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Abstract

We formulate an agent-based population model of Escherichia coli cells which

incorporates a description of the chemotaxis signalling cascade at the single cell

scale. The model is used to gain insight into the link between the signalling cas-

cade dynamics and the overall population response to differing chemoattractant

gradients. Firstly, we consider how the observed variation in total (phosphory-

lated and unphosphorylated) signalling protein concentration affects the ability

of cells to accumulate in differing chemoattractant gradients. Results reveal that

a variation in total cell protein concentration between cells may be a mechanism

for the survival of cell colonies across a wide range of differing environments.

We then study the response of cells in the presence of two different chemoattrac-

tants. In doing so we demonstrate that the population scale response depends

not on the absolute concentration of each chemoattractant but on the sensitivity

of the chemoreceptors to their respective concentrations. Our results show the

clear link between single cell features and the overall environment in which cells

reside.
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1. Introduction

The chemotactic behaviour of Escherichia coli cells has been an influential

research area for many years. In particular, research efforts have focused on

both the understanding of how single cells produce a chemotactic response and

how a colony of cells migrates in a given environment [1, 2]. Each of these5

aspects has been studied from both theoretical and experimental viewpoints.

Studies at the individual cell scale have sought to elucidate the workings of the

intracellular signalling pathways leading to the behaviour of the cell’s flagella

motors which drive the flagella, thus propelling the cell through its environment.

As for the behaviour of cell colonies, studies have mainly aimed at explaining10

the migration of cells within some pre-defined environment. Whilst there exists

a large body of literature investigating both single cell and population level

phenomena, there has been relatively little work aimed at understanding how

single cell features lead to the observed population scale behaviour.

1.1. The Single Cell Response15

Unstimulated, chemotactic E. coli cells move about their environment by

executing a random walk [3]. In particular, cells swim in (approximately) a

straight line (run), however these runs are interspersed with abrupt changes in

direction (tumbles). This is often referred to as the chemotactic run and tumble

swimming pattern (see Figure 1). In this run and tumble swimming pattern the20

direction of movement is altered at least once every few seconds [4]. In order

to display chemotaxis, cells increase the length of runs when moving up an

attractant gradient [5]. E. coli cells utilise an intracellular signalling cascade (as

described in Section 1 of the Supporting Text) to control the balance between

runs and tumbles, which are the result of counterclockwise (CCW) and clockwise25

(CW) rotation of the cells flagella, respectively. This allows cells to search for

environments which are beneficial for their survival.
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Figure 1: Chemotactic cells utilise a run and tumble swimming pattern in order

to find regions containing beneficial nutrients. Runs act to propel the cell forward

whereas tumbles act to randomly reorient the cell. When unstimulated, cells execute a three-

dimensional random walk, exploring their environment. Upon sensing a beneficial attractant

gradient, cells elongate their runs, biasing the random walk in the beneficial direction. This

differs from the sensing of a negative gradient after which cells will increase the frequency of

tumbles.

1.2. Population Scale Modelling Approaches

A range of features at the population scale have been studied using contin-

uum and discrete based approaches. Continuum approaches include the use of30

partial differential equation (PDE) type models to describe the response of a cell

population to differing chemoattractants; the widely known Keller-Segel model

being but one example [6]. Whilst such models have been used to help under-

stand population level phenomena, they do not yield insight into how these are

caused by individual cell behaviour.35

Approaches which have sought to link single cell behaviour to population

descriptions include stochastic models, equation-free models and agent-based

models (ABM). Stochastic models seek to account for the behaviour of individ-

ual cells within an attractant gradient by describing key physiological aspects
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of the cell response. For instance the work of Alt [7] includes a description40

of cell tumbling and the turning angle distribution which are described prob-

abilisitically. Under certain conditions the model reduces approximately to a

Keller-Segel type model.

Equation-free methods describe cell behaviour on the coarse grained popula-

tion scale as well as incorporating a more detailed description of the individual45

cell dynamics. Erban & Othmer [8, 9] and Setayeshgar et al. [10] have notably

used such methods. In particular, Setayeshgar et al. [10] showed that larger sep-

aration between excitation and adaptation times allow the evolution of the cell

population to be coarse grained. Erban & Othmer [8], however, incorporated a

simplified microscopic model of the E. coli chemotaxis signalling pathway into50

a telegraph process, subsequently showing that the chemotactic response van-

ishes as the adaptation time tends toward zero. Results were also generalised

to higher dimensions. Equation-free methods go some way toward bridging

the gap between single cell and population scale behaviour and greatly help

to reduce computational overheads in simulating large scale cell dynamics [9].55

However, this is at the expense of being able to elucidate between individual

cell behaviour and providing a full description of the underlying cell signalling

cascade dynamics.

ABM models are computational in nature and utilise a set of “rules” that

allow the effects of single cell attributes to be extrapolated to the population60

scale. One example is that of Emonet et al. [11] which sought to examine how

stochasticity in the chemotactic signalling network impacts upon population

level behaviour. In doing so, this model was shown to reproduce a number of

features observed in the experimental literature. The model does not, how-

ever, include a full description of the individual cell components responsible for65

chemotaxis, for instance the relationship between CheY-P concentration and

flagellar rotational behaviour.

Vladimirov et al. [12] considered an ABM type model that combined a sim-

plified model of the chemotaxis signalling pathway with a detailed description

of cell swimming behaviour. In particular, this work showed that varying the70
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concentrations of CheB and CheR proteins (those involved in adaptation) affect

the accumulation of cells within different ligand gradients. In particular, they

note that cells with too little CheB and CheR tend toward running and thus

fail to respond to different ligand gradients.

Bray and colleagues have developed a number of ABMs that provide a good75

level of agreement with experimental data. In contrast to Emonet et al. [11] and

Vladimirov et al. [12], these models aim to capture a greater level of individual

cell detail by incorporating a highly detailed (∼90 ordinary differential equation

(ODE)) model of the E. coli chemotaxis signalling cascade [13, 14]. This work

investigated the impact of cell signalling cascade mutations on cell behaviour.80

In particular, it was shown that the deletion of CheB and CheR (the proteins

responsible for adaptation) resulted in cells that fail to accumulate about greater

attractant concentrations.

1.3. Multiple ligand detection

E. coli receptor clusters contain up to five different receptor types which85

are able to respond to a range of chemoattractants. Tar and Tsr are the two

most abundant, which respond to methyl-aspartate (MeAsp) in the case of Tar

and Tsr, and serine, in the case of Tsr. However, the Tsr response to MeAsp is

neglible for small to intermediate attractant concentrations. Receptor sensitivity

to such attractants has been an active area of research which has demonstrated90

the clear link between receptor occupation and thus sensitivity to differing ligand

concentrations [15] as shown in Figure 2(b).

Within the theoretical literature, it is often assumed that cells respond to

just one chemoattractant. This simplifying assumption has clear benefits within

a theoretical framework, however more biologically representative is the study95

of cells when multiple chemoattractants are present.

Here we use an ABM framework to understand the link between the de-

sign and dynamics of the cell signalling cascade and the external environment

to which cells respond. The model incorporates an ODE model describing the

signalling network at the single cell scale [16] as detailed in Section 2 of the Sup-100
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Figure 2: MeAsp and serine bind with strong affinity to Tar and Tsr chemore-

ceptors, respectively. Additionally, MeAsp is able to bind Tsr chemoreceptors with a low

affinity, as seen in panel (a). Panel (b) is reproduced from the work of Mello & Tu [15] and

illustrates the difference in the sensitivity of a receptor complex when MeAsp may bind only

to Tar receptors (blue) and where the low affinity binding of MeAsp to Tsr chemoreceptors

is considered (red). In this work, the low affinity binding of MeAsp to Tsr chemoreceptors

is neglected due to the chemoattractant concentrations considered. Note that sensitivity is

defined as S ≡ −∂ lnΦ/∂ ln[L], where S denotes the sensitivity, Φ is the receptor signalling

team activity and [L] represents the ligand concentration.

porting Text. Our ABM is used to explore two aspects of the cellular response

in connection with the surrounding environment.

Firstly, it is known experimentally that the total (phosphorylated and un-

phosphorylated) concentration of intracellular signalling proteins may vary up

to ten-fold [17]. Such variation can be due to noise in gene expression and105

uneven distribution of proteins upon cell division [18]. In fact, Bai et al. [19]

have suggested that the expression of key signalling proteins can cause both

temporal fluctuations and heterogeneity in the rotational bias of an individual

cell’s flagellar motors. Thus, we consider how such variation affects the single

cell response and how this links to the population scale in differing gradients.110

We then move to investigate how cells respond in the presence of two spatially

distinct gradients of MeAsp and serine.
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2. Materials and Methods

In this section we provide an overview of our ABM algorithm.

2.1. ABM Algorithm115

The ABM formulated here contains a description of

1. external ligand detection by the cell;

2. the chemotactic signalling pathway described in Section 2 of the Support-

ing Text;

3. the flagellar rotational bias and response; and120

4. the movement of a cell via run or tumble type movement.

Combining these aspects allows us to extrapolate from the single cell to n pop-

ulation scale, where n is the number of cells in the population. The algorithm

is composed of five main stages that proceed in a cyclical manner over a given

time period denoted Ts. At each time step ti (i ∈ [1, p], where p = Ts/ti):125

1. calculate the ligand concentration (at the cell location);

2. update the intracellular signalling pathway;

3. calculate the flagellar rotational bias;

4. simulate cell movement - straight swim (run) or turn and swim (tumble);

and130

5. return to 1.

A graphical summary of the algorithm is given in Figure 3. The details of ABM

Stages 1-4 alongside their respective modelling assumptions and simplifications

are examined in more detail in Sections 2.2 to 2.4. In these simulations each

cell is assigned random values for both their initial location within the domain135

of interest and their initial direction of travel.

Within this work we conduct all simulations using a two-dimensional square

spatial domain; a common choice within ABM studies of chemotaxis [11, 13] as
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it allows for simple interpretation of results. The size of this domain was chosen

to be arbitrarily large, and is described by

(x, y) = {x, y ∈ R : [−2, 2]}, (1)

where x and y are the horizontal and vertical Cartesian coordinates, respectively.

The behaviour of each cell is then simulated for 50,000 model time-steps,

equating to approximately 12 real-time minutes (long enough for >95% of sim-

ulations (using the base parameter set in Table S1) to reach an approximate140

equilibrium).

Figure 3: A cartoon diagram showing the workings of our ABM. (A) An initial

location is chosen for a simulated E. coli cell within a static ligand field. (B) Cells detect the

external ligand concentration and responds via an ODE model of the intracellular signalling

pathway. (C) The rotational bias of the simulated cells flagella is calculated and a (uniformly

distributed) random number generator used to choose a “run” or a “tumble” response. (D)

A new location is defined if the cell “runs” or a new direction of travel and a new location

are chosen if the cell “tumbles”. The new ligand concentration is calculated and the process

repeated for the desired number of time steps, producing results shown in (E).
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2.2. Ligand Field

A number of different ligand profiles have been studied within both the

experimental and theoretical literature. The most common examples are those

with exponential, linear and zero gradient profiles [12, 13].145

We consider here a number of simplifying assumptions in respect of the ligand

field that allow for either easier computation or a more intuitive understanding

of our results. We choose to neglect the effects of ligand metabolism which

for MeAsp is valid since it is a non-metabolisable attractant. As such we do

not need to consider how cells degrade the ligand. We also choose to consider150

a stationary ligand profile which does not evolve in time. This assumes the

ligand spatiotemporal variation is small in comparison to cell movement on the

timescale of the experiment.

Here we focus on the use of exponential ligand gradients of the form

[L] = l0 + exp

(

−

√

x2 + y2

d

)

, (2)

within which [L] denotes the ligand concentration (in this case MeAsp), x and y

are the horizontal and vertical Cartesian coordinates of the domain, respectively,155

d is used to vary the steepness of the ligand gradient and l0 is a minimum

ligand concentration (arbitrarily assigned a value of l0 = 0.1mM). We consider

a shallow gradient (d = 10), intermediate gradient (d = 1) and a steep gradient

(d = 0.1) as shown in Figure 4.

2.3. Calculating the Cell Response160

The intracellular signalling cascade ODE model is updated using the inbuilt

MATLAB stiff ODE solver (ode15s). This allows us to track the internal state

of each simulated cell for every model time-step. As such, we are able to observe

the response of CheA-P, CheB-P, CheY-P and the receptor methylation level

for each cell over the entire period of an ABM simulation.165

The internal signalling cascade is used to calculate the response of each in-

dividual cell. It is known experimentally that the CheY-P concentration acts to

9



−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

Distance From Centre

Li
ga

nd
 C

on
ce

nt
ra

tio
n

(a) Shallow

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

Distance From Centre

Li
ga

nd
 C

on
ce

nt
ra

tio
n

(b) Intermediate

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

Distance From Centre

Li
ga

nd
 C

on
ce

nt
ra

tio
n

(c) Steep

Figure 4: Cross-sectional plots of the three ligand gradients used for agent-based

simulations of E. coli chemotactic behaviour. Each gradient is of the form shown in

equation (2) and takes a different value of d in order to vary the steepness. Here d=10

produces a shallow gradient (a), d=1 yields an intermediate gradient (b) and d=0.1 gives a

steep gradient (c).

regulate the rotational behaviour (bias) of the flagellar motors in E. coli cells.

There exists two general models of CheY-P and flagellar rotational bias in the

literature [20, 21]. The work of Cluzel et al. [20] experimentally quantified this

relationship. In doing so it was found that there exists a sigmoidal relation-

ship between CheY-P concentration and CW (clockwise or tumble) bias. This

was modelled using a Hill function approach. More recently, Morton-Firth &

Bray [21] considered a similar sigmoidal function of the form

Bias =
1

1 + 3
7

(

[Yp]
[Yp]∗

)5.5 , (3)

10



where [Yp] is the CheY-P concentration calculated in Section 2.3 and [Yp]
∗ is

the concentration in absence of any stimulus. The resultant sigmoidal curve is

displayed in Figure 5 for the steady-state CheY-P concentration of a wild-type

E. coli cell. In contrast to the work of Cluzel et al. [20], equation (3) allows the

sigmoidal curve to shift dependent upon the steady-state CheY-P concentration170

of each individual cell, allowing the sensitivity of the flagellar response to varying

CheY-P concentrations to be modelled.
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Figure 5: The relationship between CheY-P concentration and the clockwise (CW,

tumble) bias of a flagellar motor, as described by equation (3). The example shown

here is calculated using a value of [Yp]∗ = 4.043µM corresponding to the CheY-P steady-state

value when utilising the parameter set of Table S1. Note that this curve will shift depending

upon the [Yp]∗ level.

2.4. Simulating Cell Swimming

In order to accurately represent the swimming behaviour of each simulated

cell it is necessary to represent the stochastic nature of flagellar motor switching175

and the subsequent run and tumble swimming pattern. The ability of E. coli

cells to produce the observed run and tumble swimming pattern stems from

the flagella and the motors controlling their rotation. Explicitly modelling this

process would require significant computational cost. Thus, instead we consider

a simplified approach that still represents this process to a good degree.180

Here we consider the flagellar rotational bias expression from Section 2.3 (i.e.
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equation (3)). This tumble bias denotes the probability that a cell will produce

a tumble for any given CheY-P concentration. We therefore utilise a uniformly

distributed random number generator to choose a number 0 ≤ r ≤ 1 for each

simulated cell and assign swimming behaviour according to

Flagella Direction =











CW (Tumble), if Bias > r

CCW (Run), otherwise

in which the Bias value has been calculated according to equation (3). Using this

simple approach we represent the stochastic nature of flagellar motor switching

without the need for consideration of more complex stochastic equations.

In addition to assigning the type of swimming (run or tumble) behaviour

for individual cells, we also consider the resultant movement within the spatial185

domain described in Section 2.2. During the run phase cells are known to swim

in (approximately) a straight line. Mathematically we define this by

dx

dt
= c · cos(θn), (4)

dy

dt
= −c · sin(θn), (5)

where c is the swimming speed during a run, θn is the angular direction of

travel and x, y are the horizontal and vertical location of the simulated cell in

the domain of interest.190

During a tumble we also include a turn component, i.e. a change in θn. This

is achieved by considering

θn = θo + θr, (6)

within which n and o are subscripts denoting the new and old values, respectively

whilst the subscript r indicates a turning angle.

In the case of a run the cell is not re-oriented (θr = 0) whereas for a tumble θr

is chosen according to a uniformly distributed random turning angle of between

±18 to 98 degrees as per experimental findings summarised in Table 1. Since195

the duration of a tumble is significantly shorter than that of a run we define a

tumble event here as a change in direction from equation (6) combined with the

movement defined by equations (4) and (5).
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Consideration must also be given here to the behaviour of cells at the bound-

ary of the spatial domain. Specifically, we require rules governing the behaviour200

of cells when they pass outside of the spatial domain from Section 2.2. Within

the literature there are two main examples considered. These are as follows.

• Periodic: Cells swimming outside of the spatial domain are assumed to

re-appear on the opposite side. In the case of the domain in Section 2.2,

a cell leaving the domain at (x, y) = (1, 2) will re-enter the domain at205

(x, y) = (1,−2).

• Solid: Here cells swimming outside of the domain are returned to the

boundary as if they swim into a solid wall. For example if, at the end of

a given time-step, a simulated cell is positioned at (x, y) = (2.05, 1) then

it will be returned to the boundary at (x, y) = (2, 1).210

In the remainder of this manuscript we consider the solid boundary. This is

intended to replicate the behaviour of cells in a bounded region such as a petri

dish where they will swim into the solid side wall.

Table 1: Experimental parameter values describing the swimming behaviour of E. coli cells.

Symbol Definition Value Source

c Swimming speed during a run 29±6µm/s [22]

θr Angle turned during a tumble 58±40◦ [23]

3. Applications and Results

Here we use our ABM to examine the effect of variation in total intracellular215

protein concentration on the ability of the population to respond to the ligand

fields shown in Figure 4. Section 3.2 investigates the response of chemotactic

cells in the presence of MeAsp and serine.

3.1. Effects of variation in intracellular protein concentrations

It has been known for some time that populations of bacterial cells display220

a significant amount of non-genetic variability [24]. In the context of the E.coli
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chemotaxis signalling pathway the total concentration of each signalling protein

(CheA, CheB, CheR, CheW, CheY and CheZ) can vary up to ten-fold between

cells [17]. This is known to affect the chemotactic response [25, 26]. In fact, it

has been suggested that such variation in the expression of signalling proteins225

can account for the observed temporal fluctuations and heterogeneity across a

population of cells [19]. As such, we use the ABM formulated in Section 2.1 to

first investigate how this variation in the total protein concentration affects the

individual response before considering the overall population behaviour.

Figure 6: The intracellular signalling response of individual cells to step-changes

in the extracellular ligand concentration for varying total protein concentration

(β= 1/4, 1/2, 1, 2, 4, 6, 8, 10). At non-dimensional time τ=50 the MeAsp concentra-

tion is increased from [L]=0.1mM to [L]=0.2mM. This is subsequently reversed at τ=700.

Dimensional CheY-P steady-state values are given for each case in the respective panels.

In order to do this we consider a range of different multiples of the total

signalling protein concentrations of the form

[X]T = β[X]T0, (7)

where [X]T (X = A,B,R, Y, Z) represents the total protein concentration of230

14



each protein as detailed in Table S1 and β (= 1/4, 1/2, 1, 2, 4, 6, 8, 10) denotes its

scalar multiple. Here all proteins are scaled together since the operon structure

of E. coli cells is known to maintain approximately equal ratios between protein

concentrations [27].

Numerical simulations of individual cells (Figure 6) indicate that larger total235

protein concentrations lead to:

• lower fractions of phosphorylated proteins at steady-state;

• shorter adaptation times; and

• smaller initial response amplitudes;

in contrast to those with smaller total protein concentrations. These results240

tend to indicate that the ability to produce long runs is associated with those

cells displaying longer adaptation times, i.e. those with smaller total protein

concentrations. We may therefore hypothesise that slower adapting cells per-

form more efficiently in shallower ligand gradients whilst faster adapting ones

are more suited to steeper ones.245

To test this hypothesis we simulated the behaviour of 100 individual cells

within each of the three ligand gradients shown in Figure 4. Results obtained

from these simulations are displayed in Figure 7 (see Supplementary Videos 1-3

for animations of each simulation).

Upon examination of the results displayed in Figure 7 a number of inter-250

esting features may be observed. In particular, we note that the three ligand

gradients considered here result in behavioural differences such as the degree

of accumulation, the speed at which accumulation occurs and the range of be-

haviour observed between cell populations.

Firstly, it can be seen from Figures 7 and 8 that the different gradients result255

in very different ranges of behaviour. For example, in the shallow ligand gradient

all cell populations appear to display a similar degree of accumulation whereas

the intermediate and steep gradients display progressively larger differences in

accumulation between different cell populations. This suggests that whilst some

15
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(a) Shallow Ligand Gradient
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(b) Intermediate Ligand Gradient
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(c) Steep Ligand Gradient

Figure 7: Plots showing (left panel) the final locations of simulated E. coli cells

and (right) the development in time of the average distance to the peak ligand

concentration for each population. Results are shown for; (a) shallow; (b) intermediate;

and (c) steep gradients. Each dot (left) refers to the final location of a single cell, whilst

(right) lines show the average behaviour of a cell population in time. The different colours

denote cell populations with different scaled total protein concentrations, i.e. those with β=

1/4 (grey), 1/2 (blue), 1 (red), 2 (green) 4 (black), 6 (pink), 8 (cyan) and 10 (gold).
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Figure 8: A plot comparing the relative abilities of cell populations with different

total protein concentrations to accumulate about the peak of the ligand field

for exponential shaped fields of differing steepness. In particular we consider here a

steep (left, 10−1), intermediate (centre, 100) and shallow (right, 101) ligand gradient, where

the x-axis values correspond to d in equation (2). Coloured lines show the final average

distance from the peak ligand concentration achieved by each of the cell populations shown in

Figure 7. The colours of lines indicate the multiples (shown in the figure legend) of all total

protein concentrations used in order to create different cell populations.

cell populations may perform better in shallower ligand gradients, the effect is260

likely to be small in comparison to the differences observed for steeper gradients.

As predicted, the results obtained here indicate that faster adapting cells

perform better in steeper ligand gradients. We have already mentioned that

behavioural differences associated with the shallow gradient are relatively small

across the different populations considered here. As such, we focus our attention265

more toward the larger differences observed across the intermediate and steep

ligand gradients.

From Figure 8 it can be seen that the three slowest adapting populations

(namely β = 1/4, β = 1/2 and β = 1) display relatively poor accumulation in

the intermediate gradient compared to the others which all appear to produce270

similar behaviour. However, upon inspection of Figure 7(b) it can be seen that
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cells with intermediate total protein concentrations (i.e. β = 2 and β = 4)

accumulate much faster than those with even shorter adaptation times.

Examination of Figure 8 clearly shows large differences in the final accumu-

lation of different cell populations in the steep ligand gradient. In particular, we275

notice that cells with longer adaptation times (i.e. β = 1/4, β = 1/2 and β = 1)

display the poorest accumulation about the peak ligand concentration. We also

note that, as predicted, cells with very fast adaptation times (for example β = 8

and β = 10) perform well in this case.

The results of Figures 7 and 8 tend to suggest that, as predicted, cells with280

faster adaptation times perform better in steep ligand gradients while slower

adapting cells perform better in shallower ones. There is however an anomaly

in that, for the steep ligand gradient, the β = 2 population outperforms many

with faster adaptation times. To address this point we look to Figure 4(c)

and note that the steep ligand gradient consists of a steep centre portion with285

much shallower edges. It is these shallow edges that prevent some of the faster

adapting cells (that do not perform well in shallow gradients) from performing

well in the steep gradient simulation. In particular, we may observe that many

fast adapting cells initially struggle to find their way into the steep part of the

gradient but then accumulate very rapidly once they do so (see Supplementary290

Video 3).

In order to explain why cells with shorter adaptation times perform better

in steeper ligand gradients we first look to Figure 6. Here it can be seen that

this short adaptation time results in rapid signal termination via CheY-P which

leads to a reduction in run time length. Thus the cell runs briefly before tum-295

bling and is optimised for attractant profiles which vary considerably over short

spatial intervals. However, in gradients which remain relatively constant, these

cells require longer run time lengths in order to seek the optimal attractant

concentration.

In the case of β = 1/4 we observe very similar behaviour in each of the300

three gradients considered. This is in agreement with the work of Vladimirov et

al. [12] who studied the effect of varying CheB and CheR on the cell response
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in terms of their final accumulation using an ABM type model. In particular,

they note that experimentally and theoretically it can be observed that cells

with too little CheB and CheR tend toward running and fail to display tumbles.305

Within our work we note that at steady-state the β = 1/4 cell population

almost exclusively displays tumbling behaviour (see Figures 5 and 6). However,

when these cells detect a positive change in ligand concentration their CheY-P

concentration falls for a long period due to their very slow rate of adaptation.

Thus the cells exhibit very long runs and fail to display effective chemotaxis for310

the gradients considered (see Figure 7). This is in agreement with the results

of Vladimirov et al. [12].

3.2. Chemotaxis in the presence of two attractants

To model the response of cells in our ABM to the attractants MeAsp and

serine we first needed to adapt the description of the receptor ligand response.315

This results in a free-energy expression of the form in equation (S6).

To check cells within our model respond both to MeAsp and serine we con-

ducted simulations in which one spatially varied while the other was held con-

stant. This gave the result in Figure 9 and confirmed the model exhibited the

expected behaviour.320

Using our ABM framework we next examined the population response when

two spatially distinct ligand gradients of the form

[La] = ω
(

la0 + exp
(

−
√

(x+ xa)2 + y2
))

, (MeAsp) (8)

[Ls] = υ
(

ls0 + exp
(

−
√

(x+ xs)2 + y2
))

, (Serine) (9)

are present and where [La/s] denotes the concentration of MeAsp or serine, l0

indicates a minimum chemoattractant concentration, x and y denote horizontal

and vertical coordinates, ω and υ are scaling parameters. Note that xa and

xs allow the ligand peaks to be located at different spatial locations in the

domain of interest. Here we choose xa = 1 and xs = −1, resulting in an325

exponential MeAsp gradient centred about (x, y) = (−1, 0) and an exponential
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Figure 9: Plots demonstrating the ability of simulated E. coli cells to accumulate

in response to both MeAsp and serine concentration gradients. Shown here are

typical cases in which both MeAsp and serine are present within the same domain. In (a) we

consider a constant concentration of serine across the whole domain, thus demonstrating the

ability of simulated cells to respond to a MeAsp concentration gradient. In (b) we consider a

constant concentration of MeAsp across the entire domain, thus showing that cells are able to

respond to a serine concentration gradient. Within each plot green and red crosses indicate

the starting and final locations of each simulated cell, respectively whilst contour lines and

colour bars show the concentration of the non-constant ligand across the domain.

serine gradient centred about (x, y) = (1, 0). Note that each ligand gradient is

altered via a simple multiplicative scaling. Since E. coli cells have been shown

to exhibit logarithmic sensing [28], we need not consider the effects of gradient

steepness.330

Using the two scaling parameters (ω and υ) it is possible to assess where

cells will accumulate under a variety of differences in the concentration of each

attractant. In particular we consider three different scalings for the MeAsp

gradient, namely ω = 1, ω = 5 and ω = 10. For each of these we considered

a range of scalings for various values of υ. For each pair of ω and υ values we335

conducted a simulation of a population of 50 cells. Results obtained from these

simulations are displayed in Figure 10.

It can be seen in Figure 10 that there are a number of conditions on ω and

υ which result in different numbers of cells being attracted to each gradient.

Using these ABM simulations we may count the number of cells accumulating340
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(c) ω = 10

Figure 10: Plots showing the final positions of simulated cells after 50,000 model

time-steps (≈12 minutes) for spatially separate MeAsp and serine ligand gradi-

ents. In each case the chemotactic response is to a gradient of MeAsp centred in the left half

of the domain and a serine gradient centred in the right half of the domain. Coloured crosses

show the final position of each simulated E. coli cell with the colour indicating the multiple of

the serine gradient (i.e. the value of υ within equation (9)). The three separate panels relate

to the multiple applied to the MeAsp gradient (i.e. the ω value in equation (8)). Here the

peak concentrations for each chemoattractant gradient are given by [La]peak = ω(la0 +1) for

MeAsp and [Ls]peak = υ(ls0 + 1) for serine, where minimum concentrations are chosen such

that la0 = 0.1mM = ls0. Considered here are values of ω=1 (top left), ω=5 (top right) and

ω=10 (bottom).

21



10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

0

5

10

15

20

25

30

35

40

45

50

υ (Serine gradient scaling)

N
um

be
r 

of
 c

el
ls

 a
ttr

ac
te

d 
to

 M
eA

sp

 

 

ω=1
ω=5
ω=10

Figure 11: A plot summarising the accumulation of simulated E. coli cells towards

gradients of MeAsp and serine with differing peak concentrations. Results displayed

here represent a summary of those in Figure 10 with cells considered to accumulate to MeAsp

if they end with x <1 and to serine where they finish with x >1. Circles represent the data

points drawn from Figure 10 with the colour indicating the MeAsp gradient scaling factor

where ω=1 (blue), ω=5 (red) and ω=10 (green). Since the ABM is stochastic, lines are used

to display the general trend of the data. In particular a Hill function is fitted to each set of

data using a simple least-squares fit giving values of K = 2.71×10−3 and n = 3.166 for ω = 1;

K = 1.25× 10−3 and n = 3.605 for ω = 5; and K = 1.28× 10−3 and n = 3.180 for ω = 10.

toward each attractant. For simplicity we consider a cell to be attracted to

MeAsp if the final location is such that x < 0. If x > 0 we say the cell was

attracted to the serine gradient. In order to more clearly elucidate how the

relationship between ω and υ affects the accumulation of cells about the two

different ligands we consider the total number of cells attracted to MeAsp versus345

serine, as summarised in Figure 11.

It is clear from Figures 11 and 12 that there is a critical υ value below which

some cells will begin to be attracted to the MeAsp gradient. It also appears

that for larger values of ω this critical value decreases. At first this may appear

counter intuitive - why would a greater MeAsp concentration be overcome by a350

smaller concentration of serine? In order to answer this question we refer to the

attractant concentration versus receptor sensitivity curve as described by Mello

& Tu [15] and consider this in the context of the ligand concentrations considered
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Table 2: Ligand gradient scalings used for multiple ligand simulations and their respective

peak concentrations.

Scaling Attractant Peak Concentration

ω = 1 MeAsp 1.1mM

ω = 5 MeAsp 5.5mM

ω = 10 MeAsp 11mM

υ = 0.000001 Serine 1.1×10−6mM

υ = 0.00001 Serine 1.1×10−5mM

υ = 0.0001 Serine 1.1×10−4mM

υ = 0.0005 Serine 5.5×10−4mM

υ = 0.001 Serine 1.1×10−3mM

υ = 0.0025 Serine 2.75×10−3mM

υ = 0.005 Serine 5.5×10−3mM

υ = 0.0075 Serine 8.25×10−3mM

υ = 0.01 Serine 1.1×10−2mM

υ = 0.1 Serine 1.1×10−1mM

here. First note values of ω = 1, ω = 5 and ω = 10 correspond to peak MeAsp

concentrations of 1.1mM, 5.5mM and 11mM, respectively. Examining these in355

the context of the sensitivity curve [15] it can be seen that for the three examples

considered here, an ω = 1 scaling produces the greatest sensitivity and ω = 10

(due to saturation of receptors) produces the least (see Figure 2(b)). This also

explains the differences observed in the accumulation of cells to MeAsp in the

three gradients considered here. As such, there is clear theoretical support for360

the idea that increasing the peak concentration of one ligand will not necessarily

require increasing amounts of another ligand in order to overcome cells being

attracted to it. In fact, upon examining the results of Figure 10 the receptor

sensitivity can be seen to play a role in determining the ability of cells to accu-

mulate about the peak MeAsp concentration. In Figure 10(a), the example with365

the greatest sensitivity to MeAsp, it is clear that there is strong accumulation
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toward the peak concentration located at (x, y) = (−1, 0) (demonstrated by a

ratio between initial and final distances to the MeAsp peak of ∼ 0.15 in Fig-

ure 12). This differs from panel (b) and (c) where the accumulation is clearly

less strong, as evidenced by the reduced accumulation about (x, y) = (−1, 0). It370

is in fact possible to observe weak accumulation in panel (b), corresponding to

ω = 5 whereas panel (c) (ω = 10) displays virtually no accumulation toward the

MeAsp peak concentration (as seen in Figure 12 where the ratio between the ini-

tial and final distances to the peak MeAsp concentration is ∼ 1). This strongly

suggests that the link between the ability to accumulate toward a certain ligand375

concentration coupled with receptor sensitivity is causing the emergence of the

behaviour observed here.

Upon further consideration of the results here it is clear that the sensitivity

of chemoreceptors to MeAsp alone does not quite tell the whole story. It is clear

that the sensitivity of chemoreceptors to MeAsp is responsible for the ability380

of cells to accumulate about a peak MeAsp concentration. This, however, will

not directly affect the ability of cells to accumulate in response to a serine

chemoattractant gradient apart from the fact that the two chemoreceptor types

share a common intracellular signalling pathway in order to produce a single

response. In order to consider the ability of cells to accumulate about serine385

we look to Figure 11. It is clear from these results that the υ value at which

cells begin to accumulate toward MeAsp is fairly similar in each of the three

examples. This would suggest that a ligand sensitivity curve similar to that for

MeAsp is acting to control the sensitivity of the response to serine. In particular,

for values of υ > 10−1 it is clear that there must be a high level of sensitivity390

to the serine gradient since all 50 cells in each example are attracted toward

the serine peak. For υ < 10−4 we would expect a low sensitivity toward the

peak aspartate concentration since this is the region in which the fewest cells

are attracted to the serine gradient. We should therefore expect that in the

range 10−4 < υ < 10−1 we should observe a decreasing sensitivity to the serine395

peak concentration as the value of υ is decreased.
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Figure 12: A plot displaying the degree of accumulation exhibited by simulated E.

coli cells to simultaneously occurring gradients of MeAsp and serine. Results dis-

played here represent a summary of those in Figure 10. Here, for each simulation conducted,

we plot the ratio between the final and initial average distances from each peak ligand con-

centration (calculated as Ratio = dFinal/dInitial where dInitial and dFinal are the initial and

final average distances to a peak ligand concentration, respectively). This is used to give a

measure of the extent of accumulation that occurs in each case with a smaller value indicating

a greater degree of accumulation. Blue, red and green lines indicate results of simulations

conducted using ω = 1, ω = 5 and ω = 10, respectively. Crosses display accumulation toward

the attractant MeAsp whereas circles indicate accumulation toward serine. Crosses display

accumulation toward the attractant MeAsp whereas circles indicate accumulation toward ser-

ine. Note that smaller ratio values indicate a greater degree of accumulation whereas ratio

values close to one suggest no accumulation at all.

4. Discussion and Conclusions

In this manuscript we have used an ABM to understand the link between

the individual E. coli chemotactic response and the population scale response

in differing attractant environments. Firstly, we investigated the effects of vari-400

ation in total intracellular signalling proteins on the ability of cell populations

to accumulate within different ligand gradients. We then went on to examine

the responses of cells to two spatially distinct gradients of MeAsp and serine.

Studying the effects of variation in intracellular signalling protein concentra-

tions revealed significant differences in the ability of cells to accumulate about405
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the peak concentration of a given ligand gradient. More specifically, those cells

displaying shorter adaptation times (i.e. those with larger intracellular protein

concentrations) performed more effectively in steep ligand gradients whereas

those with longer adaptation times were more effective in shallow ones. This

is due to the fact that faster adapting cells are better able to deal with sharp410

changes in ligand concentration, thus ensuring they maintain a beneficial swim-

ming direction whereas cells with longer adaptation times (i.e. cells with smaller

signalling protein concentrations) can produce longer runs which are more ben-

eficial in shallower ligand gradients.

Since experimental results have shown a great degree of non-genetic varia-415

tion, a colony will consist of individual cells each containing different signalling

protein concentrations and thus differing chemotactic responses. This is likely

to represent a mechanism allowing cell colonies to survive across a wide range of

different extracellular environments [19]. For example, cells with large (small)

intracellular protein concentrations will be able to survive in environments con-420

taining steep (shallow) ligand gradients. It is therefore likely that a colony

containing cells with a range of different intracellular protein concentrations

will allow a subset of cells to survive within most environments. This surviving

subset of cells are then able to divide, thus replacing those cells that have been

lost leading to repopulation of the colony. Our results mirror the recent work of425

Frankel and colleagues [29]. They investigated the role of non-genetic variability

and the cellular environment, but greatly simplified the cell signalling cascade,

its intuitive biological connection to the cell response physiology and did not

consider the various populations individually for differing gradients as done so

here.430

Whilst the majority of both the experimental and theoretical literature fo-

cuses on the ability of cells to form a chemotactic response to one chemoattrac-

tant (usually MeAsp), Section 3.2 went a step further and examined how cells

respond in the presence of two different chemoattractants. It was shown here

that the response of a cell population would be determined by the sensitivity of435

the chemoreceptors to the precise chemoattractant concentrations present. Cells
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will accumulate toward a ligand concentration which they are most sensitive to,

but which is not necessarily the largest absolute concentration. In the case of

two competing gradients it is necessary to compare the sensitivity of cells to

each (using expressions such as that described by Mello & Tu [15]) in order to440

assess which gradient will be preferred.

We postulate here that the ability to respond to two (or possibly more)

ligand gradients with varying sensitivity may be advantageous in environments

in which mixtures of ligands are present. Here the response to the more sensitive

ligand, should it confer more survivability on the cell itself, would not be affected445

by the overall concentration of ligands within the mixture, thus allowing the

cell to ensure its response to important and possibly life-sustaining ligands is

maintained.

The results discussed within this manuscript demonstrate some of the poten-

tial uses of agent-based modelling in the study of bacterial chemotaxis. In fact,450

this work suggests that approaches such as that demonstrated here could even

help in the study of as yet understudied systems at either the single cell or pop-

ulation scale. ABMs of such systems which, from an experimental perspective,

are not fully understood could provide an initial round of model invalidation in

which models that do not produce experimentally observed behaviours, at one455

or both scales, may be identified and rejected more rapidly than may be the

case in more conventional single cell studies.
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