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The European Declarative System,
Database, and Languages

The EP2025 EDS project develops a highly parallel information server that supports established
high-value interfaces. We describe the motivation for the project, the architecture of the sys-
tem, and the design and application of its database and language subsystems.

Guy H.aworth

I]
n 1988 Bull, lCL, Siemens, and their
jointly owned European Computer
Research Centre (ECRC)identified a
common interest in supporting the

processing of future intensive applications. The
four partners defined a European Declarative
System proposal, whiCh the European Commis-
sion supported as project EP2025, a part of the
European Economic Community's ESPRIT pro-
gram. The EDS project began in 1989 and ex-
tends until 1992 with phases of definition,
component development, and system integration.

EDS machines primarily function as informa-
tion servers to manage all varieties of informa-
tion intelligently.They will support languages and
interfaces of value that are already established
and in use: Unix, extended SQL, Lisp, CH, and
the ECRC Elipsys parallel logic programming
language.

The following analysis of the requirement for
information servers motivated the EDSproject and
justifies this role for EDS machines.

Steve Leunig

/CL

Carsten Hammer

Siemens

Mike Reeve

ECRC

Information server requirement
Enterprises in the industrial, service, govern-

ment, administrative, and defense sectors use in-
formation technology today. They depend
increasingly on their information resource to:

. reduce operational costs,. improve effectiveness from stock holding to
customer service,

20 IEEEMicro

. support business development in new mar-
kets, and. create a lasting competitive advantage in a
rapidly changing world.

These enterprises often regard their information
as more important than their next product or
service. As a result, they pursue a systems archi-
tecture that delivers highly reliable information
technology support and comprises a:

. complete, coherent,and robustinformation
base;. portfolio of applications interworking
through data; and. framework of long-life interfaces protecting
their investments.

Large corporate systems increasingly play the
role of database or information servers; servicing
the SQLinterface today requires some 75-80
percent of the processor cycles. Many factors
increase the load on information servers, a fact
likely to require the development of systems with
highly parallel architecture to meet the future
demand.l .

Information resource. We've deliberately
chosen the word information to be an umbrella
term for the complete knowledge spectrum. We
see this spectrum ranging from conventional for-
matted data to less structured text, representations
of sound and image, and higher order knowledge
in the forms, for example, of constraints, integrity

0272-1732/90/1200-0020$01.00 @ 1990 IEEE



rules,business rules,and processes.Knawledgein itsbroad-
est sense, af Caurse, includes facts and analysis, .certainty,
rumar, and speculatian.

The valume af such infarmatian repartedly grows at same
25-30 percent yearly, a rate that we expect to.be sustained by
increased interest in text and image. Since this infarmatian is
sa valuable, we hape to.stare it with security levels that wauld
be the envy af any bank. These levels suggest a large, central
facilityrather than a set af all taa partable persanal camputer
disks.

Infonnation access. Only an-line systems suppart the
effectiveness needed in aur budget-cansciaus, campetitive
warld. Literateinfarmatian warkers, desktap technalagy, CASE
(camputer-aided saftware engineering) taals, and busine$$~
to-business systems increase the valume af an-line transactians
at same 20-30 percent a year. In additian; respanses must
came in a suitably shart time, regardless af infarmatian val-
umes, transactian rates, ar the incampleteness af the data
input to. specify the query.

We can characterize transactians in terms af frequency and
camplexity, as judged by the laad they place an the camputer
system. Classic transactian processing accurs at a high rate
with law complexity, while knawledge-based systems are
highly camplex and process at a law rate. Any camputer
system has a finite thraughput capacity, shawn by the per-
farmance frontier (see Figure 1).
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Figure 1. The range af transactian types.

Same evidence shaws that perfarmance problems impede
the explaitatian af "fifth-generatian" knawledge-manipula-
tian techniques. Hawever, camplex queries aver knawledge
bases do. exist in several areas. These areas include gavern-

ment administratian, CAD (camputer-aided design) systems
including saftware engineering, the starage and scheduling
system af distributian industries, and the remate maintenance
systems af large utilities.

EDS technology intercept
The EDS praject aims to. advance the infarmatian server

perfarmance frontier in the fastest way. We plan to.do. sa by
intercepting key hardware and saftware technalagies and
integratingthem behind establishedinterfacesaf high value
to.prospective custamers.

The ANSI/ISO SQL standard2 is the key interface taday
between the applicatian and the database manager. This query
language always allaws the user to. ask far a set af recards,
mast likely chasen from a large database. In principle, a mil-
lian processars cauld simultaneausly assess ane each af a
millian recards to.service an SQLquery with abviaus benefits
to. the respanse time af the query.

Opinians differ as to.whether SQLwill evalve sufficiently
. to.meet the new requirements far managing mare camplex

data types and manipulating knawledge. We believe the cur-
rent investment in SQL will guarantee SQL a lang life. We
therefare propased an extensian af SQL, ESQL,to. meet fu-
ture requirements far mare camprehensive databases.3

On the hardware side, the mast rapid change is accurring
in microprocessars, which cantinue to.increase in raw pawer
at same 50 percent each year. Taday, microprocessars prom-
ise 25 MIPS(millian instructians per secand); tamarraw, 40,
60, and 100 MIPS. The challenge far the camputer system
architect is to. achieve a similar increase in tatal systems
thraughput.

In additian, starage technolagies are diversifying; large-
scale RAM starage is aften the mast cast-effective way to.
improve tatal systems perfannance and the price/perfarmance
ratio..We expect to. see taday's cammadity, 4-Mbit dynamic
RAMchip succeeded by the 16-Mbitchip in 1994 and the 64-
Mbit chip in 1998. DRAM cast per byte naw draps at 60
percent a year, and in 1995 we expect DRAMstarage to. be
anly 20 times the cast af magnetic-disk starage.

The EDS machine therefare explaits microprocessars and
large DRAMstarage, supparted by a cammunicatians infra-
structure af suitable respansiveness and bandwidth. It avaids
the battleneck af a single path 'from processing pawer to.
starage by adapting a distributed "share-nathing" architec-
ture. This architecture afferslinear perfarmance returns when
the number af processars increasesinto.the hundreds.

The EDS system
The static and simplified view af the EDS system seen in

Figure 2 an the next page identifies the main interfaces and
campanents. We designed the system to.camprise a parallel
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Figure 2. EDSsystem architecture.

processing machine and Emex kernel supporting Unix, ex-
tended SQL, Lisp, and Elipsys subsystems. The system will
attach as an accelerator to a variety of Unix and proprietary
hosts and be configurable up to 256 processors, each with
up to 64 Mbytes of storage. We predict the following per-
formance figures:

. Database processing. Meets the simple line-of-business
Transaction Processing Council A benchmark performing
12,000 transactions per second at 30 percent utilization.. Lisp.Meets the Boyer benchmark performing 140 Boyer
runs per second.. Elipsys.32 MLIPS(million logical inferences per second)
on average.

The EDS hardware. The EDSparallel machine4 consists of
a message-passing network, which provides a number of
identical connection ports for attaching various functional
elements. We envisage four types of elements: processing,
diagnostic, input and output, and host connection (Figure 3).

-
~I

Figure 3. EDShardware.
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EDS

The processing element to be implemented for the proto-
types consists of (see Figure 4):

. a main processing unit, a high-performance Sparc RISC
(reduced instruction-set computer) with matching cache
and memory management unit;. a system support unit to offload the most critical paral-
lelism primitives from the main processor;. a network interface unit providing buffering and data
transfer; and. a local storage unit holding a maximum of 64 Mbytes of
data.

Network DCI

Figure 4. EDS processing element.

We expect later production versions of EDS to exploit the
16-Mbit chip and support 4 Gbytes of nonvolatile memory
per processing element. We plan to simulate the effect of the
well-understood nonvolatile storage during the project.

We designed the processing element to support efficiently
the parallel operations of the execution models of the kernel,
the database system, and the language systems. In addition
to executing instructions within a normal sequential thread
of computation, the processing element must support basic
kernel operations such as passing a message. The primitive
machine interface, or PMI, shown earlier in Figure 2, pro-
vides specific operations to support kernel functionality. PMI
also introduces the required independence between the ker-
nel software and the parallel machine hardware.

The EDS kernel and PCL. The EDS Process Control Lan-
guage is the common interface through which all subsystems
exploit and provide guidance to the parallelism features of
the machine.

The concepts upon which PCL is based closely relate to
those in Unix and in existing kernel interfaces such as Chorus
Systeme's Chorus and Carnegie Mellon's Mach, both of which
are designed to manage distributed systems. These concepts
.include virtual memory, processes, and interprocess com-
munication. PCL develops these concepts to provide the

Unix SOL Lisp Elipsys

Process control language

Kernel software

Primitive Machine Interface

Parallel machine

Procssor System Network Diagnostic

unit support interface coupler

unit unit
interface

unit

........-



functionality and perfomiance levels that a large-scale paral-
lel system like EDS offers.

We particularly developed certain features of PCL in EDS:

. a multilevel process-context model with very lightweight
threads, .. a storage model providing considerable flexibility in the
sharing and management of virtual memory in a distrib-
uted system,

. efficientand reliablemessagepassing, .. an exception-handling mechanism based on the message-
passing scheme, and. flexible scheduling and load balancing for a highly par-
allel system.

The inclusion withll the EDS architecture of a common

kernel and PCL interface brings a number of benefits: stan-
dard control of the machine, the exploitation of parallelism,
and the use of system resources.

The EDS database system
The main exploitation focus of the EDS project is the de-

velopmentof an advanced database server. The server pro-
vide an order-of-magnitude performance improvement over
mainframes and advanced functionality to extend the range
of applicationsit supports. .

The improved functionality will include facilities for:

. support of user-defined data types and methods,. support of complex objects and large objects, ,. deductive database capabilities,. general integrity constraints, and. triggers (actions to be carried out when a given event
occurs).

These features will not only extend the range of applica-
tions that can be supported efficiently and naturally but will
also increase programmer productivity currently supported
by standard relational database systems.

To achieve these objectives, we use a number of design
strategies:

. exploitation of the parallelism available in the base EDS
system;. exploitation of large, stabJe RAMsto hold the persistent
data over time and across system breaks;. a database system based on standard relational database

technology that is extended to provide object-oriented
database and deductivedatabasefacilities; .. an interface, ESQL,3which is an extension of SQL.(The
language provides a rich arid extensible type system
based on ADTs, or abstract data types, in which the

methods can be defined in various programming lan-
guages. It also provides complex objects with object
sharing by combining the ADTswith object identity, and
a batalog-like deductive capability);. database queries compiled into native machine instruc-
tions wherever possible; and. an optimizer designed to be extensible to allow the sys-
tem to evolve.

ESQL

---------

PCL

Lera

ObjectManager:
ADT support

User
software

Privileged

software
Object Manager:

reliable

object store

Figure 5. The logical structure of the database system.

Database system architecture. The database system splits
into three main components, as shown in Figure 5. The Re-
quest Manager compiles database commands into a native
machine code, the Data Manager provides the runtime facili-

continued on p. 83
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EDS
continued from p. 23

ties required to execute. those commands, and the Object
Manager provides the shared object storage.

The Session Manager component provides the mechanism
by which an application starts a database session. It creates
an instance of each of the Request Manager and the Data
Manager for each database session.

Figure 5 also shows the main interfaces between the com-
ponents of the system. The first is ESQL,which is used by an
application to access the database system. Lera is an extended
relational algebra that is used between the Request Manager
and the Data Manager. Last is the Process Control Language.
interface provided by the kernel.

A set of ESQL commands. forms the input to the Request
Manager, which compiles these commands in five stages:

. Syntax analysis. This stage parses the input and con-
verts it to an internal structure. It also performs type
checks.. Logical optimization. The logical optimizer reorganizes
the query by applying transformation rules to the query.
These transformations perform functions such as predi-
cate migration to minimize the size of intermediate re-
sults, the elimination of common subexpressions to
remove redundant work, operator transformation to
combine operators to simplify the task of the physical
optimizer, application of constraints, and optimization
of recursive queries.. Physical optimization. The physical optimizer deter-
mines the order of the basic operations to minimize in-
termediate results, selects the best access path, chooses
the algorithms, and determines the optimal degree of
parallelism in the query. The choice of these options is
based on the minimization of a cost function.. Parallelization. The parallelizer translates the interme-
diate form generated by the physical optimizer into the
parallel program representing the query.. Code generation. This stage performs the final genera-
tion of the object module containing machine code and
calls to the runtime facilities of the Data Manager.

As Figure 5 shows, the Request Manager consists of four
main components: the monitor, analyzer, compiler, and cata-
log manager. The monitor provides the operational interface
between the application and its instance of the Request
Manager. The analyzer performs the first stage of the com-
pilation of a query, and the compiler performs stages 2 to 5.

To support the management of the relations in a database
and the compilation and optimization of queries, the Request
Manager maintains a catalog, sometimes called a metabase,
of information about the relations and schema in the data-

base. The catalog manager provides the Request Manager
with a simple interface for accessing this data.

The parallel programs generated by the Request Manager
execute in the runtime environment provided by the Data
Manager, which consists of four main components:

. Relational Execution Model. This runtime library in-
cludes relational operations; operations supporting the
ADT, objects, and rules; and controls operators. .. Relation Access Manager. This manager provides a glo-
bal abstraction of the relations in the database. That is, it
hides the distributed nature of the relations from the

operations in the Relational Execution Model. The man-
ager also provides the mechanism for calling the appro-
priate access methods for the indexes associated with a
relation.. A set of access methods. These methods provide the
mechanisms for accessing the tuples of a relation. One
access method will implement each index associated
with a relation. The indexes offer fast methods for ac-

cessing the tuples of a relation.. Basic Relational Execution Model. This parallel program
environment provides abstractions tailored for the effi-
cient execution of Request Manager programs.

The Object Manager provides basic object storage and
manipulation facilities required to support the database sys-
tem. This manager stores persistent objects, controls concur-
rent use of shared objects, and provides logging and recovery
facilities for transaction support. We based the Object Man-
ager on the Arjuna systemSwith ideas incorporated from the
CHOICES6and Camelot1 projects.

Parallel execution of queries. The major influences on
the Relational Execution Model design were the DDC projectS
and the Bubba project.9DDC was a project in the ESPRITI
program that had the objective of building a multiproces-
sor database machine. The Bubba project was a multiprocessor
database system. We based the parallel execution of the que-
ries on the following principles:

1) The relations are horizontally partitioned into fragments
that are distributed across the set of available processing
elements of the machine. One of the advances in the

physical optimizer is the development of methods for
determining the degree of parallelism in an operation.
These methods allow the system to determine the opti-
mal number of processing elements to be used during
evaluation. For base relations the assignment of frag-
ments to physical processing elements is relatively static.
For the intermediate relations however, the assignment
occurs at execution time. We refer to the set of processing
elements across which a relation is partitioned as the
home of the relation.

December1990 83



2) Where possible, processing takes place at the location
of the data so the data is not moved. Naturally, this is
not possible when an operation involves more than one
relation. In this case .the optimizet must choose the local
operations in such a way as to minimize the movement
of data.

3) The separation of data flow and control flow allows
optimizations that significantly reduce the number of

. control messages.

A standard exemplar that is being used within the project
forms the basis of the description of the parallel evaluation of
queries. This exemplar is a share management system. The
schema in Figure 6 defInes two relations from the exemplar. .

CREATETABLEscost (
share-id c4,
cost integer2;
currency c2);

CREATETABLEexchange (
currency c2,
rateinteger2)j

and the query is:

SELECTshare-id, cost, rate FROMscost, exchange
WHEREcost < 100AND scost.currency = exchange.currency

Figure 6. Share management system exemplar.

We plan to extend the Create table command to allow
users to specify the distribution algorithm, the attribute to be
used, and the size of the home. In the absence of user-supplied
information the physical optimizer chooses these parameters
for the relations. The Data Manager detennines the mapping
of the relations based on the sizes of the relations' homes

and the loading of the processing elements.
In this example we assume that the Data Manager chooses

processing elements 1, 3, 8, and 9 for Scost and 4 and 5 for
Exchange. We also assume that a hash function on Share-id
distributes Scost, and a hash function on exchange distrib-
utes Currency.

When the Request Manage!' compiles the query, the physi-
cal optimizer decomposes the Join operation implied by the
query into two suboperations Sel and Join. Sel prefilters the
local fragment of Scost for those tuples in which cost is less
than 100. Selthen distributes the tuples using the hash func-
tion for Exchange. The Join suboperation joins a tuple from
Scost with the local fragment of Exchange. A trigger message
sent to the Sel oper:itions starts the processing of the query.
Figure 7 illustrates the execution of this query.
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Figure 7. An example of a query execution.

This simple example illustrates the main principles of the
computational model:

. relations are partitioned into fragments, which are dis-
tributed across their homes;. relational operations decompose into operations that
execute at the home of the relations on which they op-
erate and so use purely local data; and. their inputs are either a stream of messages or a frag-
ment of a stored relation.

However, this very simplified account of the execution of
the query does not discuss many important issues. One im-
portant benefIt of procesSing the relations locally is that it
allows the lock management to also be processed locally,
thus providing an important performance improvement

The Elipsys language
ElipsyslOis a parallel logic programming system for com-

plex applications. The system integrates Or-parallelism, con-
straint satisfaction through fInite domains, and an inter-face
to the EDS database server.

The particular combination of Or-para1lelismand constraint-
satisfaction problem-solving techniques, which prune the



search space in an a-priori manner, provides an efficient
platform for executing search-intensive programs. Elipsys
solves a typical combinatorial search problem-for example,
graph coloring, scheduling, and some other related opera-
tions research problems-in polynomial time.

The syntax of the Elipsys programming language is de-
rived from DEC-IO Prolog. Elipsys makes available to the
programmer the following features:

. Data-driven computation. This feature gives the
programmer a flexible way of instructing the logic pro-
gramming system in the way the paths of the search
space can be computed.. Built-in constraints. We build in simple equalities and
inequalities, linear equations, and optimized branch-and-
bound techniques, which range over the domain of fi-
nite discrete sets.. User-definableparallel constructs. Predicates can be an-
notated as candidates for parallel evaluation and inter-
face to the EDS database server through ESQL.

The Elipsys execution model in Figure 7 combines a
message-passing architecture for the control and scheduling
of parallel work and a distributed, shared virtual address space
for the implementation of the binding environment. The above
combination permits Elipsys to execute efficiently under t1:ie
Emex kernel by taking advantage of tile facilities provided
for task and thread management. It also uses the; Emex-
provided, distributed, and shared virtual memory scheme,
which is kept coherent by a "lazy, strong" method. This co-
herence scheme does not perform any coherence mainte-
nance operations by default; explicit synchronization points
in the application code trigger the operations.

The Elipsys binding environment is both read-only and
shared. A control Or-tree and a shared environment repre-
sent the search space. A descendent Or-node inherits the
binding environment of its ancestor Or-nodes. This inherited
environment is read-only. Thus all the descendent Or-nodes
hold the same view of the inherited environment. Modifica-
tions to the shared environment occur through auxiliary
structures, which are local descendent Or-nodes. These
structures in turn become shared whenever a control Or-
node gives rise to any descendent Or-nodes.

The message-based Elipsys control and scheduling
mechanisms make use of the control Or-tree data structure,
which is distributed over a set of workers. Each worker is

allocated to one EDS processing element; a worker consists
of a distributed scheduler, performing scheduling and con-
trol functions, and a set of engines. An engine performs se-
quential resolution steps, extended linear resolution with a
selection function applied to definite clauses over finite do-
mains. It ~so manages the interface to the EDS database
server. A scheduler-engine interface describes the scheduI-

ing policy, pruning, and input/output interactions between
the scheduler and the engine.

Advanced applications using Elipsys
Elipsys is oriented toward complex applications. We are

developing a suite of programs to demonstrate the practical-
ity of Elipsys for a wide range of applications domains. These
programs will highlight different design features of Elipsys:

. Compatibility with existing applications. A civil engi-
neering program analyzes possible faults in concrete piles
from acoustic data. The UK University of Bristol is
parallelizing and porting this sequential Prolog program

.to the Elipsys subsystem. This activity will identify the
potential problems that may be encountered when con-
verting existing Prolog applications to Elipsys. .. Capability for handling large data sets. The University of
Athens is developing a tourist advisory system for Greece.
The system provides customized holiday packages for
individual tourists as well as general information for po-
tential visitors to Greece. This application makes exten-
sive use of the Elipsys connection to the EDS database
subsystem. The raw tourist data can be stored in the
EDS database rather than within Elipsys itself.. Deductive capability. System and Management S.p.A. in
Italy currently implements a Treasury Management Sys-
tem, an expert system for banking.. Its role .is to suggest
profitable investm~nfplans to bankers. Such an applica-
tion is well SUitedfor Elipsys and fully uses Elipsys' in-
herent deductive power and capability for interWorking
with the EDS database server.

. .. Capabilityfor managing complex data structures. ECRC
in Munich is developing several applications in the do-
main of molecular biology. This domain requires the
management of vast amounts of complex data, again
using the Elipsys/database connection. Moreover, the
system requires the complex symbolic processing, for
example, in structures matching different DNAmolecules,
and the built-in constraint facility of Elipsys.

The application language
Lisp is a powerful general-purpose programming language

whose programs are written on a much higher lev~l of ab-
straction than the Pascal, Ada, and C procedural languages.
Being so powerful, Lisp has been widely used for complex
applications such as artificial intelligence. To this expressive
power, we added the power of parallel processing in EDS
LispY

EDS Lisp extends the Comnion Lisp language. Because
Common Lisp constitutes a de facto standard, users can eas-
ily port most existing Lisp applications to the EDS machine.

We selected the extensions of EDS Lisp after an intensive
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study of other parallel Lisp systems. The extensions allow
access to the EDS database system, and they provide lan-
guage constructs for explicit parallelism. Explicit parallelism
enables the programmer to specify large-grain parallelism that
fits well to distributed-memory machines like the EDS.

An EDS Lisp program can have an indefinite number of
parallel processes. The programmer creates processes to per-
form some action in parallel and to return a value. The EDS
system schedules these processes. EDS Lisp contains a single
construct to spawn parallel processe.s, the Future construct
known from other parallel Lisp dialects.12Future constructs
support transparent use of results of parallel processes. The
main idea is that a Future immediately returns an (initially
empty) placeholder for the result of the spawned process.
The spawning process can then continue operation. When
some process accesses this result, it waits until the result is
available and then continues operation. Both the placeholder
mechanism and the implicit waiting are invisible to the pro-
grammer. Consider, for example, the following piece of EDS
Lisp code:

(setq x (future f pI... pn»

which corresponds to

X := future (f (pI, ..., pn»;

in a procedural programming style. A parallel process is
spawned using the Future construct to compute the function
fwith parameters pI, ...,pn. The Future call immediately re-
turns a placeholder for the result of f and assigns it to the
variable x. The spawning process then continues in parallel
to the process computing f If a process reads the variable x,
it tests implicitly whether the result is available and waits if
necessary.

EDS Lisp also provides a Mailbox concept for communi-
cation between processes and a Critical Section mechanism,
among other things, for synchronized access to shared
variables.

Metal

The Metal machine translation system translates natural-
language documentsl3 and currently requires a special-
purpose Lisp machine for production use. The EDS Lisp
application is complex enough to conquer both the CPU-
power and storage limitations of today's workstations.

We expect a speedup of more than a factor of 300 for
running Metal on the EDS machine; the translation of 250
pages that needs 10 hours today should be accomplished in
two minutes on the EDS machine, as shown in Figure 8. This
performance increase is highly relevant for the application,
because the translation volume for technical documentation

86 IEEEMicro

German

(a)

German

(b)

One
processor

~t.
?~

64 processors,
parallel Lisp

-.8-.
-..-.
-..-.
-.8-.

English

English

Figure 8. Sequential (a) and parallel (b) translation on
Lisp systems.

is immense. The documentation for a complete technical
product line often amounts to several hundred thousand pages
that have to be made available in a multitude of languages.

Users can access the parallel processing power of EDS
Lisp not only to translate such a huge mass of text but also to
improve the quality of the translation by using more advanced
and therefore more resource-intensive algorithms.

THE EDS PROJECTIS A MAJOR,PROMISINGCommis-
sion of the European Community-sponsored ESPRIT11col-
laboration between Bull, ICL,Siemens, and their jointlyowned
ECRCresearch center. The EDS system primarily focuses on
the large-scale information server, which must manage infor-
mation efficiently and effectively across the spectrum from
data to knowledge.

The EDS system enables programs calling the SQL, Lisp,
and Elipsys interfaces to exploit large-scale parallelism es-
sentially transparently. We've described the database and
language aspects of the EDSsystem, lookinKat the SQL,Lisp,
and Elipsys subsystems.



The EDS project combines the complementaIY skills of its
partners and associate partners to achieve a clear and com-
mon goal. At the end of the second of four years, the project
is on schedule to switch on an EDS machine in 1991 and
demonstrate .applications in 1992. ~
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SPAN
continuedfrom p. 27
in which the 11 operator in example i)specifies that state-
ments SI to Snare to be performed in parallel. On one pro-
cessor, this operation may be mapped into a series of processes
activated in some undefmed order. In ii), the ; operator
specifies sequential execution of the statements. Replicators
exist for simplifying repetitive parallel or sequential state-
ments.Examples iii) and iv) are alternatives to i) and ii).
Parle only provides for synchronous execution of processes
initiated by the I I operator, in that these processes must all
tenninate before the initiating program can continue to the
next statement.

The simplest conditional statement contains a single state-
ment, which is executed when a guard condition is true. The
most complex conditional statement contains multiple,
guarded statements; the guards execute in parallel. When the
statement associated with the first true guard executes, par-
tially executed guards are discarded.

Although intended as a compiler target language (CTL),
Parle is probably a better parallel programming language.
When it is used as a CTL, Parle's weak typing places a
large runtime checking burden on architectures not spe-
cifically designed to support the architectural model. The
process model also has limitations, especially the limited
control over processes and their synchronous execution.
Process creation is statically defined at compilation time,
and processes once initiated run to completion. The model
cannot suspend or delete a process once it is started because
there is no process by which an executing process can be
identified. Neither does the model support dynamic process
creation and process migration.

The process model is fme for a programming language,
but it limits a CTL.The applications projects produced sub-
stantial amounts of code in parle, which was easy to use and
effective.

Virtual Machine Code
The VMC fully realizes the Kernel System model at the

level of machine code or assembler. It provides a model of
the Kernel System that can be ported onto a variety of paral-
lel architectures. Consequently, the VMC is a low-Ievellan-
guage that reduces the work of perfonning the port. The
philosophy behind the design of the VMCwas again to provide
the necessary components to support the Kernel Systemwhile
limiting complexity. Thus, the VMChas

. a reduced instruction-set style computational model.. a small, simple instruction set with which more complex
operations can be implemented. (The exception is that
list operations are members of the instruction set, as lists
are primitive elements.) .


