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Distinct clinical and neuropathological
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Abstract

Background: We and others have described the neurodegenerative disorder caused by G51D SNCA mutation
which shares characteristics of Parkinson’s disease (PD) and multiple system atrophy (MSA). The objective of this
investigation was to extend the description of the clinical and neuropathological hallmarks of G51D mutant
SNCA-associated disease by the study of two additional cases from a further G51D SNCA kindred and to compare
the features of this group with a SNCA duplication case and a H50Q SNCA mutation case.

Results: All three G51D patients were clinically characterised by parkinsonism, dementia, visual hallucinations,
autonomic dysfunction and pyramidal signs with variable age at disease onset and levodopa response. The H50Q
SNCA mutation case had a clinical picture that mimicked late-onset idiopathic PD with a good and sustained
levodopa response. The SNCA duplication case presented with a clinical phenotype of frontotemporal dementia
with marked behavioural changes, pyramidal signs, postural hypotension and transiently levodopa responsive
parkinsonism. Detailed post-mortem neuropathological analysis was performed in all cases. All three G51D cases
had abundant α-synuclein pathology with characteristics of both PD and MSA. These included widespread cortical
and subcortical neuronal α-synuclein inclusions together with small numbers of inclusions resembling glial
cytoplasmic inclusions (GCIs) in oligodendrocytes. In contrast the H50Q and SNCA duplication cases, had
α-synuclein pathology resembling idiopathic PD without GCIs. Phosphorylated α-synuclein was present in all
inclusions types in G51D cases but was more restricted in SNCA duplication and H50Q mutation. Inclusions were
also immunoreactive for the 5G4 antibody indicating their highly aggregated and likely fibrillar state.

Conclusions: Our characterisation of the clinical and neuropathological features of the present small series of G51D
SNCA mutation cases should aid the recognition of this clinico-pathological entity. The neuropathological features
of these cases consistently share characteristics of PD and MSA and are distinct from PD patients carrying the H50Q
or SNCA duplication.
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Background
The SNCA gene encodes the α-synuclein protein, which
has a predicted molecular weight of 17 kDa, is expressed
abundantly in human brain and is believed to function
in vesicle recycling [1]. α-Synucleinopathies, such as
Parkinson’s disease (PD), multiple system atrophy (MSA)
and dementia with Lewy bodies (DLB), share the patho-
logical hallmark of intracellular inclusions in which α-
synuclein is a major constituent. In PD and DLB the
pathological α-synuclein inclusions are largely neuronal
in the form of Lewy bodies (LB) and Lewy neurites (LN)
while in MSA the most frequent site of aggregated
α-synuclein is the oligodendrocyte forming glial cyto-
plasmic inclusions (GCIs). Previously, multiplications
(duplications and triplications) as well as several mis-
sense point mutations of the SNCA gene: A53T [2],
E46K [3], A30P [4] and H50Q [5], were found to cause
autosomal dominant PD. We recently reported a novel
G51D SNCA mutation [6], which resulted in clinical
and neuropathological features with some similarities to
both PD and MSA. Affected family members developed
early-onset Parkinson’s disease with dementia. Neuro-
pathological features included CA2-CA3 hippocampal
and cortical neuronal loss with widespread, numerous
neuronal α-synuclein positive cytoplasmic inclusions
together with smaller numbers of oligodendroglial in-
clusions that resembled the GCIs of MSA and so were
referred to as GCI-like inclusions. A similar combined
PD and MSA profile was also recently reported in a
Finnish family carrying a novel A53E mutation [7].
Known SNCA mutations cluster in a putative protein
loop, disruption of which may significantly alter the
behaviour of the α-synuclein protein by affecting lipid
binding and fibril formation [8]. The neuropathological
appearances associated with different mutations have
varied considerably, but it is still unclear how alteration
in α-synuclein structure determines the neuropathology.
A genetic cause has not been demonstrated in MSA, al-
though recessive COQ2 mutations have been suggested
to underlie a subset of familial MSA cases in the Japanese
population [9].
Following our initial G51D mutation study, additional

cases were reported in France [10] and Japan [11].
Affected family members in both reports had a similar
clinical progression to that in our reported family, with
early-onset levodopa-responsive parkinsonism accom-
panied by dementia. The clinical symptoms of the G51D
mutation case described by Tokutake and colleagues
closely resembled those in the proband of the family
which we have reported [11]. Their case presented
with levodopa-responsive parkinsonism at a young age
(28 years), dementia, hallucinations and autonomic dys-
function. Lesage et al. noted widespread neuronal α-
synuclein pathology, which was similar in distribution
and morphology to that which we observed: however,
they did not report GCI-like inclusions [10].
We have recently identified a second British family

with the G51D α-synuclein mutation and have investi-
gated post-mortem brain tissue from two affected family
members. In the current study we sought to assess the
spectrum and variability of clinical and neuropatho-
logical features in the three G51D cases (these two and
our original case), and to determine whether there are
particular phenotypic features that may suggest a G51D
mutation and indicate that analysis of SNCA is required.
For comparison, we analysed the clinical and neuro-

pathological features in a H50Q mutation case and in a
SNCA duplication case: some details of each of these
cases have been published previously [5, 12].
We consider both the H50Q mutation case and the

SNCA duplication case to be pertinent comparisons with
the G51D cases. The H50Q mutation site is immediately
adjacent to the G51D site within the region of α-
synuclein which is important for fibril formation and
lipid binding [8]. It might therefore be expected that
there would be strong similarities between the pheno-
typical profiles of this case and the G51D mutation
cases. We previously reported extensive α-synuclein
pathology on post-mortem examination of a case with a
large 6.4 Mb duplication of the SNCA locus [12]. This
case was used as a further comparator as this previous
report suggested that the duplication of SNCA can result
in severe α-synuclein pathology resembling that of
G51D mutation [6, 12].
We have demonstrated in this detailed clinical and

neuropathological study that G51D mutation cases
share a constellation of features of parkinsonism with
dementia, visual hallucination and autonomic dysfunc-
tion, with abundant α-synuclein pathology with charac-
teristics of both PD and MSA. The G51D mutation
cases differ from the late-onset, relatively benign, PD-
like presentation in the case with a H50Q mutation but
share similarities with the SNCA duplication case. How-
ever, the neuropathological features of the G51D cases
were distinct from those of H50Q mutation and SNCA
duplication, although there were some common find-
ings when the post-translational modifications of α-
synuclein were explored.

Results
The clinical features of all cases are summarised in
Table 1.

G51D case one: family one, patient II: 1 Fig. 1a
We have previously described the clinical history of case
one [6]. The index case was a British Caucasian male
who presented at age 19 with left hand tremor and
slowly progressive, asymmetrical, levodopa-responsive



Table 1 Summary of clinical findings

Case Case one (G51D) Case two (G51D) Case three (G51D) H50Q Duplication

Age of onset (years) 19 69 46 71 38

Disease duration (years) 29 6 6 12 12

Presenting symptoms Resting hand
tremor, anxiety

Resting hand tremor, anxiety
and depression

Resting hand tremor, depression Resting hand tremor Resting hand tremor and tongue tremor

Final clinical diagnosis Familial pallidopyramidal
syndrome

Parkinson’s disease
with dementia

Parkinson’s disease with dementia Parkinson’s disease FTDP-17

Levodopa responsive Good and sustained Transient Transient Good and sustained Transient

Motor fluctuation Yes No No No No

Dystonia Wearing-off foot
dystonia

Blepharospasm (unrelated to
dopamine replacement therapy)

No Blepharospasm
(unrelated to dopamine
replacement therapy)

Blepharospasm and cervical dystonia
(unrelated to dopamine replacement
therapy)

Latency from first symptom of
onset of cognitive impairment
(years)

8 2 2 Not applicable 9

Prominent cognitive impairment Yes Yes Yes No Yes

Predominant frontal cognitive
impairment

No Yes (emotional lability, apathy,
disinhibition)

Yes (perseveration, frontal executive
impairment, grasp reflex)

No Yes (obsessive behaviour, self-neglect,
markedly increased appetite, grasp reflex,
perseveration, motor recklessness)

Visual hallucinations
(unrelated to drug effect)

Yes Yes Yes No Yes

Autonomic dysfunction Yes Yes Yes No Yes

Pyramidal signs (pathological
reflexes and extensor plantar
response)

Yes Yes Yes No Yes

Additional features Myoclonus seizures Vertical supranuclear gaze palsy,
apraxia of eyelid opening

Not applicable No Not applicable

Family history of parkinsonism Father, sister Mother, Aunt, brother, Son Mother, uncle, grandmother,
great aunt

No Father, male cousin, grandmother, two
great aunts
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Fig. 1 Genetic Pedigrees. Simplified pedigree structures in which arrows are used to indicate the proband, circles indicate females, squares
indicate males and diamonds indicate individuals of indeterminate or undisclosed gender, a G51D case one (patient II,1). The father of case one
was diagnosed with PD (grey), his mother was unaffected (white). His sister carries the G51D mutation and developed PD symptoms at 40 years
of age. b G51D cases two (patient III, 2) and three (patient IV, 2), Case two is the parent of case three. A sibling and two members of the previous
generation of case two were diagnosed with PD without dementia (grey). c SNCA duplication case (patient III, 3), The father of the duplication
case, paternal grandmother and two paternal great-aunts suffered from PD without documented dementia. Her paternal cousin was diagnosed
with possible FTDP-17. The H50Q case did not have a family history of Parkinsonism
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parkinsonism with marked motor fluctuation. Cognitive
decline and visual hallucination started 9 years after
disease onset. Autonomic dysfunction, pyramidal signs,
myoclonus and seizures were also noted. The disease
duration was 29 years. His father who had a background
of depression and obsessional personality, also developed
parkinsonism at age 39 followed by dementia, and died
of sepsis at age 47.
The index case’s sister (patient II:2), who is alive and is

now 49 years old, presented with resting tremor of the
left hand at age 40. In the first 5 years, her parkinsonism
was slowly progressive but was well controlled by levo-
dopa therapy, with occasional reports of end-of-dose
wearing-off and dyskinesia. At age 47, she developed
urinary urgency, incontinence and postural hypotension.
She also started to fall and became confused with cogni-
tive decline and visual hallucinations. She is now se-
verely debilitated by memory impairment, disorientation,
marked akinetic rigidity and urinary incontinence.

G51D case two: family two, patient III: 2 Fig. 1b
At age 69, this British Caucasian presented with resting
tremor of the right hand, anxiety and depression. Exam-
ination revealed hypomimia, micrographia, bilateral rest-
ing hand tremor, asymmetrical bradykinesia and rigidity
with parkinsonian gait and reduced arm swing. Hyperre-
flexia and mute plantar responses were noted. Initial
examination confirmed a normal range of eye move-
ments and normal saccades. Postural hypotension with
orthostatic dizziness was documented and urinary
urgency developed two years later. There was a good ini-
tial levodopa response, which waned after 3 years. At age
71 vivid dreams followed by bizarre behaviour, were re-
ported by the spouse. Confusion and disorientation were
frequent and disturbing, persistent visual hallucinations
and paranoid delusions were problematic despite reducing
the dosage of Ropinirole. A vertical supranuclear gaze
palsy with very restricted upgaze and blepharospasm was
noted. Rivastigmine was started which led to some
improvements in clarity of thought, and fewer visual hal-
lucinations. At age 73, the patient was withdrawn, emo-
tionally labile and had minimal speech output. Episodes of
confusion and wandering at night continued, the patient
was dependent for all care and was incontinent of urine.
In the last 2 years of life, severe dysphagia developed,
there was no speech output, spasticity was marked, recur-
rent chest infections occurred, the patient was confined to
bed and died at age 75 after a disease duration of 6 years.
A sibling (patient III: 4) also developed parkinsonism

followed by dementia in the fourth decade of life. Clin-
ical deterioration was rapid and death was reported
within several years. Medical records and brain tissue
were not available for examination.

G51D case three: family two, patient IV: 2 Fig. 1b
At age 46, this British Caucasian, who was the child of
case two, presented with several months history of rest-
ing tremor of the right hand and depressed mood. A
diagnosis of Parkinson’s disease was made and response
to levodopa was good. At age 48, visual hallucinations
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developed, which did not improve despite withdrawal of
dopamine agonist and monoamine oxidase B inhibitor.
In the following year, word-finding difficulties were ex-
perienced with evidence of perseveration and frontal ex-
ecutive impairment. Motor symptoms and mobility
began to deteriorate significantly and falls became a fea-
ture. By the age of 50 cognition was profoundly affected
with markedly reduced speech production. Examination
revealed hypomimia, normal saccadic and pursuit eye
movements, bilateral resting hand tremor, bradykinesia,
cogwheel rigidity and difficulty copying interlocking pen-
tagons. There were frontal release signs including
marked bilateral grasp reflex. Neuropsychometric assess-
ment confirmed frontal and subcortical cognitive impair-
ment. Single-photon emission computerised tomography
(SPECT) scan was abnormal with signal reduction in the
posterior cortical regions which was compatible with the
clinical manifestation of cognitive impairment. At age
51, there was prominent behavioural disturbance, anx-
iety, irritability and persistent visual hallucinations. The
patient become non-communicative, severely dysphagic
and was incontinent of urine. Nursing home care was
required and death occurred the following year aged 52
after a disease duration of 6 years.

H50Q mutation case
As previously reported [5], this British Caucasian female
developed right hand tremor at age 71 with sustained
benefit from levodopa therapy. By age 80 she had
marked parkinsonism. She complained of mild memory
impairment. Examination revealed tongue tremor, mod-
erate bilateral resting hand tremor, bradykinesia, cog-
wheel rigidity, hyperreflexia and postural instability. At
age 82, there was one report of confusion and hallucin-
ation which resolved after withdrawal of bromocriptine.
There was no prominent motor fluctuation, cognitive
impairment, behavioural change or autonomic dysfunc-
tion. She died at age 83 after a disease duration of
12 years. There was no family history of any neurological
disorder.

SNCA duplication case: patient III: 3 Fig. 1c
The details of this case were previously published [12].
This British Caucasian female had longstanding extreme
anxiety, panic disorders, hallucinations and a history of
seizures. At age 38, she developed tremor of the right
hand and the tongue, cervical dystonia, blepharospasm
and falls. There was good initial levodopa response, last-
ing 8 years. At age 47, the most prominent features were
obsessional behaviour, poor self-care and a profound in-
crease in appetite, particularly for sweet food. She was
diagnosed clinically as having possible frontotemporal
dementia with parkinsonism-17 (FTDP-17) but subse-
quent genetic analysis did not reveal any MAPT
mutation. Mini mental state examination (MMSE) score
was 24/28 excluding a writing task, with most points being
lost on attention. Examination showed normal eye move-
ments, hypomimia, jaw tremor, asymmetrical resting
tremor, bradykinesia, rigidity, parkinsonian gait with re-
duced arm swing, hyperreflexia and extensor plantar re-
sponses. Prominent frontal impairment was evident with
bilateral grasp reflex, magnetic behaviour, perseveration on
clapping task and motor recklessness. She also developed
postural hypotension and autonomic function testing con-
firmed cardiovascular dysautonomia. Neuropsychometric
findings were compatible with frontal and temporal impair-
ments. She became bedbound and died at age 49 after a
disease duration of 12 years. Her father, paternal cousin, pa-
ternal grandmother and two paternal great aunts all had a
clinical diagnosis of PD, dementia or FTDP-17.

Neuropathological data
The neuropathological features of all cases are sum-
marised in Table 3.
In our previous paper we analysed the neuropathology

of G51D case one. Here we have compared case one
with two further G51D cases from an independent kin-
dred to assess the consistency of the neuropathological
features associated with this mutation. The semi-
quantitative assessment of regional neuronal loss and
both neuronal and glial α-synuclein pathology is pre-
sented in Table 2, providing the range of pathological
change seen in the three cases. All three G51D mutation
cases shared the neuropathological hallmarks which de-
fined case one. There was widespread neuronal and
neuritic α-synuclein pathology in all three cases: this in-
cluded involvement of the neocortex, in addition to the
striatum, limbic and brainstem regions. Representative
images of these findings are shown in the CA3, caudate
(Cd), substantia nigra (SN), putamen (Pt) and dentate
fascia (DF) in Fig. 2a. We previously described the vary-
ing morphology of the neuronal α-synuclein cytoplasmic
inclusions (annular, crescentic, globular, diffuse and
neurofibrillary tangle-like). All three cases displayed the
same spectrum of inclusion types and in similar distribu-
tion, although with some variation in severity. In all
cases sparse GCI-like oligodendroglial inclusions were
present in the white matter. These were most readily
identified in the subcortical white matter, pontine base
and cerebellar hemispheric white matter in all cases
(Fig. 5a). In addition there were very occasional α-
synuclein positive coiled body-like glial inclusions as
seen in cases of PD [13]. Some case-to-case variation
was observed. In all three cases, the hippocampus
showed marked α-synuclein pathology, although the de-
gree of neuronal loss in the CA2-CA3 region was vari-
able between the cases, being most severe in cases one
and two. The neocortex showed a similar degree of



Table 2 Summary of neuropathological findings in three cases of G51D mutation

Neuronal loss Neuronal α-synuclein
pathology

Oligodendroglial
α-synuclein inclusions

Annular or crescent Globular Diffuse NFT-like Threads

Cortex

Frontal + ++ +/++ + - /+ ++ −/+

Motor - /+ ++ +/++ + - /+ ++/+++ - /+

Temporal +/+++ +++ +/++ +/++ - /+ +++ - /+

Parietal + +/+++ ++ + - /+ ++/+++ -

Occipital - + - /++ - /+ - /+ - /+ - /+

Cingulate +/+++ +++ ++ +/++ - /+ +++ -

Insular +/+++ +++ +/+++ +/++ - /+ +++ -

Sub-cortical white matter

Frontal N/A N/A N/A N/A N/A + +

Motor N/A N/A N/A N/A N/A + +/++

Temporal N/A N/A N/A N/A N/A + +

Parietal N/A N/A N/A N/A N/A + +

Occipital N/A N/A N/A N/A N/A + - /+

Cingulate N/A N/A N/A N/A N/A + +

Internal capsule N/A N/A N/A N/A N/A +/++ +

External capsule N/A N/A N/A N/A N/A ++ +

Amygdala −/+++ +/++ ++/+++ +/++ - +++ - /+

Hippocampus

Dentate fascia - ++/+++ + + - +/++ -

CA4 −/++ +/++ +/++ + - /+ ++/+++ - /+

CA3 −/+++ - /+ +/++ −/+++ - ++/+++ -

CA2 +/+++ - −/++ −/+++ - ++/+++ -

CA1 −/++ +/+++ +/++ +/++ + ++/+++ -

Subiculum - /+ +/++ +/++ +/++ - /+ ++/+++ -

Entorhinal cortex −/++ +++ +/++ +/++ - /+ ++/+++ -

Transentorhinal cortex +/++ ++/+++ +/+++ +/++ - /+ ++/+++ -

Caudate + - /+ +/+++ ++ - /+ ++/+++ -

Putamen - /+ −/++ +/+++ ++/+++ - /+ ++/+++ -

Globus pallidus - /+ −/++ - /+ - - + - /+

Thalamus - - −/+ −/++ - −/++ - /+

Subthalamic nucleus - - - - /+ - −/++ - /+

Red nucleus - - - - - + +

IIIrd nerve nucleus - - /+ +/++ +/+++ - +/+++ -

Substantia nigra +++ - −/++ −/+++ - /+ ++/+++ - /+

Locus coeruleus ++/+++ - −/++ −/+++ - ++/+++ -

Pontine nuclei - - - + - /+ + - /+

Pontine base white matter N/A N/A N/A N/A N/A +/++ +/++

Dorsal motor nucleus of vagus +/+++ - −/+ −/+++ −/+ ++/+++ -

Twelfth nerve nucleus - - - - - + -

Inferior olive −/+ - - −/++ - + -

Cerebellar hemisphere Purkinje cells +/++ - - - - - N/A
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Table 2 Summary of neuropathological findings in three cases of G51D mutation (Continued)

Cerebellar hemisphere white matter N/A N/A N/A N/A N/A +/++ +/++

Dentate nucleus - - - - - - -

The range of scores is provided
Oligodendroglial α-synuclein: cytoplasmic inclusions usually with similar morphology to glial cytoplasmic inclusions of MSA, less frequently resembling coiled bodies
N/A not applicable, NFT Neurofibrillary tangle
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nerve cell loss in cases one and two where the temporal,
cingulate and insular cortices were most severely af-
fected while cortical neuronal loss in case three was no
more than mild in any region. In all cases the α-
synuclein pathology was most severe in the superficial
and deep cortical laminae (Fig. 2b). Balloon neurons,
identified by αB-crystallin immunohistochemistry, were
quite numerous predominantly in the deep layers of the
neocortex, particularly in the frontal, temporal, cingulate
and insular cortex (data not shown). Balloon neurons
were immunoreactive for α-synuclein and showed weak
immunopositivity for p62 and ubiquitin, staining for tau
Fig. 2 α-Synuclein pathology. a Representative microscopy images of para
neuritic α-synuclein pathology in three G51D cases compared to the H50Q
High magnification images from CA3, caudate (Cd), substantia nigra (SN), p
deposition of α-synuclein is only detected in G51D cases (i, ii), shown in re
cortex, while in H50Q (iii, iv) and SNCA duplication (v, vi) α-synuclein depos
represent 50 μm
was negative. No argyrophilic grains were identified in
the hippocampus using immunohistochemical staining
for p62 and tau. There was no Aβ deposition in any of
the cases. TDP-43 and tau pathology are described in
detail below.
In comparison, the H50Q and the SNCA duplication

cases had less severe α-synuclein pathology, with LB or
LN morphology and a distribution typical of PD (Table 3,
Fig. 2a). Furthermore, neither case was observed to have
α-synuclein inclusions resembling the annular, crescent,
or NFT-like pathology of the G51D cases. Neuronal loss
was severe in the SN and moderate in the locus
ffin-embedded human brain tissue show abundant neuronal and
mutation and SNCA duplication cases stained for α-synuclein protein.
utamen (Pt) and dentate fascia (DF). b Distinctive neocortical ‘tramline’
presentative low (i) and high (ii) magnification images of the entorhinal
ition was detected only in the deep cortical layers (iv, vi). Scale bars



Table 3 Summary of neuropathological findings

Pathology Case 1 (G51D) Case 2 (G51D) Case 3 (G51D) H50Q SNCA duplication

Cortical neuronal loss Widespread. Severe in temporal
and insular, moderate in cingulate.

Widespread. Severe in cingulate,
moderate in temporal and insular.

Widespread mild None identified None identified

Hippocampal neuronal loss CA2/3 predominant CA2/3 predominant CA2 mild None identified None identified

Caudate neuronal loss Mild Mild Mild None identified None Identified

Brain stem neuronal loss Substantia nigra, locus coeruleus
and dorsal motor nucleus of vagus

Substantia nigra, locus coeruleus
and dorsal motor nucleus of vagus

Substantia nigra, locus
coeruleus and dorsal
motor nucleus of vagus

Substantia nigrab Substantia nigra, locus
coeruleus and dorsal motor
nucleus of vagus

Neuronal α-synuclein pathology Annular, crescentic, globular, diffuse,
NFT-like. Widespread with severe
cortical involvement

Annular, crescentic, globular,
diffuse, NFT-like. Widespread
with severe cortical involvement

Annular, crescentic, globular,
diffuse, NFT-like. Widespread
with severe cortical involvement

PD type, Braak stage 6 PD type, Braak stage 6

Glial α-synuclein pathology GCI-like, rarely coiled body type GCI-like, rarely coiled body type GCI-like, rarely coiled body type Absent Sparse coiled-body type

Phosphorylated tau Braak and
Braak stage

IIa IIa IIa IIIa I

Aβ deposition Absent Absent Absent Frequent diffuse
and sparse mature
cortical deposits

Sparse diffuse neocortical
deposits

TDP-43 pathology Hippocampus, amygdala, striatum Hippocampus, amygdala, rare
in striatum

Absent Absent Absent

PD Parkinson’s disease, NFT neurofibrillary tangle
a = dentate fascia also affected
b = locus coeruleus and dorsal motor nucleus of vagus not represented in available sections
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Fig. 3 5G4 α-synuclein. The 5G4 α-synuclein antibody has high affinity
for high molecular weight α-synuclein oligomers with lesser affinity for
fibrils and low affinity for monomeric α-synuclein. Representative
images show 5G4 positive α-synuclein accumulation in areas of
severe inclusion burden in G51D (HC, hippocampus, CA1, cornu
ammonis 1, DF, dentate fascia) SNCA duplication and H50Q (SN,
substantia nigra). Scale bars represent 50 μm
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coeruleus and in both sites LBs and LNs were present.
No neocortical neuronal loss was identified. Neocortical
inclusions with features of cortical LBs were present in
only moderate numbers and were most prominent in
the deep cortical laminae in contrast to the pattern
observed in the G51D cases (Fig. 2b). Lewy pathology
corresponded to Braak stage 6 in both the SNCA dupli-
cation and the H50Q cases. GCI-like inclusions were
not present in either case although the duplication case
did have rare coiled body-like inclusions in the cerebel-
lar and cerebral hemispheric subcortical white matter
(Fig. 5b). There was no TDP-43 pathology in the hippo-
campus, amygdala or striatum in either case. Limited Aβ
deposition with sparse diffuse deposits in the temporal
cortex and tau neurofibrillary tangle pathology corre-
sponding to Braak and Braak stage I were observed in
the SNCA duplication case. In the H50Q case numerous
diffuse and sparse mature Aβ cortical deposits were
present, while neurofibrillary tangle pathology corre-
sponded to Braak and Braak stage III and also involved
the DF where there were sparse neurofibrillary tangles.
Argyrophilic grains were not observed.

Conformation and phosphorylation of α-synuclein
We analysed the morphology and phosphorylation state
of α-synuclein within inclusions in order to predict the
conformation of the protein. The 5G4 α-synuclein anti-
body was used as it specifically detects high molecular
weight α-synuclein oligomers which are nitrated and
have β-sheet conformation, with less binding to α-
synuclein fibrils and none to monomeric α-synuclein
[14, 15] (Fig. 3). We observed 5G4 immunoreactivity in
all inclusion types in the G51D, H50Q and SNCA dupli-
cation cases.
We have previously shown that α-synuclein inclusions

in case one are phosphorylated at both the S129 and
Y125 epitopes, which is of interest as phosphorylation at
the S129 epitope is believed to promote-aggregation into
fibrils while Y125 phosphorylation is suggested to result
in oligomer formation [16–18]. On investigation of
phosphorylation epitopes S129 and Y125 using specific
antibodies, we observed that in both the H50Q and the
SNCA duplication cases only LB were positive for phos-
phorylated α-synuclein, while LN were seldom immunore-
active indicating low levels of phosphorylated α-synuclein.
In contrast in the G51D cases all neuronal and neuritic in-
clusions were strongly labelled with the antibodies recog-
nising α-synuclein phosphorylated at both the S129 and
Y125 epitopes (Fig. 4).

Inclusions are ubiquitin and P62 positive
Ubiquitin is a small molecule which can become cova-
lently bound to proteins in an event called ubiquitina-
tion which is believed to signal for degradation of that
protein via the ubiquitin-proteosomal system [19]. P62
recognises ubiquitinated proteins during autophagy and
it has been shown that levels of p62 tend to inversely
correlate with clearance of aggregated proteins via au-
tophagy [20]. Double immunofluorescence microscopy
for ubiquitin (Additional file 1A) or p62 (Additional file
1B) with α-synuclein showed that neuronal and neuritic
α-synuclein inclusions in all cases were ubiquitinated.
Co-localisation of p62 with α-synuclein was observed in
many neuronal inclusions including Lewy bodies but
was less prominent in neuritic inclusions.
GCI-like inclusions occur only in G51D not H50Q or SNCA
duplication cases
In all three G51D mutation cases α-synuclein GCI-like
inclusions were detected. These were confirmed as being
within oligodendrocytes by double immunofluorescence
with the oligodendrocyte marker Olig2 and were de-
tected particularly in the sub-cortical white matter, cere-
bellar white matter and pons. GCI-like inclusions were
observed to be of juxtanuclear conical, rod shaped or
globular morphology (Fig. 5a).
The same double immunofluorescence technique did

not reveal any oligodendroglial α-synuclein inclusions in
the H50Q case. Sparse, elongated α-synuclein positive



Fig. 4 Phosphorylated α-synuclein. Neuronal inclusions in all cases are
shown to be immunoreactive for both pro-fibrillar S129 α-synuclein
and pro-oligomeric Y125 α-synuclein. Neuritic α-synuclein in the
duplication and H50Q cases showed less immunoreactivity of
both phospho-α-synuclein epitopes. Representative double
immunofluorescence images of mutation cases stained for total
α-synuclein (green) and phospho-α-synuclein (S129/Y125) (red)
shown in regions of highest pathology for each case: G51D
hippocampus, duplication entorhinal cortex and H50Q SN. Scale
bar represents 50 μm

Fig. 5 Glial pathology. a The variable morphology of GCI-like inclusions in
α-synuclein (red) is detected within oligodendrocytes (Olig2, green). b Rare
oligodendrocytes (Olig2, green) within the cerebellar white matter of the d
to be present within microglia (Iba-1, red) in G51D cases (arrows) shown at
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coiled body-like inclusions within oligodendrocytes of
the cerebellar white matter were seen in the SNCA du-
plication case (Fig. 5b).
We observed rare instances in all G51D cases, in

which α-synuclein pathology co-localised with microglia
as detected using the microglial marker Iba-1 (Fig. 5c,
arrows and inset). Co-localisation was confirmed by con-
focal analysis. There was gliosis in affected regions of
both the H50Q and the duplication case, but α-
synuclein co-localisation with microglia could not be
identified. None of the cases were found to have α-
synuclein immunoreactive inclusions within astrocytes
(data not shown).

Phospho-tau and α-synuclein co-localise in a subset of
neuronal inclusions in G51D cases, and very rarely in the
duplication case and the H50Q case
Tau pathology was considered to correspond to Braak
and Braak stage II in all G51D cases, although it was
noted that there were also sparse to moderate numbers
of neurofibrillary tangles in the granule cells of the DF.
Argyrophilic grains were not found in any of the cases.
In our previous study we showed that a proportion of

phospho-tau inclusions co-localised with a subset of α-
synuclein inclusions within neurons. Therefore, we were
interested to determine whether this is a consistent find-
ing in G51D cases two and three and to determine
whether this might also be a feature of the H50Q and
SNCA duplication cases, which had Braak and Braak
stages III and I tau pathology, respectively. We used
double immunofluorescence of phospho-tau (AT8) with
α-synuclein and in each case examined regions of the
hippocampus and entorhinal cortex in which phospho-
tau pathology was most severe.
In keeping with our previous findings, a subset of the

α-synuclein inclusions was found to co-localise with tau
inclusions in the hippocampus. Whether this subtle
all three G51D cases is shown in representative images in which
coiled body-like inclusions of α-synuclein (red) are detected within
uplication case. c On rare occasions α-synuclein (green) was confirmed
high magnification (inset). Scale bar represents 50 μm
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association is linked with the biology of the G51D mu-
tant α-synuclein is unclear. In contrast, in the H50Q
case, in which tau pathology corresponding to Braak and
Braak III with scarce hippocampal or entorhinal α-
synuclein inclusions, co-localisation of α-synuclein with tau
inclusions was limited to rare cells containing fine granu-
lar cytoplasmic structures (Fig. 6, arrows). In the duplica-
tion case co-localisation events, although robust, were
very rare (Fig. 6) some partial co-localisation of α-
synuclein with rare neuritic tau was also detected.
A subset of G51D α-synuclein inclusions is also
immunoreactive for TDP-43
TDP-43 positive intraneuronal cytoplasmic inclusions
were a feature in the hippocampus, amygdala and stri-
atum of G51D case one and case two (Fig. 7) but were
absent from case three and could not therefore be con-
sidered a consistent feature of the disease (Table 3).
By use of double immunofluorescence for α-synuclein

with TDP-43 or phospho-TDP-43, we observed that a
subset of TDP-43 inclusions in the CA regions, entorhi-
nal cortex and DF of cases one and two co-localised with
α-synuclein inclusions. Representative images of co-
localisation of TDP-43 and α-synuclein inclusions are
shown in Fig. 7a-f. All TDP-43 inclusions which co-
localised with α-synuclein inclusions in G51D cases were
also immunoreactive for pTDP-43, as shown in the ento-
rhinal cortex in Fig. 7, g-i. TDP-43 pathology was not
detected in either the H50Q or the duplication case.
Fig. 6 Tau pathology. Double immunofluorescence images of phospho-tau
inclusions in G51D cases (shown in CA1) and very rarely in the duplication
was observed in the subiculum of the H50Q case (arrows). Scale bar represen
Discussion
We have established that consistent clinical and neuro-
pathological features which resemble both those of PD
and MSA characterise three G51D SNCA mutation
cases. The three G51D SNCA mutation cases described
in this study shared a stereotyped constellation of par-
kinsonian features with variable levodopa response, de-
mentia, persistent visual hallucinations and autonomic
dysfunction. All G51D cases had consistent neuropatho-
logical hallmarks which resembled both PD and MSA.
These included widespread cortical and subcortical
neuronal α-synuclein inclusions together with small
numbers of GCI-like inclusions in oligodendrocytes. The
principal clinical phenotype of the duplication case bore
some similarity to the G51D cases; parkinsonism, de-
mentia and autonomic symptoms were all features. By
comparison, the H50Q case had a clinical phenotype
consistent with idiopathic PD. Unlike the G51D cases,
the neuropathology of the duplication and H50Q cases
closely resembled idiopathic PD and GCI-like inclusions
were not found in either case.
Predominant frontal release signs, executive dysfunc-

tion, perseveration, emotional lability and marked behav-
ioural changes were observed in G51D cases two and
three and in the SNCA duplication case. All three G51D
cases had a good initial levodopa response, but the
therapeutic efficacy was transient in cases two and three
in which disease progression was rapid. Age of onset in
G51D cases was variable, ranging from 19 (case one) to
69 (case two). There appears to be interfamilial
(AT8, green) with α-synuclein (red) shows co-localisation in a subset of
case (subiculum). Rare examples of sparse diffuse granular co-localisation
ts 50 μm



Fig. 7 TDP-43 pathology in G51D cases. Double immunofluorescence images show co-localisation of a moderate number of α-synuclein
inclusions with TDP-43 (a-f) or pTDP-43 (g-i). Representative double immunofluorescence images of α-synuclein (red) with TDP-43 (green) indicate
that TDP-43 inclusions in the CA and entorhinal cortex (EC) co-localise with a subset of α-synuclein inclusions, these events are more rare in the
DF (arrows). Scale bar represents 50 μm
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variability in the temporal course of disease progression.
The second family (Fig. 1b) had a much more rapid de-
terioration and both cases died only 6 years after symp-
tom onset. Both had an early onset of cognitive decline
and loss of levodopa benefit. Significant motor fluctu-
ation was only observed in the first family (Fig. 1a) in
which the phenotype resembled that of a monogenetic
parkinsonism such as parkin disease, with sustained
levodopa response and longer disease duration spanning
at least a decade [21]. In both families, depression and
anxiety were early features that accompanied the onset
of motor symptoms, followed by vivid dreams, intermit-
tent disorientation, word-finding difficulties signifying
memory impairment and paranoid delusions. Visual hal-
lucinations were often triggered by a small increase in
the dose of dopaminergic medications and would ini-
tially be amenable to the adjustment of anti-
parkinsonian medications or the introduction of a cho-
linesterase inhibitor. In more advanced stages of disease,
visual hallucinations and behavioural changes became
persistent and refractory, eventually dominating the clin-
ical picture along with severe akinetic rigidity and bulbar
dysfunction. Dysautonomia including symptomatic pos-
tural hypotension, urinary frequency and urge incontin-
ence occurred after the onset of parkinsonism, but was a
relatively early feature in G51D SNCA families when com-
pared to idiopathic Parkinson’s disease. In both families,
the constellation of pathological reflexes, extensor plantar
responses and autonomic dysfunction resembles the
clinical phenotype of multiple system atrophy, specifically
MSA with predominant parkinsonism (MSA-P), but the
significant features of dementia with visual hallucinations
are a useful pointer to set G51D SNCA mutation apart
[22]. G51D mutation case two also had some features of a
progressive supranuclear palsy phenotype, with unequivo-
cal vertical supranuclear gaze palsy, blepharospasm and
emotional lability.
Review of the clinical features reported in the litera-

ture in cases of SNCA duplication shows a phenotype of
parkinsonism, frequently associated with dementia.
Autonomic symptoms were observed in 50 % of cases
analysed [23]. Case-to-case variability has been reported
in relation to age at onset, levodopa responsiveness and
motor fluctuations [24, 25]. In our duplication case [12],
the clinical syndrome was compatible with frontotemporal
dementia with parkinsonism, prompting a tentative clin-
ical diagnosis of FTDP-17 prior to genetic analysis (Fig. 1c).
Cervical dystonia, blepharospasm and pyramidal signs
were among the other atypical features observed in this
case. In contrast, the H50Q SNCA mutation case resem-
bled late-onset idiopathic Parkinson’s disease with slow
disease progression, sustained levodopa response and the
absence of significant dysautonomia, pyramidal signs or
dementia. Despite lack of known family history, this case
may have a common ancestor with a further H50Q muta-
tion case which has been described in a family with a his-
tory of PD [26], suggesting reduced penetrance rather
than de novo mutation. The reported case had levodopa-
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responsive parkinsonism without pyramidal or cerebellar
signs and, at time of publication, had most recently scored
23 of 30 in the Montreal cognitive assessment indicating
mild cognitive impairment. More extensive characterisa-
tion of the clinical phenotype awaits the identification of
more cases.
Detailed post-mortem examination of the brains of

three G51D cases, one H50Q case and a SNCA duplica-
tion case was performed. The regional and cellular distri-
bution of pathology was assessed in the G51D mutation
cases with semi-quantitative assessment of the patho-
logical changes. Despite some variability between cases in
the regional severity of the pathology, cases two and three
showed marked similarity with case one, the index case
we previously reported [6]. All cases had widespread neur-
onal α-synuclein pathology with marked neocortical in-
volvement displaying the pattern of severely affected
superficial and deep cortical laminae. In dementia with
Lewy bodies (DLB) the deeper cortical laminae are af-
fected first with involvement of superficial layers seen only
with very advanced disease [27]. In contrast to DLB the
G51D mutation cases display marked variability in the
morphology of neuronal inclusions with many annular
and crescentic inclusions in addition to those with appear-
ances more typical of Lewy bodies. The striking involve-
ment of the striatum with α-synuclein neuronal inclusions
and threads in case one was mirrored in case two al-
though case three showed only moderate pathology. The
neuropathological features of all G51D cases contrasted
with those in the H50Q and SNCA duplication cases, both
of which had an α-synuclein inclusion distribution pattern
of typical idiopathic PD consisting of LB and LN in brain
stem, limbic and neocortical regions corresponding to
Braak stage 6 disease [28]. In the SNCA duplication case
rare α-synuclein immunoreactive oligodendroglial coiled
body-like inclusions were rarely noted as previously de-
scribed in PD but no GCI-like inclusions were found in ei-
ther the H50Q or SNCA duplication case.
Cell loss in the CA2-CA3 region of the hippocampus,

which was prominent in the index G51D case, varied in
severity between cases indicating that this pattern of cell
loss is not a constant feature of the disease. TDP-43
pathology has been described in around 7 % of PD cases
and 19 % of cases with PD dementia while it is rare in
MSA [29, 30]. In keeping with these observations TDP-
43 positive inclusions were also found to be inconsistent
between cases being a prominent feature in only two of
the G51D cases and were absent in both the SNCA du-
plication and H50Q mutation case. Sparse GCI-like
oligodendroglial inclusions were observed in the white
matter in all cases. This suggests that TDP-43 does not
have a pathogenic role in these cases.
It is interesting that the neuropathological features that

we initially described in association with G51D SNCA
mutation [6] are similar to those subsequently described in
a case with A53E mutation [7]. The A53E mutation case
had similarly abundant α-synuclein pathology of variable
morphology in neurons and also displayed GCI-like oligo-
dendroglial inclusions. The striatum was severely affected
and they observed a similar ‘tramline’ like deposition of α-
synuclein pathology in the deep and superficial layers of the
cortex. The authors did note differences, for example they
observed only mild cell loss in the CA2-CA3 region. This
was of interest as our G51D cases two and three showed
milder neuronal loss in these regions and thus had greater
similarity to the A53E case than to our initial case. In com-
mon with our observations in cases one and two Pasanen
and colleagues [7] described TDP-43 inclusions in the DF,
amygdala and striatum. In our previous publication we
compared the neuropathological features of G51D case one
with other SNCA mutations [6] (Table 2). The strongest
similarities were observed between the G51D case and a re-
ported SNCA triplication case as well as A53T mutation
cases, which were also reported to show accumulation of
GCIs, α-synuclein pathology in the striatum and severe
CA2/3 neuronal loss. This evidence supports the concept
that different mutations of α-synuclein can modify patho-
logical changes and influence the pathways leading to neur-
onal or glial protein aggregation. Based on the proposed
functions of α-synuclein, several pathomechanisms have
been suggested by which α-synuclein may mediate or con-
tribute to cell death including aberration of synaptic signal-
ling [31, 32], mitochondrial dysfunction [33] and loss of
chaperone function [34]. Both mutations and post transla-
tional modifications including phosphorylation, ubiquitina-
tion, nitration and glycosylation [35–38] have been shown
to contribute to disease pathogenesis.
We explored the co-localisation of TDP-43 with α-

synuclein within inclusions showing that this occurred
in a subset of inclusions and this was more common in
the CA2-CA3 region than in the DF. Interestingly it was
also in these neurons of the CA regions, DF and entorhi-
nal cortex in which we observed co-localisation of α-
synuclein with phosphorylated tau in a subset of neurons
in all three G51D cases. Although we were unable to in-
vestigate this in the current study, this suggests that α-
synuclein, tau and TDP-43 pathology could potentially
all be present together in a proportion of these neurons.
This feature in two of our three G51D cases resembles
that of a case of corticobasal degeneration, which was
reported to show partial co-localisation of α-synuclein,
TDP-43 and tau in inclusions supporting the concept of
‘cross-seeding’ of pathology [39]. The coexistence of tau
with α-synuclein in inclusions is not a new observation,
tau has long been known to be present in LBs of both
PD and Alzheimer’s disease with amygdala LBs, espe-
cially in neurons which are particularly vulnerable to tau
pathology [40]. Co-localisation of α-synuclein and tau as
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hybrid oligomeric species may also occur in PD and
DLB [41].
The phosphorylation of α-synuclein has been reported,

based on in vitro studies, to either promote (S129) fibril-
lisation/aggregation or prevent aggregation and promote
oligomerisation (Y125) [16–18]. We have shown that α-
synuclein inclusions in G51D cases are frequently phos-
phorylated at both the S129 and Y125 epitopes. In
contrast fewer α-synuclein structures in the H50Q and
duplication cases were found to be phosphorylated. This
could indicate that the G51D mutation leads to a protein
conformation which predisposes to phosphorylation.
Furthermore, α-synuclein is reported to be cleaved by
cathepsin D at Y125 and phosphorylation of this epitope
may prevent lysosomal degradation of α-synuclein [42].
Thus the high degree of phosphorylation and abundance
of aggregated α-synuclein, detected using the 5G4 anti-
body, could suggest that pathological hyperphosphoryla-
tion leads to impaired clearance [43], which favours the
development of the abundant cellular α-synuclein inclu-
sions characteristic of G51D mutation. We also showed
co-localisation of ubiquitin and p62 with α-synuclein in
inclusions in all five cases. Both p62 and ubiquitin play
important roles inthe proposed mechanisms of α-
synuclein proteolysis and our observations point to the
necessity for future studies to investigate the role of im-
paired protein degradation in cases with SNCA mutation.
The G51D and H50Q SNCA mutations are immedi-

ately adjacent in the putative protein loop that results in
the hairpin formation of α-synuclein protein [8]. α-
Synuclein has been proposed to form tetramers en-
dogenously which resist disease-associated aggregation
[44–46], although this proposed structure is a matter of
on-going debate [47]. Disruption of the protein loop is
believed to impair tetramer formation making mutant α-
synuclein monomers more susceptible to oligomerisa-
tion and aggregation [8]. It seems likely that each
specific mutation of α-synuclein affects the ability of the
protein to form fibrillar aggregates to a different degree,
resulting in distinct clinical [23] and neuropathological
phenotype. This theory is supported by data presented
here which shows the distinctly different phenotype of
G51D cases compared to the H50Q case despite the fact
that the sites of the mutations are immediately adjacent
in the putative protein loop region.
The effect of SNCA point mutation on α-synuclein ag-

gregation has been a topic of discussion as a factor that
may contribute to inclusion formation. In general the
insight gained from investigations into in vitro disease
models has been limited as they do not account for the
contribution of factors such as dysfunction of clearance
mechanisms [48] and neuroinflammation [49, 50] as in
the disease state. The A53T and E46K mutant α-
synuclein proteins are reported to aggregate more
rapidly [51–53] than the wild-type (WT) protein while
the A30P has a more uncertain effect [54, 55]. The
G51D and H50Q mutations have also been reported to
have variable effects on α-synuclein aggregation. The
G51D mutation has been reported to result in decreased
aggregation [10, 56] increased oligomer formation and
significantly increased cell toxicity in the wake of
stressors H202 and MPP+ treatment [57]. While the
H50Q mutation has been reported to aggregate into fi-
brils more rapidly, it formed oligomers less readily than
G51D or WT α-synuclein and there was a trend towards
increased cell toxicity in response to stressors in culture
[57–61]. Neither mutant was shown to result in in-
creased inclusion formation in cultured cells. The A53E
mutation has also been reported to cause increased
oligomer formation compared to WT protein [58]. The
readiness with which the G51D and A53E mutant pro-
teins form oligomers could prove to be relevant in un-
derstanding their associated pathology if the oligomeric
species are the more toxic forms of the protein [62, 63].
The α-synuclein 5G4 antibody [14, 15] was shown to spe-

cifically detect α-synuclein oligomers in a high molecular
weight, nitrated, β-sheet conformation and to have lesser
affinity for fibrils and not to bind the disordered oligomers
or monomers found in synaptic termini [15], We used the
5G4 antibody to demonstrate that the accumulation of α-
synuclein in a β-sheet oligomeric conformation is wide-
spread in G51D cases. In the H50Q and duplication cases
all neuritic or LB inclusions were immunoreactive for 5G4,
indicating that, at the time of death, inclusions in G51D
cases are no less aggregated by comparison despite the in
vitro data suggesting slower aggregation properties con-
ferred by this mutation. Furthermore, we did not detect se-
vere or widespread accumulation of inclusions in the H50Q
case compared with the spectrum of pathology in idio-
pathic PD. If H50Q α-synuclein does aggregate faster than
G51D α-synuclein in vivo, the short fibrils which it is re-
ported to form [57] may exist only transiently and be
cleared by normal mechanisms. Studies in disease cases
have shown that in some the neuropathology of the most
rapidly aggregating mutant α-synuclein protein, A53T,
bears some similarity to that of G51D and A53E mutations
[7], including CA2 cell loss, and GCI-like inclusions [64]
for review [6]. The neuropathology of the H50Q case bears
greater similarity to that of the more slowly aggregating
A30P mutant [65], which gives rise to a pathological pheno-
type resembling sporadic PD [66]. Some cases of SNCA du-
plication have been reported, like G51D, to have GCI-like
inclusions,’ tramline’ like cortical deposition of α-synuclein
pathology in the deep and superficial layers of the cortex
and CA2-CA3 cell loss [67–69]. Although neuronal loss
and α-synuclein inclusions were more abundant and wide-
spread in our duplication case than the H50Q case
(Table 3), the pathology did not reach the severity of the



Kiely et al. Molecular Neurodegeneration  (2015) 10:41 Page 15 of 17
G51D cases and resembled sporadic PD. Although only a
single duplication case was available for this study, our find-
ings indicate that increased α-synuclein expression is not
the sole factor which determines the abundance of α-
synuclein inclusions and neuronal loss. Altered conform-
ation of the protein due to mutation may impede protein
clearance mechanisms thus predisposing to a high load of
α-synuclein containing intracellular inclusions.

Conclusions
Here we have described the spectrum of clinical and
neuropathological characteristics of a small series of
G51D SNCA mutation cases providing information to
facilitate the recognition of this clinicopathological en-
tity. Our detailed analysis confirms that clinical features
including variable levodopa response, dementia, persist-
ent visual hallucinations and autonomic dysfunction
were consistent in all three cases. The neuropathological
features of all three G51D cases share characteristics of
both PD and MSA these included widespread cortical
and subcortical neuronal α-synuclein inclusions together
with small numbers of GCI-like inclusions in oligoden-
drocytes. We have shed light on the differential effects
of SNCA mutations on neuropathology from which we
have gained insight into the biology of pathological α-
synuclein. It is vital that we further our understanding of
the biology of α-synuclein in disease in order to identify
potential pathways and mechanisms which can be tar-
geted for therapeutic intervention.

Methods
Clinical data
Medical records, including notes from the general prac-
titioners, letters from hospital specialists and in-patient
notes, were retrospectively reviewed by a neurologist
with a specialist interest in movement disorders (HL).
Clinical symptoms and signs not documented in the
notes were considered as absent. Where there was dis-
crepancy in the clinical features described, the neurolo-
gists’ record was used.
Consent for research was obtained for all cases in-

cluded in the study.

Brain tissue
Three cases with G51D and one case with the H50Q
SNCA mutation were donated to the Queen Square Brain
Bank for Neurological Disorders, UCL Institute of Neur-
ology. The donation protocols had Research Ethics Com-
mittee approval and the tissue was stored for research
under a license issued by the Human Tissue Authority
(No. 12198). Following fixation in 10 % buffered formalin,
the right half of the brain was sliced in the coronal plane,
examined and blocks were selected for paraffin wax em-
bedding and histology. The SNCA duplication case was
donated to the Department of Neuropathology, North
Bristol NHS Trust, Bristol with consent for research.
Paraffin-embedded sections (8 μm) were stained with

haematoxylin and eosin (H&E) and Luxol fast blue/cresyl
violet. Immunohistochemistry was performed as previ-
ously described [70] using primary antibodies (Additional
file 2). Double immunofluorescence was detected using
isotype specific anti-rabbit IgG or anti-mouse IgG second-
ary antibodies conjugated with either Alexa 488 or 568
fluorochromes (1:400) (Life technologies, Paisley, UK)
followed by quenching or autofluorescence with 0.1 %
Sudan Black/70 % ethanol (Sigma-Aldrich, Dorset, UK)
solution for 10 min and mounting under glass coverslips
using VECTAshield mounting media with 4’,6-diamidino-
2-phenylindole (DAPI) nuclear stain (Vector laboratories,
Peterborough, UK). Images were visualised using a con-
focal fluorescence microscopy (Leica DM5500 B).

Genetics
Genetic analysis of G51D SNCA mutation cases two and
three was performed using Sanger sequencing of the
SNCA gene as previously described [6]. The H50Q case
was described by Proukakis et al. [5] and the SNCA du-
plication case was identified using multiplex ligation
dependent probe amplification (MLPA) and DNA array
analysis, Kara et al. [12].

Additional files

Additional file 1: A, Double immunofluorescence images of
ubiquitin (green) with α-synuclein (red) in a representative G51D
case (CA3), the duplication case (SN) and the H50Q case (EC). B,
Representative immunofluorescence image of α-synuclein (red) and p62
(green) in G51D (CA1), the duplication case (substantia nigra) and the
H50Q case (Temporal cortex). Scale bar represents 50 μm. (TIF 5,615 kb)

Additional file 2: Antibodies used in study. (DOCX 16 kb)
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