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Explicit time-stepping for moving meshes

M.J. Baines

Department of Mathematics and Statistics,

P O Box 220, University of Reading, RG6 6AX, UK

Abstract

In order to move the nodes in a moving mesh method a time-
stepping scheme is required which is ideally explicit and non-tangling
(non-overtaking in one dimension (1-D)). Such a scheme is discussed in
this paper, together with its drawbacks, and illustrated in 1-D in the
context of a velocity-based Lagrangian conservation method applied
to first order and second order examples which exhibit a regime change
after node compression. An implementation in multidimensions is also
described in some detail.

1 Adaptive moving meshes

Moving mesh methods are an alternative (or addition) to fixed mesh adaptive
methods in which a given number of mesh points are relocated at each time
step (also known as r-adaptivity). Relocation may be based on a velocity
generated from geometric or physical principles, as in the GCL method [5]
and methods based on conservation [1, 2], or on a mapping from a reference
space to physical space, as in MMPDEs [8, 6, 9] and Parabolic Monge-Ampere
[7] methods. Thus there is a requirement to advance the mesh in time from
a given velocity or map.

In numerical implementations the size of the time step is often governed by
stability considerations dependent on the numerical method used. A further
challenge in advancing the mesh is the avoidance of node overtaking in 1-D
or mesh tangling in 2-D. Thus time steps are sought that are not only stable
but also preserve the ordering of the nodal positions in 1-D or the integrity
of the mesh in higher dimensions.

For example, in one dimension, given a velocity V n
j at a node Xn

j , (j =
0, . . . , J), at time level n, the explicit Euler time stepping scheme,

Xn+1
j = Xn

j + hV n
j , (1)

where h is the time step, is often used to update the nodesXn
j , (j = 0, . . . , J),

but there is no guarantee that the ordering of the nodes will be preserved.
An obvious sufficient a priori condition for preserving the ordering of the
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nodes is easily obtained from the nodal velocities and the node spacing by
restricting the time step h to the shortest time that any node Xn

j takes to
cross one half of either of the adjacent node spacings i.e.

h <
1

2
min
j

∣∣∣∣∣∣∆Xm
j±1/2

∆V k
j±1/2

∣∣∣∣∣∣
for all j = 0, . . . , J , where ∆Xj±1/2 and ∆Vj±1/2 denote the differences in
Xj and Vj across the interval j ± 1/2, respectively. However, since nodes
often move in concert this condition is highly restrictive and usually far from
necessary. At the other exteme, a necessary time step for preserving the
ordering of the nodes is obtained pragmatically by taking a speculative time
step and reducing it if any node overtaking has taken place, but this is a
cumbersome process and not conducive to theoretical analysis.

Implicit schemes fare better, but require more work per time step. For
example, in [3] a maximum principle is used in one dimension to ensure
ordering of the nodes. However, in this paper we shall only be concerned
with explicit schemes for moving the nodes.

The layout of the paper is as follows. In the next section we introduce
an explicit order-preserving scheme in 1-D and discuss its analytic basis and
local truncation error. This is followed by an extension of the scheme using
a higher order quadrature. In the next section two evolution problems are
described to which the schemes may be applied. Numerical examples are
given in section 4 using the Lagrangian moving mesh finite difference scheme
of [11]. Finally, in section 5 the extension to multidimensions is described in
detail, with a summary in section 6.

2 An explicit order-preserving scheme in 1-D

One way of achieving order-preservation of the nodes in 1-D is to focus on
the differences ∆Xj+1/2 between the nodal positions Xj, Xj+1. Applying the
explicit Euler scheme (1) to ∆Xj+1/2

∆Xn+1
j+1/2 = ∆Xn

j+1/2 + h∆V n
j+1/2 = ∆Xn

j+1/2

1 + h
∆V n

n+1/2

∆Xn
j+1/2

 , (2)

where the bracket in the final term has the status of an amplification factor.
If the amplification factor becomes negative then the interval length ∆Xj+1/2

changes sign and tangling occurs.
Suppose that the nodes are ordered at time level n so that ∆Xn

j+1/2 is
positive for all j. Then, if ∆V n

j+1/2 is also positive for all j, the amplification
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factor in (2) is positive and ∆Xj+1/2 remains positive after a time step, thus
preserving the ordering of the nodes. Similarly, in the case of the scheme

∆Xn+1
j+1/2 = ∆Xn

j+1/2

1− h
∆V n

j+1/2

∆Xn
j+1/2

−1

(3)

it is clear that if ∆Xn
j+1/2 is positive and ∆V n

j+1/2 is negative for all j then

∆Xn+1
j+1/2 is positive and the scheme again preserves the ordering of the nodes.
A time-stepping scheme which incorporates both of these properties (and

coincides with the explicit Euler scheme to first order) is

∆Xn+1
j+1/2 = ∆Xn

j+1/2 exp

h ∆V n
j+1/2

∆Xn
j+1/2

 , (4)

where the amplification factor is the exponential. Because the exponential is
always positive the sign of ∆Xj+1/2 is unchanged in a time step regardless of
the sign of ∆V n

j+1/2, thus preserving the ordering of the nodes.

Reconstruction of the nodal positions from the differences ∆Xn+1
j+1/2 is

straightforward. Given Xn+1
j at one point, Xn+1

0 say,

Xn+1
j = Xn+1

0 +
j−1∑
k=0

∆Xn+1
j+1/2. (5)

The analytic basis of the scheme is as follows. Given that the equation
being approximated is

dx

dt
= v(x, t), (6)

by writing the space derivatives of x and v as xξ and vξ (in terms of a fixed
reference coordinate ξ),

dxξ

dt
= vξ, or

d log xξ

dt
=

vξ
xξ

. (7)

Integrating the second of (7) from t to t+ h,

log xξ(t+ h)− log xξ(t) = log

(
xξ(t+ h)

xξ(t)

)
=
∫ t+h

t

vξ(τ)

xξ(τ)
dτ, (8)

so that

xξ(t+ h) = xξ(t) exp

(∫ t+h

t

vξ(τ)

xξ(τ)
dτ

)
, (9)
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in which xξ(t + h) has the same sign as xξ(t). It is this equation that is
discretised in (4) by a low order quadrature of the integral.

The reconstruction (5) of the Xn+1
j from the ∆Xn+1

j is a discretisation of
the integral

x(ξ, t) =
∫ ξ

ξ0
xξ′ dξ

′, (10)

at time t, given x at ξ = ξ0 say.
The scheme (4) also arises from numerically integrating (8), giving

log

∆Xn+1
j+1/2

∆Xn
j+1/2

 = h
∆V n

j+1/2

∆Xn
j+1/2

(11)

2.1 Truncation and quadrature errors

The local truncation error (LTE) of the scheme (4) applied to the first of (7)
is

T1 =
1

h

{
xξ(t+ h)− xξ(t) exp

(
hvξ(t)

xξ(t)

)}
Expanding in powers of h,

T1 =
1

h

{
xξ(t) + hx′

ξ(t)− xξ(t)

(
1 +

hx′
ξ(t)

xξ(t)

)}
+O(h), (12)

which is of order O(h), the same as for the explicit Euler scheme. Similarly,
the LTE of (11) is

T ′
j =

1

h

{
log

(
xn+1
ξ

xn
ξ

)
− h

vnξ
xn
ξ

}
=

1

h

{
log

(
xn
ξ + hvn+1

ξ

xn
ξ

)
− h

vnξ
xn
ξ

}
(13)

which is also of order O(h).

2.1.1 Higher order quadrature

A higher order explicit order-preserving scheme in 1-D can be constructed
using a Runge Kutta (RK) approach to the second of (7), giving instead of
(11)

log

∆Xn+1
j+1/2

∆Xn
j+1/2

 =
h

2
(K1 +K2)

n
j+1/2 (14)

where K1 = ∆V/∆X and K2 is ∆V/∆X evaluated at ∆X + hK1. The
scheme corresponding to (4) is then

∆Xn+1
j+1/2 = ∆Xn

j+1/2 exp

(
h

2

(K1 +K2)

∆X

)n

j+1/2

(15)
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which has the same monotonicity property as (4). However, the LTE of the
scheme (15) applied to the first of (7) is

T2 =
1

h

{
xξ(t+ h)− xξ(t) exp

(
h

2

(k1(t) + k2(t))

xξ(t)

)}
(16)

where k1(t) = x′
ξ(t)/xξ(t) and k∗

2(t) is x
′
ξ(t)/xξ(t) evaluated at xξ(t)+hx′

ξ(t),
leading to

1

h

{
xξ + hx′

ξ +
1

2!
h2x′′

ξ − xξ

(
1 +

h

2xξ

{2x′
ξ + hx′′

ξ}+
1

2!
h2(x′

ξ)
2

)}
+O(h2)

(17)
which is only of O(h) (first order) even though the integral in (9) has been
approximated by a higher order integration scheme. Neverthless, the scheme
(15) is a second order scheme for the second of (7).

2.2 Effect of rounding error

In principle, any positive value of the time step h is allowed in the schemes
(4) and (15) when preserving the node ordering. However, when used with
inexact arithmetic this is no longer the case.

If ∆Xn
j+1/2 falls below the level of rounding error (as is likely when

∆V n
j+1/2 < 0 so that adjacent nodes approach one another), the positiv-

ity of ∆Xj+1/2 may not be maintained in a time step due to the random
nature of rounding error, ϵ say. To avoid this difficulty a simple regularisa-
tion is to raise ∆Xn

j+1/2 in (4) or (15) above the level of rounding error to
(∆Xn

j+1/2 + |ϵ|), thus converting (4) for example to

∆Xn+1
j+1/2 = (∆Xn

j+1/2 + |ϵ|) exp

h ∆V n
j+1/2

(∆Xn
j+1/2 + |ϵ|)

 (18)

In practice this regularisation has an insignificant effect on the computations.

2.3 Use in conjunction with another equation

When used in conjunction with another equation, such as the PDE whose
solution is required, large values of h can generate unwanted numerical fea-
tures. Although node overtaking is avoided there is no guarantee that the
nodal spacings remain smooth, thus it is possible to generate oscillatory be-
haviour in the related equation as a knock-on effect.

Provided that ∆Xj and ∆Vj are smooth at time level n, the source of
oscillatory behaviour in ∆Xj at time level (n+1) is the spatial variation of the
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factor eQ where Q is the quadrature error in the approximation of the integral
in (9). Although this quadrature error is small it is not necessarily smooth
and will be exaggerated by large time steps. The resulting oscillations can be
reduced by a post-processing of the ∆Xj’s by a a Laplacian smoother which
filter out the oscillations without invalidating the monotonicity property. For
example, the filter

∆Xn+1
j =

1

4

(
∆Xn+1

j−1 + 2∆Xn+1
j +∆Xn+1

j+1

)
(19)

supresses the sawtooth component of ∆Xn+1
j , giving a smoother nodal spac-

ing. In effect this smoother is a filter on the quadrature error.

3 Lagrangian conservation

A velocity-based method to which these schemes may be applied is the La-
grangian conservation method of [2, 12] for a flux-driven mass-conserving
PDE problem. The velocity v(x, t) is provided in terms of a flux function,
f(u, ux) say, of the solution u(x, t) by the flux balance equation

[−f(u, ux) + uv] = 0 (20)

where [·] denotes the jump in the argument across any two moving points
in the domain. The function f(u, ux) depends on t through its dependence
on u(x, t) and ux(x, t). The evolution of a general moving coordinate x̂(t) is
determined by integrating

dx̂

dt
= v(x̂, t), (21)

and the solution u(x̂, t) (required to be positive) found from the Lagrangian
form of the conservation law,∫ x̂2(t)

x̂1(t)
u(x, t) dx is constant in time, (22)

for any two arbitrary moving points x̂1(t), x̂2(t).
Given a zero net mass flux boundary condition on v (such that (−f(u, ux)+

uv = 0), then from (20) the velocity at a general moving point x̂(t) is

v(x̂, t) =
f(u, ux)

u

∣∣∣∣∣
x=x̂(t)

(23)

provided that u(x̂, t) ̸= 0.
Two instances of the flux function f(u, ux) occur in the following exam-

ples:
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1. the well-known inviscid Burgers equation, for which the flux function
is

f(u, ux) =
1

2
u2 (24)

and the Lagrangian velocity, from (23), is

v(x, t) =
1

2
u(x, t) (25)

(Note that the velocity differs from the standard characteristics ve-
locity v(x, t) = u(x, t), for which u(x, t) remains constant in time). A
significant feature of solutions is the formation of a shock in finite time.

2. a porous medium equation [13], for which the flux function is

f(u, ux) = −u2ux (26)

and the velocity is v = −uux. Important features of the solution of
this problem are the existence of a waiting time before the boundary
moves, and the infinite slope at the boundary when movement takes
place.

4 Numerical experiments

We now show the results of numerical experiments carried out on the invis-
cid Burgers problem and porous medium problem described in the previous
section using a finite difference form of the Lagrangian conservation method
[4, 11, 12] to move the nodes.

4.1 The finite difference Lagrangian conservation method

Within a timestep the algorithm is as follows:

1. Approximate the velocity v(x, t) using (23) by V n
j = f(Un

j , (Ux)
n
j )/U

n
j

and an upwind discretisation of (Ux)
n
j .

2. Advance the nodes Xn
j to the next time level n+1 by the timestepping

scheme.

3. Determine the approximate solution Un+1
j at the next time level using

an approximation to (22) as follows:
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In the case of the inviscid Burgers equations approximate the integral
(22) using the first order upwind quadrature

(Xn+1
j −Xn+1

j−1 )U
n+1
j = Cj (27)

where the Cj are constants (in time) prescribed by the initial data, at
t0 say, in the form

Cj = (X0
j −X0

j−1)U
0
j

In the case of the porous medium equation approximate the integral
(22) by the midpoint quadrature

(Xn+1
j+1 −Xn+1

j−1 )U
n+1
j = C ′

j, (28)

where the C ′
j are constants (in time) prescribed from initial data by

C ′
j = (X0

j+1 −X0
j−1)U

0
j

4.1.1 The inviscid Burgers equation

In this example f(u) = 1
2
u2 and v = 1

2
u, from (23).

We take initial data u(x, 0) = cos(πx/2) in |x| < 1 and boundary con-
ditions u = v = 0 at x = −1 with u = 0 at the downwind boundary.
Conservation holds both globally and locally in this method.

Interest lies in the capacity of the method to follow the solution through
the compression occurring in (0 < x < 1) (in which the intervals between
the nodes become extremely small) through to the formation of the shock
(after which the method relies on local conservation) with the explicit order-
preserving time-stepping schemes.

The scheme (18) takes the form

∆Xn+1
j+1/2 = (∆Xn

j+1/2 + |ϵ|) exp
(
h

2

∆Un

∆X + |ϵ|

)n

j+1/2

, (29)

while in the scheme (15) K1 =
1
2
∆U/∆X and K2 is 1

2
∆U/∆X evaluated at

∆X + hK1. The regularising parameter ϵ is at the level of rounding error.
The initial domain |x| ≤ 1 is discretised by 61 equispaced nodes Xj,

(j = 0, . . . , J) and the initial values of Uj at Xj are sampled directly from
the initial condition at the nodes. The time step is h = 0.01.

We show results for the two schemes (4) and (15) in figures 1(a) and 1(b),
respectively. Each figure shows the evolution of the initial data from time
t = 0 to time t = 5 at intervals 0.5 (five times the time step h for clarity).
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Inviscid Burgers Equation
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Figure 1: Time series of the evolution of the solution to the Inviscid Burgers
Equation (flux fuunction (24)) with 61 nodes and timesteps h = 0.01 at time
intervals 0.05 from t = 0 to t = 3 using the Lagrangian conservation method
with (a) the time-stepping scheme (4) and (b) the time-stepping scheme (15).

The main difference between the figures is the suppression of the oscilla-
tions that occur in scheme (29) by the scheme (15) at the formation of the
shock. The scheme not only copes well with the compression of the nodes
as they approach the shock but also provides a smooth transition to the
post-shock behaviour.

We note the slight decay in amplitude of the wave at early times due to
the low order upwind approximation used for the integral (22).

The most striking thing about Figure 1 is the ease with which the scheme
handles the compression of the nodes as they approach the infinite slope and
the smooth transition from the waiting time regime to the moving boundary
regime. A specimen grid history is shown in Figure 2.

4.1.2 The porous medium equation

In this example f(u) = −u2ux and v = −uux = −1
2
(u2)x from (23).

We take initial data u(x, 0) = cos(π/2)x in |x| < 1 and zero net flux (and
therefore mass conserving) boundary conditions at x = ±1. Conservation
holds both globally and locally in this method.

Interest lies in the capacity of the method to follow the solution during
the waiting time [10]) (in which the intervals between the nodes become
extremely small) through to the spontaneous movement of the boundary
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Figure 2: Grid history of the evolution of the solution to the Burgers’ equa-
tion problem with 21 nodes and timesteps h = 0.01 at all time intervals from
t = 0 to t = 2 using the scheme (30).

(which occurs when the slope becomes infinite).
Again, the initial domain |x| ≤ 1 is discretised by 61 equispaced nodes

Xj, (j = 0, . . . , J) and the initial values of Uj at Xj are sampled directly
from the initial condition at the nodes. The time step is again h = 0.01.

The scheme (18) takes the form

∆Xn+1
j+1/2 = (∆Xn

j+1/2 + |ϵ|) exp
(
−h

2

∆(U2)x
∆X + |ϵ|

)n

j+1/2

(30)

while in the scheme (15) K1 = −1
2
∆(U2)x/∆X and K2 is −1

2
∆(U2)x/∆X

evaluated at ∆X+hK1. Here ∆(U2)x is discretised as the barycentric average
of the slopes ∆(U2)/∆X in the adjacent intervals.

We show results for the scheme (4) in figure 3. The figure shows the
evolution of the initial data from time t = 0 to time t = 3 at intervals 0.2.
The results for the scheme (15) are very similar.

A specimen grid history is shown in Figure 4 (on the right hand half of
the domain), in which the transition of the boundary point from waiting to
movement is clearly seen.

5 Multidimensions

We now discuss the extension of the procedure to multidimensions. As in the
one-dimensional case there are two stages to the approach. First, given the
velocities of the nodes of a multidimensional mesh, we can compute relative
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Figure 3: Time series of the evolution of the solution to the Porous Medium
Equation (flux function (26)) with 61 nodes and timesteps h = 0.01 at time
intervals 0.2 from t = 0 to t = 3 using the scheme (30).
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Figure 4: Grid history of the evolution of the solution to the porous medium
equation problem with 21 nodes (for the right hand half of the domain) for
timesteps h = 0.01 at all time intervals from t = 0 to t = 2 using the scheme
(30).
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velocities along mesh edges which can be used to compute new positive edge
lengths using (4) or (15).

Secondly, given the complete set of positive edge lengths, we would like
to use them to compute the nodal positions in such a way as to avoid mesh
tangling. This aspect is the multidimensional equivalent of (10). To prepare
for the generalisation write equation (10) as

Xj+1 −Xj

∆Xj+1/2

=
Xj −Xj−1

∆Xj+1/2

(31)

where the interval lengths ∆Xj±1/2 are known but the nodal positions Xj

are not. Note that (31) is equivalent to equating the sum of the signed unit
vectors in the two adjacent intervals to zero. The system of equations (31)
for all j is implicit but can be written as a matrix equation where one value
of Xj is prescribed for a unique solution. Equation (31) can also be written
in the form

Xj =
(∆Xj−1/2)

−1Xj−1 + (∆Xj+1/2)
−1Xj+1

(∆Xj−1/2)−1 + (∆Xj+1/2)−1
(32)

showing that Xj is a barycentric average of its neighbours.
An iterative form of (31) (using an iteration index p) is

Xp+1
j = Xp

j + ϕ
{
(∆Xj+1/2)

−1(Xj+1 −Xj)
p − (∆Xj+1/2)

−1(Xj −Xj−1)
p
}
(33)

where the relaxation factor ϕ < 1
2
. Since the weights (∆Xj−1/2)

−1 are positive

the node at Xp+1
j always lies between the midpoints of the intervals adjacent

to Xp
j .

Straightforward generalisations of (31) and (32) to multidimensions are

∑
jk

Xjk −Xj

∆Xjk

= 0 (34)

and

Xj =

∑
jk(∆Xjk)

−1Xjk∑
jk(∆Xjk)−1

(35)

where jk is the index of nodes Xjk neighbouring node Xj, the ∆Xjk being
the known positive edge lengths joining Xj to Xjk. Note that equation (34)
is equivalent to equating the resultant of the unit vectors measured outwards
from Xj along these edges to zero (which is the crux of the procedure).
Unlike the one-dimensional case there is no unique solution to the system
(34). Instead, we minimise a norm of the residual of (34). If the norm is the
l2 norm the minimiser is given by equation (35).
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The implicit system of equations (34) for all j can be written as a matrix
equation, where at least one value of Xj is prescribed for a unique solution.

An iterative form of (35) (using an iteration index p) is

Xp+1
j = Xp

j + ϕ

∑
jk(∆Xjk)

−1(Xjk −Xj)
p∑

jk(∆Xjk)−1
(36)

(cf. (33)), where ϕ is a relaxation factor. It also has (34) as its limit (if it
converges) and in addition has the property that at each iteration the node at
Xp+1

j lies in the convex hull of the surrounding nodes scaled by the relaxation
factor ϕ, thus enforcing non-tangling if ϕ is sufficiently small. Taking ϕ ≤ 1/2
so that Xp+1

j lies in the convex hull of the midpoints of the edges through
Xp

j is sufficient in most cases for non-tangling, although smaller values of ϕ
may be used in extreme cases.

6 Summary

In this paper we have discussed some explicit time-stepping strategies for
moving mesh methods.

The strategy suggested in this paper is a two-step approach which relies
on interval lengths in one dimension and edge lengths in multidimensions.
The basic building brick is a scheme which evolves lengths numerically in
such a way as to keep them positive. This is achieved by a scheme which
uses an amplification factor in the form of an exponential, which has the same
order of accuracy as the explicit Euler scheme. The accuracy of the scheme
is increased by a higher order quadrature. The second step is to construct
a mesh from these positive lengths. In one dimension this is straightforward
when the position of one node is known, but in higher dimensions a spe-
cial principle is required. Generalising from one dimension we propose that
the resultant of the unit vectors along the edges emanating from a node be
minimised in order to locate the node from the edge lengths.

There are some drawbacks in the implementation of the scheme. Round-
ing errors can upset the positivity of the amplification factor in the first step
and, more seriously, a lack of smoothness of the intervals or edge lengths
can engender oscillations when used in conjunction with the numerical ap-
proximation of another equation which may invalidate schemes relying on a
positive monitor function.

Numerical illustrations are shown for a first and second order problem,
each of which exhibits a compression followed by a regime change.
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