Delta function representation of marginal PDFs

	Conclusions
	Results with Q=Q1
	Root Mean Squared Errors
	Trajectories of individual state variables
	Rank histograms
	Delta function representation of marginal PDFs


