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Abstract  
 
A reference model of Fallible Endgame Play has been implemented and exercised with the chess-
engine WILHELM. Past experiments have demonstrated the value of the model and the robustness of 
decisions based on it: experiments agree well with a Markov Model theory. Here, the reference 
model is exercised on the well-known endgame KBBKN. 
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1 Introduction 
 
In previous papers [6,7], a reference model of fallible endgame play has been defined in 
terms of a spectrum of Reference Endgame Players (REPs) Rc. The REPs are defined as 
choosing their moves stochastically from an endgame table (EGT), using only the values 
and depths of successor positions.  
 
Here, we survey and compare existing experimental and theoretical results, and report on 
the latest findings with the familiar, complex endgame KBBKN. In Section 2, we revisit 
the basic concepts and theory of the REP model, while in Section 3, we describe the REP 
implementation in WILHELM [1]. In Sections 4-7, we review past experiments, compare 
experiment and theory, and introduce the KBBKN results. Section 8 summarises and notes 
some questions arising from this work. 
 
2 The reference endgame player model 
 
A nominated endgame, e.g., chess’ KQKR, is considered to be a system with a finite set of 
states {si} numbered from 0 to ns-1.1 Each state s(val, d) is an equivalence class of 
positions of the same theoretical value val and depth d. Higher-numbered states are 
assumed to be less attractive to the side to move, which is taken to be White. Thus, for 
KQKR with the DTC2 metric, we have maxDTCs (1-0) nw =31, (0-1) nB = 3, and ns = 37 
states in total: 

– si, i = 0: a 1-0 win, i.e. for White, not requiring a winner’s move3,  
– si, 1 ≤ i ≤ 31: 1-0 wins of depth i, 
– si, i = 32: theoretical draw, either in the endgame or a subgame, 
– si, 33 ≤ i ≤ 35: 0-1 wins, i.e. for Black, of depth 36-i 
– si, i = 36: a 0-1 win not requiring a winner’s move. 

The REP Rc in position P chooses stochastically from moves which each have a probability 
proportional to a Preference4, Sc(ss[vals, ds]), where s is the move’s destination state with 

 
1 For convenience, Appendix A summarises the key acronyms, notation and terms. 
2 DTC ≡ DTC(onversion) ≡ Depth to Conversion, i.e. to mate and/or change of material. 
3 i.e., mate, achieved conversion to won subgame, or loser forced to convert on next move. 



theoretical value vals and win/loss depth ds. Each move-choice by Rc is independent of 
previous move-choices. We require that {Rc} is a spectrum of players, ranging linearly 
from the metric-infallible player R∞ via the random player R0 to R-∞, the anti-infallible 
player. To ensure this, the function Sc(s[val, d]) is required to meet some natural criteria, as 
described more fully and formally in [7] and in Appendix B.  
 
Here, we choose, as an Sc(ss[val, d]) function meeting those criteria: 

  Sc(ss[win, d]) ≡ (d + κ)-c with κ > 0 to ensure that Sc is finite, 
  Sc(draw) ≡ Sc(win, n1) ≡ Sc(loss, n2) with n1 > nW and n2 > nB

  Sc(ss[loss, d]) ≡ λ⋅(d + κ)c, λ being defined by n1 and n2 above. 
 
This ensures, as required, that R0 prefers no move to any other, that Rc with c > 0 prefers 
better moves to worse moves, and that as c→∞, the Rc increase in competence and tend to 
infallibility in terms of the chosen metric. 
 
Although the Rc have no game-specific knowledge, the general REP model allows moves 
to be given a prior, ancillary, weighting vm based on such considerations [9]. Thus, vm = 0, 
as used in this paper, prevents a move being chosen and vm > 1 makes it more likely to be 
chosen.  
 
The probability Tc(i) of moving from a position to state si is therefore: 
 
 Tc(i) ≡ Sc(si)⋅∑moves_to_state_i vm / ∑all_moves vm⋅Sc(smove) 
 
3 Implementing the REP model 
 
The first author has implemented in WILHELM [1] a subset of the REP model which is 
sufficient to provide the results of this paper. Ancillary weightings vm are restricted to 1 
and 0. vm = 0 is, if relevant, applied to all moves to a state s rather than to specific moves: it 
can be used to exclude moves losing theoretical value, and/or to emulate a search horizon 
of H moves, within which a player will win or not lose if possible. WILHELM offers five 
agents based on the REP model: these are, as defined below, the Player, Analyser, 
Predator, Emulator and Predictor. A predefined number of games may be played between 
any two of WILHELM, Player, Predator, Emulator and an infallible player with endgame 
data. WILHELM also supports the creation of Markov matrices, see Section 5. 
 
3.1 The Player 
 
The Player is an REP Rc of competence c, and therefore chooses its moves stochastically 
using a validated (pseudo-)random number generator in conjunction with the function 
Sc(val, d) defined earlier. 
 

                                                                                                  
4 For convenience and clarity, the Preference Function Sc(vals, ds) may be signified by the more compact notations Sc(val, 
d) or merely Sc(s) if the context allows. 



3.2 The Analyser 
 
Let us imagine that an unknown fallible opponent is actually going to play as an Rc with 
probability p(x)⋅δx that c ∈ (x, x + δx):  ∫ p(x)dx = 1. The Analyser attempts to identify the 
actual, underlying c of the Rc which it observes. For computational reasons, the Analyser 
must assume that c is a value from a finite set {cj} and that c = cj with initial probability 
pc0,j.  Here, the cj are regularly spaced in [cmin, cmax] as follows: 

  cmin = c1, cj = c1 + (j-1)⋅cδ and cmax = c1 + (n-1)⋅cδ, i.e. c = cmin(cδ)cmax. 
 
The notation c = cmin(cδ)cmax is used to denote this set of possible values c. The initial 
probabilities pc0,j may be 1/n, the usual ‘know nothing’ uniform distribution, or may be 
based on previous experience or hypothesis. They are modified, given a move to state snext, 
by Bayesian inference [4]: 
  Tj(next) = Prob[move to state snext | c = cj], and 
  pci+1,j = pci,j⋅Tj(next) / ∑k [pci,k⋅Tk(next)]. 

Thus, the new Expected[c] = ∑j pci+1,j⋅cj.  

In Subsection 4.1 below, we investigate what values should be chosen for the parameters 
cmin, cδ and cmax so that the errors of discrete approximation are acceptably small. 
 
3.3 The Predator 
 
On the basis of what the Predator has learned from the Analyser about its opponent, it 
chooses its move to best challenge the opponent, i.e., to optimise the expected value and 
depth of the position after a sequence of moves. As winning attacker, it seeks to minimise 
expected depth; as losing defender, it seeks to maximise expected depth. In a draw 
situation, it seeks to finesse a win. Different moves by the predator create different sets of 
move-choices for the fallible opponent. These in turn lead to different expectations of 
theoretical value and depth after the opponent’s moves. The predator implementation in 
WILHELM chooses its move on the basis of only a 2-ply search. It may be that deeper 
searches will be worthwhile, particularly in the draw situation. 
 
3.4 The Emulator 
 
The Emulator Ec is conceived as a practice opponent with a ‘designer’ level of competence 
tailorable to the requirements of the practising player. An REP Rc will exhibit an apparent 
competence c' varying, perhaps widely, above and below c because it chooses its moves 
stochastically. In contrast, the Emulator Ec chooses a move which exhibits to an Analyser 
an apparent competence c" as close to c as possible. 
 
The reference Analyser is defined as initially assuming the Emulator is an Rx, x = 0(1)2c, 
where x = xj with initial probability 1/(2c+1). The Emulator Ec therefore opposes a 
practising player with a more consistent competence c than would Rc, albeit with some loss 
of variety in its choice of moves. The value c can be chosen to provide a suitable challenge 
in the practice session. The practising player may also have their apparent competence 
assessed by the Analyser. 
 



3.5 The Predictor 
 
The Predictor is advised of the apparent competence c of the opponent. It then predicts 
how long it will take to win, or what its chances are of turning a draw into a win, using 
data from an Analyser and from a Markov Model [4] of the endgame. This model is 
defined in Section 5 below. 
 
4 A review of previous experiments 
 
The first use of the REP model and WILHELM [6,7] was to study the two famous Browne-
BELLE KQKR exhibition games [5,10]. Browne’s apparent competence c was assessed by 
an Analyser, and BELLE’s moves as Black were compared with the decisions of a Predator 
using the Analyser’s output. 
 
Browne’s apparent c was approximately 19, the highest figure so far measured in a fallible 
player. In comparison, Bronstein [11] and Timman [3] have both measured in at around c = 
15 when attacking in KBBKN endgames. 
Six choices had to be made to effect the numerical analysis: 
– cmin = 0, cδ = 1, cmax = 50; κ = 0+ (i.e., arbitrarily small, effectively zero) 
– all cj were deemed equally likely, 
– metric = DTC. 
It was natural to begin by testing the effect of these six choices in the next experiments 
[8].The aim was to examine the robustness of the Analyser’s perception of Browne’s 
apparent capability c, and any effect on the Predator’s choice of moves.  
 
4.1 The effect of numerical analysis choices 
 
To test the choice of cδ, Browne-BELLE game 1 was reanalyzed with: 
  cmin = 0, cmax = 50, κ = 1, and cδ in turn set to 0.01, 0.1, 1, 2, 5 and 10. 
It may be shown the Analyser’s Bayesian calculation is a discrete approximation to the 
integral of a Riemann-integrable function. Therefore, the theory of integration guarantees 
that this calculation will converge as cδ → 0. We judge that the error is ignorable with cδ = 
1 and that no smaller cδ is needed. Similarly, the calculation converges as cmin → -∞ and 
cmax → ∞. Given that Browne appeared to have a c of approximately 20, the choices of cmin 
= 0 and cmax = 50 had an insignificant effect on accuracy. It seems reasonable to assume 
that the opponent will demonstrate positive skill, and that a cmax ≈ 2.5 × actual c should be 
appropriate. Of course, while the opponent is playing infallibly, perceived c will move 
swiftly towards the chosen cmax. Given the requirements on Sc(val, d), it may be shown5 
that, as κ increases, Rc progressively loses its ability to differentiate between better and 
worse moves, that Rc’s expectation of state and theoretical value do not improve and that 
Rc → R0. Thus, for a given set of observations, an Analyser assuming a greater κ will infer 
an increasing apparent competence c. 
 
We have recently chosen a fixed κ = 1, in effect including the immediate move in the line 
contemplated. We have not tested the effect of different κ on a Predator’s choices of move, 

 
5 The proof is by elementary algebra and in the style of Theorem 3 [6,7]. 



but assume it is not great. There seems little reason to choose one value of κ over another 
but the model of the endgame and WILHELM do allow this as a parameter. 
 
4.2  The effect of the initial probability assumption 
 
The usual, neutral, initial stance is a know nothing one, assuming that c is uniformly 
distributed in a conservatively-wide interval [cmin, cmax]. However, it is clear that had 
BELLE been using the REP model, it could have started game two with its perception of 
Browne as learned from game one, just as Browne started that game with his revised 
perception of KQKR. Also, one might have a perception of the competence c likely to be 
demonstrated by the opponent with the given endgame force – and choose this to be the 
mid-point of a [cmin, cmax] range with a normal distribution. 
 
Bayesian theory, see Section 3.2 above, shows that the initial, assumed non-zero 
probabilities continue to appear explicitly in the calculation of subsequent, inferred 
probabilities. We therefore note that initial probabilities have some nominal effect on the 
inferred probabilities but that this effect decays as subsequent experience takes over. 
 
4.3 The effect of the chosen metric 
 
The metric Depth to Conversion (DTC) was chosen because conversion is a common 
intermediate goal: capturing BELLE’S Queen was Browne’s objective. The adoption of 
DTC is however a chessic, domain-specific decision, even if it is an obvious one. Our 
analysis of the Browne-BELLE games shows that the Predator would never have made a 
DTC-suboptimal move-choice for Black. It is reasonable to assume that, had DTM(ate) 
been the chosen metric, it would never have chosen a DTM-suboptimal move. Different 
metrics often define the same sets of optimal moves but these sets can diverge and even 
become disjoint as the goals of those metrics approach. Where this occurs, the Predator 
would choose a different move in its tracking of the Browne-BELLE games. 
 
5 A Markov model of the endgame 
 
Let us suppose that the Preference Function Sc(val, d) is fixed, e.g., as the function defined 
here with κ = 1. Given a position P in state si, we can calculate the probability of Rc 
choosing move m to some position P' in state sj. We may therefore calculate the 
probability, Tc(j) of moving from position P to state sj. Averaging this across the endgame 
over all such positions P in state si, we may derive the probability mi,j of a state-transition si 

→ sj assuming initial state si. The {mi,j} define a Markov matrix Mc = [mi,j] for player Rc. 
This matrix, and the predictions which may be derived from it, provide a characterisation 
of the endgame as a whole. 
 
Let us assume that the initial position is 1-0, in state si, and that Rc does not concede the 
win. From the matrix, we may calculate, as shown in Appendix C: 

– the probability of Rc (starting in state i) being in state j after m moves, 
– the expected depth after m moves, 
– the probability of winning from state i in m moves or less, 
– the probability of winning from state i in exactly m moves,  
– the expected length of win for Rc starting in state I, achieve the win. 
 



These theoretical predictions were computed for KQKR and compared with the results of 
the extensive experiment described in the next section. Perhaps counter to intuition, there 
is no minimum capability c below which a win is impossible; quite the opposite. Because 
the win is assumed to be retained, it will eventually be achieved, if only because Rc 
executes an unlikely optimal move sequence. 
 
Table 1. Statistical Analysis of the 2,000-game experiment. 
 KQ
 Mi
 Max
 Mean
 St
 S
 |Mean
 M
 M
 Mean
 St
 S
 
6 An experiment with r2o
 
Echoing Browne-BELLE, a model KQKR match was staged between the fallible attacker 
R20 and the infallible defender R∞. It was assumed that R20 would not concede the win but 
eventually secure it as theory predicts. The game-specific repetition and 50-move drawing 
rules were assumed not to be in force. Table 1 summarises the results of this experiment. 
1,000 games were played from each of the two maxDTC KQKR positions (DTC = 31) 
used in the Browne-BELLE match. Games ended with mate or capture of the Rook. The 
purpose of the experiment was to observe: 
 
– the distribution of the c inferred by an Analyser6 at the end of each game 
  with the assumed probability of ci set to 1/51 at start of each game 
– the distribution of the lengths of the games, and 
– the trend in the Analyser’s inferred c, ignoring game-starts after the first. 
 
The mean game-length of 95.60 and standard deviation of 2.294 show the experiment 
agreeing closely with the theory. The Markov matrix predicts a mean game-length of 97.20 
for c = 20 and 83.70 for c = 21. Ignoring game starts and ends, the Analyser correctly 
identifies the capability of R20 as 20. Starting afresh from the start of each game, the 
Analyser shows a mean end-game apparent c of 21.50.7

 

n., end-of-game apparent c 15.06 14.73 14.73
., end-of-game apparent c 35.66 40.71 40.71
, end-of-game apparent c 21.318 21.620 21.469

. Dev., end-of-game apparent c 3.345 3.695 3.524
t. Dev of the Mean apparent c 0.106 0.117 0.079

 c  - 20|/Stdev_mean 12.43 13.85 18.59
in. moves, m , to conversion 37 37 37
aximum moves, m 395 325 395

 moves, m 96.88 94.31 95.60
. Dev., m 102.951 102.273 102.587

t. Dev., mean of m 3.256 3.234 2.294

KR:  R20 - R∞ Position 1 Position 2 Overall

 

6 using cmin = 0, cδ = 1 and cmax = 50 as found adequate in Section 4.1. 
7 Shorter games yield higher end-of-game apparent c which are more widely distributed.  



7 The KBBKN data 
 
Having checked that experiment and theory were confirming each other, we turned to 
another classic 5-man endgame, KBBKN [11]. More men implies more positions, greater 
depths and larger Markov matrices. Calculations were carried out in double-precision 
arithmetic to ensure that sufficient precision was retained in creating and using the 
matrices.8

  
Some characteristics of the theoretical predictions are similar to those of the KQKR data; 
others are different. Again, progress both at the most extreme depths and at shallow depths, 
seems easier than at the intervening depths where near-optimal moves are plentiful and 
hardly distinguishable from optimal moves. Again, there is exponential decay, after an 
initial peak, in the probability of a win in exactly m moves. It is clear that KBBKN is more 
difficult than KQKR as one might expect. In terms of the REP model, a higher capability c 
is required to win KBBKN with a similar efficiency to a KQKR win. 
 
 

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 100 200 300 400 500 600 700 800

c = 40

c = 35

c = 30

c = 25

Moves played

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 100 200 300 400 500 600 700 800

c = 40

c = 35

c = 30

c = 25

Moves played

 
 
 
 
 
 
 
 
  
 
 
 

Figure 1. Probability[conversion from maxDTC position in ≤ m moves]. 

 

 

 

 

 

 

 

 

 
1.E-05

1.E-04

1.E-03

1.E-02

1.E-01
0 100 200 300 400 500 600 700 800

Moves played

c = 40

c = 30

c = 25

c = 35

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01
0 100 200 300 400 500 600 700 800

Moves played

c = 40

c = 30

c = 25

c = 35

 
Figure 2. Probability[conversion from maxDTC position in m moves]. 

 
8 Matrix I – Mc has condition-number σ1/σ68 < 108, leaving 7 significant figures accuracy.  



7.1 The probability of winning 
 
Figures 1 and 2 show the probability of winning, respectively, in up to and in exactly m 
moves. The latter probability peaks at a slightly larger number of moves as c is reduced. 
The games were played without the 50-move rule but the Markov model would, if 
required, allow us to calculate the probability of winning from depth d on or before move 
50, before a possible draw-claim by the opponent. That probability is the probability of 
being in state 0 after 50 moves, namely the element Mc

50[d, 0] of Mc
50. 

 
Figure 3 gives the expected length of an Rc-R∞ game for each initial depth to maxDTC. 
Note that for c = 20, and starting at depth 31, KQKR games are expected to take 97 moves 
while KBBKN games average 3,444 moves. Figure 4 gives these probabilities of Rc, 
winning in 50 moves from any initial depth to maxDTC = 669 and for c = 15, 20, … , 40.  
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Figure 3. Expected Moves to conversion in a Rc-R∞ KBBKN game. 
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Figure 4. Probability[Rc wins an Rc-R∞ KQKR game in 50 moves]. 

 

 
9 This probability is zero of course for initial depths 51-66. 



8 Summary 
 
We have examined the utility of a reference model of Fallible Endgame Play by both 
experiment and theory, using both a comprehensive REP implementation in WILHELM and 
Markov methods. Various demonstrations have shown opportunities for exploiting the 
model, and the robustness of decisions based on it. Experimental results have also been 
compared with the Markov predictions, with which they agree closely. 
 
A comparison of the Markov predictions for KQKR and KBBKN demonstrates some 
characteristics persisting in the predictions. It also shows that the greater depths of 
KBBKN, maxDTC = 66, call for greater REP capability c to achieve the same efficacy as 
in KQKR, maxDTC = 31.  
 
Experiments which remain to be carried out include: 

– infallible White attacking fallible Black in a drawn position 
  e.g., in KBBKN, KNNKP, KNPKN, KQNKQ, KQPKQ or KRBKR, 
– infallible Black pressing for a draw in a lost position 
  this requires additional EGT data on draws forced in d moves, 
– a more insightful Predator searching more than 2p plies ahead, and 
– use of the Emulator as a training partner for human players. 
  
The REP model may be extended to other games where EGTs may be computed – to 
convergent games such as Chinese Chess, Chess Variants, 8×8 checkers and International 
Draughts. If a search-method can propose what it considers the best few moves in a 
position, each evaluated on an identical basis and therefore comparable, the concept of a 
stochastic player may be applied more generally than to just endgames for which perfect 
information is available. 
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Appendix A: Acronyms, Notation and Terms 

 
Analyser  an agent identifying a fallible opponent as an Rc player   
c    the competence index of an REP 
cδ    the difference between adjacent ci assumed by the Analyser 
cmax   the maximum c assumed possible by the Analyser 
cmin   the minimum c assumed possible by the Analyser 
d    the depth (of win or loss) of a position in the chosen metric, e.g. DTC 
DTC   Depth to Conversion, i.e. to change of material and/or mate 
DTM   Depth to Mate 
Emulator  an agent, Ec, choosing moves to best exhibit apparent competence c 
Horizon  a search limit, within which Rc will win or not lose if possible 
κ    κ > 0 ensures that (d + κ)-c is finite 
λ    a scaling factor, matching the probability of loss to that of a draw 
Li    expected length of win (to conversion in winner’s moves) from depth i 
maxDTC  maximum DTC (depths) 
Mc    a Markov matrix [mi,j] 
mi,j    the probability, averaged over the endgame, that Rc in state si moves to sj
metric   a measure of the depth of a position, usually in winner’s moves 
n    the number of different ci assumed by an Analyser 
n1    n1 > nW, ensures that draws are less preferable than wins 
n2    n2 > nB, ensures that draws are more preferable than losses 
nB    the number of ‘Black win’ states  
nW    the number of ‘White win’ states 
ns    the number of states for a chosen endgame and depth metric 
p(x)⋅δx  the probability that Rc’s c ∈ [x, x + δx] 
pc0,j   the a priori (before a move) probability that the unknown c is cj 
pci,j   the probability, inferred after the ith move, that the unknown c is cj 
Player   an Rc, choosing its moves stochastically with Preference Function Sc
Predator  an agent, choosing the best move possible on the basis of an opponent-model 
Predictor  an agent predicting the longer term prospects of a result from Markov theory 
REP   Reference Endgame Player 
R0    the REP which prefers no move to any other 
Rc    an REP of competence c 
R∞    the player which plays metric-optimal moves infallibly 
s    endgame state 
si    (endgame) state i 
Sc(vals, ds) the Preference Function for REP Rc, a function of destination value and depth 
Sc(val, d)  a convenient contraction of Sc(vals, ds) 
Sc(s)   a more convenient contraction of Sc(vals, ds) 
Tc(i)   the probability that Rc moves to state i, si
val    the theoretical value of a position, i.e., win, draw or loss 
vm    a weighting that may be given to a move on chessic grounds 



Appendix B: Preference Functions
 

We require that the set {Rc} is in fact a linear, ordered spectrum of Rc players such that: 

- for R0, all moves are equally likely, 
- ‘R∞’ ≡ limc→∞ Rc exists and is the infallible player choosing metric-optimal moves, 
- ‘R-∞’ ≡ limc→-∞ Rc exists and is the anti-infallible player choosing anti-optimal moves, 
- c2 > c1 ⇒ Rc2’s expectations of successor state, i.e. E[s], are no worse than Rc1’s, 
- c2 > c1 ⇒ Rc2’s expectations of theoretical value, i.e. E[vals], are no worse than Rc1’s. 
 

The following requirements on Sc(val, d) ≡ Sc(s) are natural ones and sufficient to ensure the above, as proved in [6,7]: 

- Sc(s) is finite and positive: no move has zero or infinite preference for finite c,10

- S0(s) is a constant, 
- for some n1 > nW and n2 > nB, Sc(draw) = Sc(win, n1) = Sc(loss, n2), 
- Fj(c) ≡ Sc(si+1)/ Sc(si) decreases as c increases: lim c→∞ Fj(c) = 0 and lim c→-∞ 1/Fj(c) = 0, 
- for c ≠ 0, sign(c)⋅Sc(sj) decreases (↓) as j increases (↑), 
- for c > (<) 0, Wc(d) = Sc(win, d)/ Sc(win, d+1) ↓ (↑) as d ↑ and limd→∞ Wc(d) = 1, 
- for c > (<) 0, Lc(d) = Sc(loss, d+1)/ Sc(loss, d) ↓ (↑) as d ↑ and limd→∞ Lc(d) = 1. 
 

The net effect is that: 

- the spectrum of Rc is centred as required on the random player, R0, 
- the Rc with c > 0 prefer better moves to worse moves, 
- the Rc demonstrate increasing apparent skill as c → ∞, 
- Rc can be arbitrarily close to being the metric-infallible player for finite c 
- as d→∞, Rc discriminates less between a win (or loss) of depth d and one of depth d+1.

 
Appendix C: REP Markov Matrices 
 
After making decisions about the various parameters of the REP model, Markov matrix Mc = [mi,j] defines for player Rc 
the average probability, mij, of Rc moving to state j given that it is in state i. Let us assume that the position is a 1-0 win. 
Then, if Rc is in fact the infallible defender R∞, Mc ≡ I, the identity matrix. This is because depth of win is measured in 
winners’ moves, and therefore losers’ moves do not change the depth.  Let us assume, as in the experiments, that Rc is a 
fallible attacker against an infallible defender but that Rc never loses sight of the win. If the initial state-probability vector 
is p0

T: 
- pm

T  = p0
T.Mm is the state-probability vector after m moves 

- pm, j  = Pr[being in state j after m moves] 
- Σ pm, j.dj = E[depth after m moves] 
- pm, 1 = Pr[being in state 1, i.e. having won after m moves] 
- pm, 1 – pm-1, 1 = Pr[winning in exactly m moves] 

Let li be the expected length of win from state i. Then l1 = 0 by definition. Otherwise: 

 li = 1 + ∑j mi,j.lj ⇒ -1 = ∑j≠i mi,j.lj + (mi,i – 1).li ⇒ (1 – mi,i).li - ∑j≠i mi,j.lj = 1 

Thus the equations A.L = U solve for L = {li} where: 

 U = (0, 1, … , 1) and A ≡ I - Mc except that A1,1 = 1.  

The number of significant figures in computations of li depends on the precision of the arithmetic and the condition 
number of A which was therefore checked using MATLAB. Condition number is observed to increase as c decreases 
until, eventually, the li for Rc are effectively incalculable in the double-precision arithmetic used. For KBBKN, the 
condition numbers for c = 15 was 4*108 and for c = 9.95 was 3*1012, still yielding significant results. 

 
10 Hence the requirement that κ > 0, to accommodate the case of d = 0 in (d + κ)-c. 


