
Transmathematical basis of infinitely 
scalable pipeline machines 

Conference or Workshop Item 

Published Version 

Creative Commons: Attribution-Noncommercial-No Derivative Works 4.0 

Open Access 

Anderson, J. (2015) Transmathematical basis of infinitely 
scalable pipeline machines. In: ICCS 2015 Computational 
Science at the Gates of Nature, pp. 1828-1837. Available at 
http://centaur.reading.ac.uk/43186/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .
Published version at: http://www.sciencedirect.com/science/article/pii/S1877050915012168 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


CentAUR 

Central Archive at the University of Reading 

Reading’s research outputs online



doi: 10.1016/j.procs.2015.05.408 

Transmathematical Basis of

Infinitely Scalable Pipeline Machines

James A.D.W. Anderson1

University of Reading, UK
j.anderson@reading.ac.uk

Abstract
We describe infinitely scalable pipeline machines with perfect parallelism, in the sense that
every instruction of an inline program is executed, on successive data, on every clock tick.
Programs with shared data effectively execute in less than a clock tick. We show that pipeline
machines are faster than single or multi-core, von Neumann machines for sufficiently many
program runs of a sufficiently time consuming program. Our pipeline machines exploit the
totality of transreal arithmetic and the known waiting time of statically compiled programs to
deliver the interesting property that they need no hardware or software exception handling.

Keywords: transreal arihtmetic, von Neumann Machine, pipeline

1 Introduction

A recent report sets out some mathematical challenges to developing machines and algorithms
that operate at Exascale [12]. Delivering general purpose computation, on a machine with
multiple von Neumann cores, is an ambitious goal. Here we examine the more limited question
of how to construct a pipeline machine of arbitrary size. Such a machine has some long latency
but then produces a result every clock tick. It executes an entire, in line, program, on successive
data, every clock tick, giving it perfect parallelism. To achieve this we require unbreakable
pipelines where, apart from physical errors, a core is guaranteed to pass on its data every
clock tick. This requires a total system of computation that has no logical exceptions: we
use transmathematics – a collection of techniques that rely on an extension of real arithmetic,
called transreal arithmetic [9]. We report three architectures. Our first architecture uses a
single instruction, implemented in a fixed-point, transinteger arithmetic. This architecture
was tested in FPGA and in software simulation in a custom Java program. The architecture
was then modified, with the introduction of a second instruction, to operate on trans-floating-
point numbers, making it more suitable for scientific computation. Finally the architecture
was completely pipelined. These latter two architectures were simulated only in software. We
then obtained very approximate estimates of the die area and power consumption of the final
architecture that lead us to believe that exascale computing is achievable now.

Procedia Computer Science

Volume 51, 2015, Pages 1828–1837

ICCS 2015 International Conference On Computational Science

1828 Selection and peer-review under responsibility of the Scientific Programme Committee of ICCS 2015
c© The Authors. Published by Elsevier B.V.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.05.408&domain=pdf


2 Transmathematics

Transreal arithmetic is a superset of real arithmetic. It defines division in terms of the lexical
reciprocal so that a

b ÷ c
d = a

b × d
c for all real numbers a, b, c, d ∈ R. This definition contains the

usual definition of division as multiplication by the multiplicative inverse but additionally allows
division by zero. All real numbers divided by zero produce non-finite numbers. All positive
numbers, 0 < k ∈ R, divided by zero are equal to the definite number infinity: k/0 = ∞.
Similarly −k/0 = −∞. Zero divided by zero is the definite number nullity: 0/0 = Φ. Nullity
was introduced in [3]. It is an unordered number that lies outside the range from negative infinity
to positive infinity. Arithmetic on non-finite numbers reduces to arithmetic on ratios of real
numbers. Transreal arithmetic is axiomatised and proved consistent by a machine proof in [9].
A human, constructive proof of the consistency of both transreal and transcomplex arithmetic
is give in [14]. A tutorial on transreal arithmetic appears in [6]. Classical and many-valued
logics are unified by arithmetising them in transreal arithmetic in [10]. Importantly all real
limits, derivatives and integrals are extended to transreal form in [8][15]. Hence many scientific
applications may be extended from real to transreal form, making them immune to division by
zero errors – because dividing by zero is not an error in the new paradigm of transmathematics.

A transreal extension of two’s complement arithmetic was implemented in both hardware
(FPGA) and software simulation [5]. This arithmetic uses the binary code for the most negative
integer to encode nullity. This removes bias by removing this one, excess, integer. The excess
integer is known as the weird number because it has the paradoxical property −n = n < 0. The
adjacent binary codes are used to encode positive and negative infinity so that the arithmetic is
saturated. This prevents wraparound where the sum of two positive numbers can be negative or
zero and the sum of two negative numbers can be positive or zero. Thus arithmetic on transreal
two’s complement numbers faithfully represents the topology [8] of transreal numbers.

A transreal extension of IEEE floating-point arithmetic [1][2] was implemented in software.
Trans-floating-point arithmetic [7] uses the bit pattern which encodes IEEE’s negative zero to
encode nullity. In [8] it is argued that IEEE’s negative zero is a category error: it is a limit
not a number. This difference is illustrated in the transreal evaluation of the tangent function
where IEEE’s negative zero alternately computes infinity with the correct and wrong signs at
intervals of π/2 radians. Transreal arithmetic is total so it has no Not-a-Number (NaN) objects.
Instead IEEE’s NaNs are mapped to real numbers. This adds one binade which may be used
either to double the range of real numbers or else to halve the threshold at which numbers
underflow to denormal form. The benefits of these alternative strategies have not yet been
explored. The transreal infinities are stored in the most extreme bit pattern with all exponent
and mantissa bits set to one. This leaves the sign bit to encode the sign of infinity, as usual.
Thus trans-floating-point arithmetic faithfully represents the topology of transreal numbers.

In principle it would be possible to define all arithmetical exceptions, on a case by case
basis, as violations of transreal topology. This would produce a single set of exceptions for
both trans-two’s complement and trans-floating-point arithmetic so that the two arithmetics
could be substituted for each other depending only on the precision that is required. Clearly
this topological approach to defining machine errors will succeed with any computer arithmetic
that faithfully represents the transreal topology [8] or the transcomplex topology [14].

Trans-floating-point arithmetic is simpler that IEEE 754 arithmetic because it has no nega-
tive zero and no NaNs. It also has a total set of relational operators – less than, equal to, greater
than – which can be combined with not to produce an irredundant set of operators, unlike both
IEEE floating-point arithmetic and real arithmetic [7]. In real arithmetic the logical operator
not is redundant so that, for example, x �< y is identical to x ≥ y.

Infinitely Scalable Pipeline Machines Anderson

1829



In summary transreal arithmetic is a total system of arithmetic which is in the process of
being extended to many areas of mathematics [20][18][13] to create an entire transmathematics
which allows division by zero. This new paradigm promises to make the implementation of
scientific applications more reliable by removing division by zero as a cause of error. It offers
a topological basis for categorising machine errors. It offers the advantages of more range or
else more precision in floating-point arithmetic. This extension of the real values, encoded by
floating-point bits, may be exploited in ordinary computation. Critically transreal arithmetic
simplifies the implementation of arithmetical pipelines that always respect the topology of
transreal numbers and do not break on division by zero.

3 The von Neumann Machine

The von Neumann machine was introduced by a memo, written by John von Neumann, in 1945
[17]. The von Neumann machine has been extraordinarily successful but it has features which
force its computational efficiency to decline with increasing size. Each of these can be addressed
by a suitable form of dataflow machine.

Firstly the von Neumann bottleneck [11] restricts the amount of data that can be Input
to or Output from a computer so that the I/O bandwidth, needed to keep a von Neumann
core busy, grows proportionately with the number of cores. When data are not ready, the
von Neumann machine stalls until data are ready. Hence, for any particular bandwidth, the
amount of time spent stalled, increases with the number of cores. In particular the von Neumann
bottleneck manifests in hardware when data enter at the edge of a computer chip and multiple
cores are present in the surface of the chip. The bottleneck arises because the amount of I/O
grows linearly with the perimeter of the chip but the number of cores grows quadratically, in
proportion with the area of the chip. In theory this problem could be solved by arranging
I/O in the surface of a 2 Dimensional chip but no practical technology to do this has been
demonstrated. Should 3D chips ever become practical, the bottleneck would arise even where
2D I/O is implemented. A 3D chip would require a volumetric form of I/O to be free of the
bottleneck. However there is an alternative way of avoiding the bottleneck without resorting to
exotic geometries: use a dataflow machine where data are input at an edge of a chip and flow
over many cores before being output at an edge of the chip.

Secondly the von Neumann machine has a linear address space [17] which requires condi-
tional instructions, such as if-then-else, to perform non-local jumps in memory. A non-local
jump in hardware is limited by the physical constraint that signals cannot propagate faster
than the speed of light so a sufficiently long jump cannot be completed in one clock tick and
the von Neumann core is forced to stall, as above. Thus the efficiency of a von Neumann ma-
chine decreases with increasing physical size. This inefficiency can be avoided by employing a
physical, 2D address space by jumping, say, down to satisfy the then part of a conditional and
jumping right to satisfy the else part. In this way the jump is kept local, regardless of the size
of the code in the then and else parts. With a square array of processors, the jump may be
kept to the adjacent core so that it is always completed within one clock tick. The jumps im-
plicit in subroutine call and return can be handled by calling programs inline and by forbidding
recursive programs in favour of iterative ones. The jumps implicit in iterations may be handled
by loop unrolling, where the waiting time of the algorithm is known, and can be ameliorated
by arranging that the loop entry and exit points are physically close when the waiting time
is unknown. These strategies require a very large number of cores, which increases the degree
of parallelism in a pipeline machine but they place requirements on pipeline compilers. It is
possible to copy code to effect recursion in a pipelined way but this strategy is expensive.

Infinitely Scalable Pipeline Machines Anderson

1830



Thirdly the von Neumann machine has a fixed address space [17], typically encoded in a
single machine word, so programs cannot grow beyond this size. This problem is obviated by
making all addressing relative to the current core so that a fixed length of address encodes a
fixed address horizon not a fixed address space. In principle a dataflow machine with address
horizons can be scaled to any size.1

Taken together these methods keep the efficiency of a suitable dataflow machine constant,
despite increasing size of the machine, but they imply constraints on the way that programs
are laid out: data must flow, from edge to edge of a chip, through the cores in its surface;
all jumps must be local, iteration is preferred to recursion and loops must be unrolled with a
known waiting time or else with physically close loop entry and exit points; memory must be
addressed in a horizon not in a fixed memory space.

4 Infinitely Scalable Pipeline Machines

Our criticism of the von Neumann machine, in the section immediately above, has given us some
basic constraints for building infinitely scalable pipeline machines which we amplify here. First,
though, we observe that any program for a digital computer can be converted into arithmetic
by the process of Gödelisation [16]. Where the Gödelisation is carried through in transreal,
specifically transinteger, arithmetic we are guaranteed that an arithmetical machine can execute
a Gödelised program without any arithmetical exceptions, because transarithmetics are total.
This somewhat trite existence proof has the very great psychological benefit that it guarantees
that computer architectures can be constructed that have no logical exceptions. This encourages
the designer to find such systems.

The constraint that data must flow from edge to edge of a chip, over the cores in its surface,
is easy to achieve but combining such chips in a machine raises the issue of timing. In the
absence of a compressible I/O medium, we are obliged to clock all of the cores from a common
time domain. We do not require that the entire machine operates in a constant time, only
that the cores within an address horizon do. This gives us a physical constraint on the size
of the address horizon. It must be chosen so that clock skew, within the horizon, is less than
a clock tick. Hence data sent by different routes to a single core can be guaranteed to arrive
at the same time within a horizon. In other words data arrival at a core, within a horizon, is
a synchronisation point. In practical terms it is easier to satisfy this constraint if a common
time domain is imposed or if data paths are made linear, rather than allowing arbitrary 2D
addressing, at some large scale. For example that boards have a linear address space but that
chips within a board have full 2D addressing. At a larger scale, boards, within a cabinet, might
have full 2D addressing but cabinets, within a network, might have linear addressing and so
on, up to whatever scale can be synchronised with available technology.

Address horizons have a second, very important, advantage. They are small and can be
much smaller than the address space of the machine. This means that tokens within a dataflow
machine can use fewer bits to specify an address. This makes the token smaller so that more
cores can be fitted on a chip. It also means that fewer address lines are needed, which reduces
the risk of transmission desynchronisation within a token.

1We can conceive of building machines that are larger than the visible universe. Let us imagine that matter to
build the machine and energy to run it, can be harvested from the vacuum energy of the universe. If independent
civilisation construct large machines and join them together then some different parts of the machine may be
beyond the visible horizon, as seen from every point in the machine. Alternatively if a civilisation builds a large
machine and uses it for a long time then the expansion of the universe may carry parts of the machine beyond
the visible horizon.

Infinitely Scalable Pipeline Machines Anderson

1831



The constraint that all jumps must be local is easy to satisfy for conditional instructions.
If the waiting time is known (the number of iterations of a loop or the number of calls of
a subroutine is known) then loops may be unrolled and subroutines may be inlined. If the
waiting time of a loop is not known then the problem can be finessed, in practical systems, by
unrolling within some locality of the machine, such as a cabinet. The outermost loop can then
be represented by a large data store whose role is to circulate data through the computational
surface. Inlining of subroutines, with an unknown waiting time, can be finessed by storing both
the subroutine’s code and data in the store. As usual any sufficiently large problem can be
handled only by serialising components so, for any fixed size of machine, there is a limit to the
size of problem that can be solved in parallel.

With current technology, there will be insufficient I/O to drive each individual core in the
edge of a chip. This means that there are programs where it is necessary to expend several
clock cycles to input and/or output data for a single program run. This implies a cadence where
computation occurs only on the beat, when all data are ready. This reduces the efficiency of
a program. However, in some practical cases, such as in molecular dynamics, many copies of
a program can be placed in the machine so that they operate on the same data as they flow
past the programs. Thus many programs can be executed, on successive data, within one clock
tick. In this case the cadence of the entire machine can be a fraction less than one. In many
applications the machine will have a low cadence (many clock ticks between computations)
during the set-up time when program and initial data are loaded onto the machine, followed
by a period of high cadence computing, followed by a low cadence during the tear-down time
in which finalised data are taken to backing store, are passed to a network of conventional
computers, or are otherwise used.

In a large machine, I/O tap points will be wanted, at different scales, so that an appropriate
size of virtual machine can be used. Perhaps the simplest, practical scheme is to treat cabinets
as a single machine, with a local area network allowing arbitrary data input and output between
cabinets.

5 Experimental Architectures

We have implemented three transreal architectures in software simulation and one, the first,
in hardware. The bottom layer of the software simulation is implemented in Java. It uses
an event-driven paradigm. In one second of real time, it can simulate all of the processing
that goes on in one virtual clock tick of a machine composed of 30,000 transreal cores. The
simulator provides instrumentation of the simulated machine and can generate system dumps,
utilisation reports and both diagrams and movies of the simulated processing. A particularly
useful feature of the simulator is that it records sufficient state to perform backward steps so
that when a bug is detected in a simulated program, processing can be unrolled to trace where
the bug came from. The simulator and associated tools have been developed throughout this
ongoing project.

The first architecture is also simulated in hardware using a Digilent development board with
a Virtex-II Pro, FPGA chip from Xilinix. This simulated architecture is a square array of 9
cores laid out in a 3× 3 grid so that we can test the connectivity of hardware cores.

The first and all subsequent architectures are dataflow architectures that pass tokens of a
fixed length. The tokens have a header and a datum. The header holds a horizon address and a
few bits of control data. Thus a token carries both control and data. We have experimented with
various sizes of header but a size of 16 bits seems to provide good performance in large, simulated
machines. The typical use case is to flood tokens onto the compute surface to instantiate a

Infinitely Scalable Pipeline Machines Anderson

1832



program in the machine before a job is executed. In a typical case a job contains one or more
repetitions of a set-up phase, in which initial data are added to a program, a compute phase,
where the program is executed, and a tear-down phase, where final data are flushed from the
machine. In compute intensive tasks the compute time necessarily dominates the processing
time so that the overall processing time tends to the compute time.

All of the architectures use transreal cores that read inputs from, and write outputs to,
pipeline registers laid out in the cardinal directions east, north, west, south. We use a fused
logic so that within one clock tick: data is read from the input ports, is processed and is
written to the output ports. The machine is clocked at I/O speeds, which are very much slower
than typical processor speeds and have a correspondingly lower power consumption per unit
time. Clocking at I/O speed is essential to maintaining a constant throughput. Hence these
machines achieve “peak performance” all of the time. A second advantage of a pipeline bus is
that it allows much more flexible routing, and therefore much more flexible layout, than can be
achieved in a systolic array [19].

All of the architectures use a multiply-add instruction with results written conditionally to
the cardinal ports. This is a 2D arrangement of the 4D Perspex Machine introduced in [4].
The condition is the sign of the result. Transreal numbers have four signs [9]: positive, zero,
negative and nullity. This means that the sign is encoded, irredundantly, in two bits and each
cardinal direction can handle a separate condition.

The first architecture implemented a fixed-point, transinteger arithmetic [5]. The second
and third architectures implemented a trans-floating-point arithmetic [7] but with an additional,
general purpose, bitwise operator and shift to allow the packing and unpacking of the sign,
exponent and mantissa fields of a floating-point number. This was found to be more efficient
than relying on just the arithmetical operation. The third architecture pipelined the core so
that the entire machine can be run as a pipeline.

We implemented both scripting languages and compilers. The first architecture was tested
by loading compiled code into the FPGA and the software simulator, comparing results, and
cross-checking with implementations of the same algorithm implemented in two different pro-
gramming languages and with hand computations performed by three people. The second and
third architectures were tested, at a larger scale, only in software simulation, against canons im-
plemented in two or three languages. The architecture can be thought of as an extreme Reduced
Instruction Set Computer with extreme pipelining. We implemented some basic mathematical
functions and found that 64-bit operations to obtain the integer part of a transfloat, obtain
the fractional part of a transfloat, divide one number by another, find the square root of a
single number, and a 64-bit exponential each occupy between 25 and 100 cores. All of these
algorithms have a throughout of one result per clock tick.

We found that one line of raw Fortran90 typically turns into one core as competing influences
play out. Division expands to less than 50 cores, which is a large number, but a multiply add
and relational operator all fold into one core, similarly a logical operator and shift fold into
one core. The overhead on counted loops and function call and return are all optimised to
zero cores by loop unrolling and inlining. This very high code density may be due, in part,
to the fact that we were developing the scripting language and compiler on the above tasks so
the generated code is close to being hand tuned. We have some extremely early estimates of
performance. Hand coding of the mathematics libraries achieves a core utilisation of about 60%.
Programs generated by script or compiler have a core utilisation of about 25%. Our strategy is
to lay out library functions and compiler templates as two dimensional patches. A patch has an
outer boundary which defines its I/O, making it convenient to stitch patches together, and an
inner boundary, on and inside which the computation is done. Patches sometimes have inner

Infinitely Scalable Pipeline Machines Anderson

1833



boundaries that can be unfolded or folded like a skein. This folding can be used to fill in gaps,
so achieving higher utilisation. Sometimes computation and routing of different computational
paths, within and between patches, can be overlaid in the same cores, thus achieving hyperdense
layouts. We estimate 5% wastage at the edge of the chip to perform chip I/O, 20% wastage at
the edge of the chip as a margin around unfoldable patches, 20% wastage as gutters between
patches, 10% wastage from conditionals where only one path is used by a datum, 50% wastage
due to routing within a patch. Combining these multiplicative factors gives a typical wastage
of 73% or, equivalently, a utilisation of 27%.

We performed piecewise emulations of the core of a commercial molecular dynamics program
and calculated its performance on a 2,000,000 core board. We were able to store 500 copies of
the program in the board and execute it with a common data stream. Thus 500 program runs
were executed per clock tick, giving an asymptotic cadence of 0.002.

As we have the machine only in simulation, obtaining real-world metrics presents some
difficulties. We decided to measure performance in terms of unmodified Wassenaar FLOPs.
The Wassenaar arrangement2 is a legal treaty that controls the export of dual-use technologies
that have a legitimate commercial use and may have a military use. The treaty sets out a legal
definition of a FLOP which is modified by a weighting factor that is less than one to reflect
the inherent inefficiencies in vector and array processors. As our machine is of neither kind we
did not apply a weighting factor to it. The legal definition then specifies the FLOP rate of a
machine as the product: clock rate in Hz × number of cores × number of instructions executed
in a core per clock tick. A multiply-add is to be counted as two instructions. Measures of
non-floating-point instructions are not specified by the treaty but all such architectures are
controlled by a combination of use cases, technology used in fabrication, and data rates.

We specified a slow machine with a 250 MHz clock and 2 M cores, in a single, large board,
which delivers 1P unmodified Wassenaar FLOPs, which we write as 1PWFLOPs. We gave this
specification, together with a component list, to a commercial silicon designer and asked for an
estimate of die area and power consumption. We were told that we might achieve 64k cores on
the largest available, 28nm chip, without stitching, and that the high power consumption, due
to high gate utilisation, may well be completely offset by the low clock speed. Indeed we were
advised to consider increasing the clock speed. We then asked about wafer-scale fabrication.
We were advised as follows. Firstly as the cores are so small, it should be possible to map
out dead cores and route around them so that there is no upper limit to the size of chip that
can be fabricated with stitching. Secondly clock and power distribution should be achievable
on a 300mm wafer, which should deliver 1PWFLOP. Thirdly handling heat distribution on a
wafer may well be achievable but would require a detailed design effort. If this expert opinion
translates into practice then an exascale machine could be composed of 1,000 wafers. This
number of components can be wired with high reliability but there remains a problem of physical
failures in the wafer, board and network.

These figures lead us to believe that exaflop performance is achievable on a power budget of
20 MW. This is a very rough estimate and should be interpreted in the light of two, contradictory
influences. Firstly FLOP rates, as usually measured on high-performance machines, are whole
system measures3 not WFLOPS. This overestimates the performance of our machine. Secondly
program runs with fractional cadences (many runs per clock tick) are exceptionally useful in
interactive and real-time tasks so their value is underestimated by FLOP rates.

2See http://www.wassenaar.org
3See http://www.top500.org

Infinitely Scalable Pipeline Machines Anderson

1834



6 Discussion

Let us characterise the time to execute successive program runs, on given datasets, in a parallel
machine with multiple von Neumann cores and in a pipeline machine. In the following two
equations, the second subscript, m, denotes a multiple von Neumann machine and the second
subscript, p, denotes a pipeline machine. Tj is the total time to execute a job composed of Pr

program runs. Tp is the time for one program run – excluding Td, which is the time to read
one dataset. The reader is free to add a term to account for the time taken to write a dataset
at the end of the computation. Note that here Td is the cadence of an inline program in a
pipeline machine. C is the number of cores. Pi is the number of instantiations of a program in
a machine. Note that, in a multiple von Neumann machine, Pim = C and we write C explicitly
in Equation 1. D is the time to distribute data between cores and is, generally, a function
of C. We also characterise the time order, for large Pr, at a level of detail that supports an
illuminating comparison.

In the following formula, for a multiple von Neumann machine, the time to execute a job,
Tjm, in a von Neumann machine with one core is given when Cm = 1, Dm = 0.

Tjm = Pr(Tpm + Tdm)/Cm +Dm = O(Pr(Tpm + Tdm)/Cm) (1)

In a pipeline machine, the time to execute a job, Tjp, is given by the following equation.
If a single dataset can be shared between instantiated programs then Pip > 1 but if a dataset
cannot be shared then Pip = 1.

Tjp = (Pr − 1)Tdp/Pip + (Tpp + Tdp) = O(PrTdp/Pip) (2)

Of course both machines compute the same results but the critical thing to note is that the
time order of a multiple von Neumann machine is a function of program length but the time
order of a pipeline machine is independent of program length. Therefore, for sufficiently many
programs runs of a sufficiently time consuming program, a pipeline machine is faster than a
multiple von Neumann machine. As this is the use case of supercomputing, we expect pipeline
machines to outperform multiple von Neumann machines on those jobs that are suitable for
pipeline processing.

The physical efficiency of pipeline machines is assured by the fact that they move data a
very short distance, between cores, on each clock tick. This distance is minimised where the
cores are small, as occurs in RISC machines. We have explored architectures with just one and
two instructions, making them extreme RISC machines, with extremely small cores. The size
of cores is further reduced by operating on short, relative addresses in a horizon, rather than
on a long, absolute address in an address space. The size of cores is further minimised by using
transreal arithmetic and total bitwise operations. Neither of the instructions we use have any
exceptions so no exception handling circuitry is needed.

The class of pipeline machines we consider, above, operate on programs for which the
waiting time to completion is known. In this case no software exception handling is needed.
If a program enters a logical error state it may be terminated. If handling of this state is
wanted then a separate program can wait until the waiting time has expired and then act on
the fault, say, by reporting it. Physical faults may be handled in the same way by emitting
fault reports at a scheduled time. The report, itself, indicates a failure and any failure of a
report to arrive, after the waiting time, is a very serious fault indeed. This is a very significant
issue for the discipline of Software Engineering – it introduces exception-free programming and
exception-free hardware.

Infinitely Scalable Pipeline Machines Anderson

1835



There are many ways to characterise the class of pipeline machines we have described. One
way is to see them as active-memory machines where data in each memory location (core)
is processed. With this insight we see that such a pipeline machine can emulate a multiple,
von Neumann machine.4 In practice we envisage pipeline machines being used as the compute
surface in a machine that has a very large token store that circulates tokens through the pipeline
machine. In this way, unrolling loops to the outermost loop, instantiated in the token store,
allows general iterations where no useful bound on waiting time is known. We further envisage
that this entire machine will be used in a conventional cluster of von Neumann machines that
prepare input data for the pipeline machine and handle its output.

7 Conclusion

The efficiency of von Neumann machines declines with increasing size but we describe pipeline
machines that retain constant efficiency. These machines have perfect parallelism in the sense
that every instruction of an inline program is executed, on successive data, on every clock
tick and programs with shared data effectively execute in less than a clock tick. Our pipeline
machines do not need exception handling and are faster than single or multiple von Neumann
machines for sufficiently many program runs of a sufficiently time consuming program.

7.1 Acknowledgments

Thanks are due to Dr Oswaldo Cadenas for developing the FPGA simulation and to Mr Steve
Leach for developing the software simulators and tools, and for proposing cadence as a method
of program analysis.

References

[1] Ieee standard for binary floating-point arithmetic. Archived at http://ieeexplore.ieee.org/

xpl/articleDetails.jsp?arnumber=30711 1985.

[2] Ieee standard for floating-point arithmetic. Archived at http://ieeexplore.ieee.org/xpl/

articleDetails.jsp?arnumber=4610935 2008.

[3] J. A. D. W. Anderson. Representing geometrical knowledge. Phil. Trans. Roy. Soc. Lond. Se-
ries B., 352(1358):1129–1139, 1997. Archived at http://www.ncbi.nlm.nih.gov/pmc/articles/

PMC1692011/pdf/9304680.pdf

[4] James A. D. W. Anderson. Perspex machine. In Longin Jan Lateki, David M. Mount, and
Angela Y. Wu, editors, Vision Geometry XI, volume 4794 of Proceedings of SPIE, pages 10–21,
2002. Last accessed in March 2015 at http://www.bookofparagon.com/Mathematics/SPIE.2002.
Perspex.pdf

[5] James A. D. W. Anderson. Perspex machine xi: Topology of the transreal numbers. In S.I. Ao,
Oscar Castillo, Craig Douglas, David Dagan Feng, and Jeong-A Lee, editors, IMECS 2008, pages
330–33, March 2008. Archived at http://www.iaeng.org/publication/IMECS2008/IMECS2008_

pp330-338.pdf

[6] James A. D. W. Anderson. Evolutionary and revolutionary effects of transcomputation. In 2nd
IMA Conference on Mathematics in Defence. Institute of Mathematics and its Applications, Oct.
2011. Archived at http://www.ima.org.uk/_db/_documents/Anderson.pdf

[7] James A. D. W. Anderson. Trans-floating-point arithmetic removes nine quadrillion redundancies
from 64-bit ieee 754 floating-point arithmetic. In Lecture Notes in Engineering and Computer

4A proof of the Turing completeness of our pipeline machine is known but has not been published.

Infinitely Scalable Pipeline Machines Anderson

1836



Science: Proceedings of The World Congress on Engineering and Computer Science 2014, WCECS
2014, 22-24 October, 2014, San Francisco, USA., volume 1, pages 80–85, 2014. Archived at http:
//www.iaeng.org/publication/WCECS2014/WCECS2014_pp80-85.pdf

[8] James A. D. W. Anderson and Tiago S. dos Reis. Transreal limits expose category errors in ieee
754 floating-point arithmetic and in mathematics. In Lecture Notes in Engineering and Computer
Science: Proceedings of The World Congress on Engineering and Computer Science 2014, WCECS
2014, 22-24 October, 2014, San Francisco, USA., volume 1, pages 86–91, 2014. Archived at http:
//www.iaeng.org/publication/WCECS2014/WCECS2014_pp86-91.pdf

[9] James A. D. W. Anderson, Norbert Völker, and Andrew A. Adams. Perspex machine viii: Axioms
of transreal arithmetic. In Longin Jan Lateki, David M. Mount, and Angela Y. Wu, editors, Vision
Geometry XV, volume 6499 of Proceedings of SPIE, pages 2.1–2.12, 2007. Last accessed in March
2015 at http://www.bookofparagon.com/Mathematics/PerspexMachineVIII.pdf

[10] James A.D.W. Anderson and Walter Gomide. Transreal arithmetic as a consistent basis for
paraconsistent logics. In Lecture Notes in Engineering and Computer Science: Proceedings of
The World Congress on Engineering and Computer Science 2014, WCECS 2014, 22-24 October,
2014, San Francisco, USA., volume 1, pages 103–108, 2014. Archived at http://www.iaeng.org/
publication/WCECS2014/WCECS2014_pp103-108.pdf

[11] John Backus. Can programming be liberated from the von neumann style? a functional style
and its algebra of programs. Communications of the ACM, 21(8):613–641, Aug. 1978. Archived
at http://dl.acm.org/citation.cfm?id=359579

[12] Jack Dongarra, Jeffrey Hittinger, John Bell, Luis Chacon, Robert Falgout, Michael Heroux, Paul
Hovland, Esmond Ng, Clayton Webster, and Stefan Wild. Applied Mathematics Research for
Exascale Computing. U.S. Department of Energy, 2014. Archived at http://science.energy.

gov/~/media/ascr/pdf/research/am/docs/EMWGreport.pdf

[13] Tiago S. dos Reis. Números transreais: matemática ou devaneio? In 14◦ Seminário Nacional de
História da Ciência e da Tecnologia, 2014., 2014. Archived at http://www.14snhct.sbhc.org.

br/arquivo/download?ID_ARQUIVO=1899

[14] Tiago S. dos Reis and James A. D. W. Anderson. Construction of the transcomplex numbers from
the complex numbers. In Lecture Notes in Engineering and Computer Science: Proceedings of
The World Congress on Engineering and Computer Science 2014, WCECS 2014, 22-24 October,
2014, San Francisco, USA., volume 1, pages 97–102, 2014. Archived at http://www.iaeng.org/
publication/WCECS2014/WCECS2014_pp97-102.pdf

[15] Tiago S. dos Reis and James A. D. W. Anderson. Transdifferential and transintegral calculus.
In Lecture Notes in Engineering and Computer Science: Proceedings of The World Congress
on Engineering and Computer Science 2014, WCECS 2014, 22-24 October, 2014, San Fran-
cisco, USA., volume 1, pages 92–96, 2014. Archived at http://www.iaeng.org/publication/

WCECS2014/WCECS2014_pp92-96.pdf

[16] Kurt F. Gödel. Über formal unentscheidbäre satze der principia mathematica und verwandter
systeme. Monatschefte für Mathematik und Physik, 38:173–199, 1931. Last accessed in March
2015 at http://www.w-k-essler.de/pdfs/goedel.pdf

[17] M. D. Godfrey and D. F. Hendry. First draft of a report on the edvac. IEEE Annals of the History
of Computing, 15(1):11–21, 1993. Archived at http://dl.acm.org/citation.cfm?id=612553

[18] W. Gomide and T. S. dos Reis. Números transreais: Sobre a noção de distância. Synesis -
Universidade Católica de Petrópolis, 5(2):153–166, 2013. Archived at http://seer.ucp.br/seer/
index.php?journal=synesis&page=article&op=view&path%5B%5D=413&path%5B%5D=241

[19] H. T. Kung and C. E. Leiserson. Introduction to VLSI Systems, chapter Algorithms for VLSI pro-
cessor arrays. Addison-Wesley, 1979. Archived at http://dl.acm.org/citation.cfm?id=578480

[20] Alberto A. Martinez. The Cult of Pythagoras: Math and Myths. University of Pittsburgh Press,
2012.

Infinitely Scalable Pipeline Machines Anderson

1837


