$\mathbb{A f t}^{\text {ersenne }}$

$\AA^{\text {ambers }}$

PREFACE

These notes have been issued on a small scale in 1983 and 1987 and on request at other times.

This issue follows two items of news. First, Walter Colquitt and Luther Welsh found the 'missed' Mersenne prime M_{110503} and advanced the frontier of complete M_{p}-testing to 139,267 . In so doing, they terminated Slowinski's significant string of four consecutive Mersenne primes. Secondly, a team of five established a non-Mersenne number as the largest known prime. This result terminated the 1952-89 reign of Mersenne primes.

All the original Mersenne numbers with $p<258$ were factorised some time ago. The Sandia Laboratories team of Davis, Holdridge \& Simmons with some little assistance from a CRAY machine cracked M_{211} in 1983 and M_{251} in 1984. They contributed their results to the 'Cunningham Project', care of Sam Wagstaff. That project is now moving apace thanks to developments in technology, factorisation and primalitytesting.

New levels of computer power and new computer architectures motivated by the open-ended promise of parallelism are now available. Once again, the suppliers may be offering free buildings with the computer. However, the Sandia ' 84 CRAY-1 implementation of the quadratic-sieve method is now outpowered by the number-field sieve technique. This is deployed on either purpose-built hardware or large syndicates, even distributed world-wide, of collaborating standard processors.

New factorisation techniques of both special and general applicability have been defined and deployed. The elliptic-curve method finds large factors with helpful properties while the number-field sieve approach is breaking down composites with over one hundred digits.

The material is updated on an occasional basis to follow the latest developments in primality-testing large M_{p} and factorising smaller M_{p}; all dates derive from the published literature or referenced private communications. Minor corrections, additions and changes merely advance the issue number after the decimal point.

The reader is invited to report to the address below any errors and omissions that have escaped the proof-reading, to answer the unresolved questions noted and to suggest additional material associated with this subject.

Guy Haworth
33, Alexandra Rd., Reading, Berkshire England, RG1 5PG

Issue 10.2 of $22 / 01 / 90$

ACKNOWLEDGMENTS

I must first recall with great pleasure that I was introduced to elementary number theory and the Mersenne numbers by an Oxford copy of Dan Shanks' "Solved and Unsolved Problems in Number Theory". His entertaining text remains most readable in its current third edition and achieves the difficult objective of presenting the key concepts in both a logical and a historical perspective.

In the same spirit, I should next like to thank my colleague Stewart Reddaway of ICL whose interest in parallel processors, multiplication techniques and the Mersenne problem re-awakened my earlier interest in this area. Stewart's DAP implementation team included Steve Holmes, David Hunt and Tom Lake; their thorough approach to the major coding task resulted in their second sourcing all $M_{p}-L R s$ available and filing all necessary $M_{p}-L R s$ for $p<100,000$.

I thank now everyone who has directly or indirectly contributed to the content of these notes, not least those who developed algorithms and carried out computations on the Mersenne Numbers. The completeness and topicality of the material is due in large part to those who, in private correspondence, were able to restore the colour to the events of the past or even recreate old computations.

I thank Nelson, Shanks and Tuckerman for having the foresight to preserve unpublished M_{p}-LLT results in private files. I thank Brent, Brillhart, Davis \& Holdridge, Keller, Naur, Pollard, Suyama \& Wagstaff for factorisations associated with the M_{p}. They were willing to attack the major peaks which 70 -digit numbers represented at the time and also patient and thorough enough to dismiss the small composites which I listed.

This compilation has been significantly assisted by the services provided to assist such research. I was fortunate to be able to call on the help of the British Library, Reading University's Library and Computer Service, the abstracting service of Mathematical Reviews and the production facilities provided by ICL.

```
p Ch
1 \text { Preface}
2 Acknowledgments
3 Contents
4 Introduction
6 1 Abbreviations
Mersenne Number Status Table
Prime Mersenne Numbers
Tables of Factors of Mersenne Numbers
Original Mersenne Numbers - Positive Results only: Mp Order
Original Mersenne Numbers - All Results and some errors: Mp Order
Further Mersenne Numbers - Lucas-Lehmer tests and errors: Mp Order
Published Work - Errors: Author Order
Conjectures Resolved
Conjectures Outstanding
Theoretical Results
Computational Details
Status-quo and Questions
Authors
References indexed in "Mathematical Reviews"
Bibliography
Keywords
```

The number system has been studied since the earliest times and this history begins with Pythagoras and Euclid.

One of the earliest interests was the concept of the 'perfect' number - a number equal to the sum of its proper divisors. Here, ' 1 ' but not the number itself is regarded as a proper divisor.

Such numbers are rare and the earliest examples, 6 and 28 , were invested with mystical significance by numerologists and philosophers.

The major moments in the history of the search for perfect numbers have been provided by Euclid (275BC), Mersenne (1644), Lucas (1876) and by the advent of the electronic computer in the 1950 s.

Euclid showed that $2^{n-1}\left(2^{n}-1\right)$ was perfect if $2^{n}-1$ was a prime. Again the early $2^{n}-1$ primes, 3 and 7 , were specific objects of numerological interest. Supplementary results have shown that $2^{n}-1$ is prime only if ' n ' is a prime ' p ', that all even perfect numbers are of Euclid's form, and that the factors of $2^{p}-1$ are of a specific form.

No odd perfect numbers are known. As successive papers add to the conditions which such numbers must satisfy, their existence looks increasingly unlikely. Had '1' not been regarded as a proper divisor, the story might well have been different.

Mersenne took a specific interest in numbers of the form 2^{p-1} and incorrectly stated which $p<258$ led to perfect numbers. He provided no proofs and it might be generous to regard his statement as a conjecture. Unwittingly or not, he contributed no results but threw down a challenge in 1644 which has been taken up ever since. Rouse Ball dubbed the $2^{\mathrm{p}-1}$ 'Mersenne Numbers' in 1911 , thereby creating the first nine Mersenne primes at a stroke. Some thousands of computational hours have been expended on the "Mersenne Numbers" $M_{p}=2^{p-1}$ either to find their prime/composite status or to find their factors.

Lucas provided a convenient primality test for the M_{p}. D H Lehmer gave a full proof of a refined version of the test in 1930. The Lucas-Lehmer test was manually applied to 19 of the "original" $M_{p}(p<258)$ though correct computations were not always the result.

The status of Mersenne's statement - five errors - is commonly thought to have been resolved by Uhler's work in 1946. However, this is not so because the contributions of Fauquembergue $\left(M_{101}, M_{137}\right)$ and Barker $\left(M_{167}\right)$ were found in 1952 to be incorrect by Robinson's SWAC program. The SWAC results put on file for the first time a sufficient set of correct Lucas computations, correcting those errors and filling in for previous unpublished results. Robinson also ratified a number of Lucas computations; all Lucas results have been independently checked for these notes.

Before turning to the electronic computer, we should note the 'pre-history' work done with a variety of computational aids. These included factor stencils, mechanical or electro-mechanical calculators and D H Lehmer's various sieves which were specifically produced to attack residue problems. DHL's first sieve in 1927 relied on bicycle chains and pins attached to the links signalled a result. The second sieve in 1932 substituted holed gear-wheels for bicycle-chains and pins; a sensitive amplifier magnified the minute signal from a photo-electric cell when a ray of light fleetingly shone through the aligned holes in the wheels. An electronic sieve in 1965 continued the line.

The late 1940 s provided a quantum jump in computational capability. Lehmer's 700 hour calculation on M_{257} was confirmed in 48 seconds by the SWAC machine in 1952; the phrase "a month a minute" even then understated the ratio between manpower and computer power. Man was liberated from the drudgery of calculation. By the early 1970s, the computer could put away a lifetime's calculations in a second. Today, the latest supercomputers are equivalent to 10^{7} SWACs on the M_{p} benchmark and we are only just beginning to exploit mass parallelism in our computer architectures.

Progress on primality-testing the M_{p} themselves has been governed by the increasing power of computers though the latest approaches to multiplication have contributed The Schonhage-Strassen technique reduces the squaring of an n-bit number to $0(n . \operatorname{logn})$ as compared to the $0\left(n^{2}\right)$ of the schoolboy technique and makes a real contribution when n is of the order of 100000 .

Considerable mathematical progress has been achieved on factorisation and general primality-testing since 1970. The complete factorisation of Mersenne's original numbers was achieved in February 1984 and the smallest unfactorised M_{p} is now M_{449}.

These notes tabulate the results in various ways and provides a full though inevitably incomplete reference to the relevant literature. The 'errors' section shows the difficulties of proof-reading and the desirability of automating the publication process.

The observations also tells a cautionary tale to those organising future computations for as noted above, occasional Lucas results connected with the M_{p} have later been revealed as incorrect. Computer programs are becoming increasingly important in our lives and their results, which cannot be checked manually, must as far as possible be self-checking or confirmed by independent program.

Mersenne requires no successor today but the 'Cunningham Project' [B17] provides the motivation and focus for current work aiming to advance the state of the art in factorisation and primality-testing. With Slowinski's code active on current and future CRAYs and with the advent of other supercomputers, we may anticipate further discoveries of Mersenne primes.

The original Mersenne numbers are the $55 M_{p}=2^{p-1}$ with $p<258$ and prime which were the subject of Mersenne's 1644 conjecture:

p								Status
2	3	5	7	13	17	19	31	12 prime M_{p}
61	89	107	127					
11	23	29	37	41	43	47	53	43 composite and
59	67	71	73	79	83	97	101	completely factorised M_{p}
103	109	113	131	137	139	149	151	
157	163	167	173	179	181	191	193	
197	199	211	223	227	229	233	239	
241	251	257						

See [B17 Edition 2]. For further M_{p} :

p							Status
521		607		1279		2203	19 prime M_{p}
2281		2217		4253		4423	
9689		9941		1213		9937	
21701		209		4497		6243	
110503		049		6091			
263269	271	277	281	283	293	307	46 composite and
311313	317	331	337	347	349	353	completely factorised M_{p}
359367	373	379	383	389	397	401	
409419	421	431	433	439	443	457	
461463	487	491	499	503		547	
577701			1049	1063			
449 467 479 541 557 563 569 571 First 39 partially 587 593 599 601 613 617 619 631 641 643 647 653 659 661 673 677 683 691 719 733 739 743 757 761 factorised M_{p} 769 773 787 797 811 821 827							
523 727 751 809 823 971 983 997 First 9 1061 10 \ldots with no known factor							

See [B17 Edition 2 \& update 2.2] and [K31] for the 'probably' factorised M_{p}.

	DATE	p	m_{p}	e_{p}	NOTES
1	Ca 275 BC	2	1	1	Euclid (2758C) [H3]; Nicomachus (ca 100AD)
2	ca 275 BC	3	1	2	Euclid; Nicomachus [c D1 p3 n2]
3	ca 275 BC ?	? 5	2	3	Euclid (?); Nicomachus
4	ca 275 BC ?	? 7	3	4	Euclid (?); Nicomachus
5	1456	13	4	8	Manuscript Codex lat. Monac [C26]
6	1588	17	6	10	Cataldi [C2; c D1 p10 n44]
7	1588	19	6	12	Cataldi [C2; c D1 p10 n44]
8	1772	31	10	19	Euler [E2 p584; E6 p35; c D1 p18 n95]
9	1883	61	19	37	Pervouchine [P13; P14; P16; C D1 p25 n140]
10	6/1911	89	27	54	Powers [P15]; independently, Fauquembergue
11	6/1914	107	33	65	Powers [P2]; independently, Fauquembergue
12	1876	127	39	77	Lucas [L16; L17]; confirmed, Fauquembergue
13	30/1/1952	521	157	314	Robinson (SWAC) [L3; R2]
14	30/ 1/1952	607	183	366	Robinson (SWAC) [L3; R2]
15	25/6/1952	1279	386	770	Robinson (SWAC) [L4; R2]
16	7/10/1952	2203	664	1327	Robinson (SWAC) [L5; R2]
17	9/10/1952	2281	687	1373	Robinson (SWAC) [L5; R2]
18	8/ 9/1957	3217	969	1937	Riesel (BESK) [R5; R1]
19	3/11/1961	4253	1281	2561	Hurwitz \& Selfridge (IBM 7090) [H1; H2]
20	3/11/1961	4423	1332	2663	Hurwitz \& Selfridge (IBM 7090) [H1; H2]
21	11/5/1963	9689	2917	5834	Gillies (Illiac II) [G1; G5; G7]
22	16/5/1963	9941	2993	5985	Gillies (Illiac II) [G1; G5; G7; M9]
23	2/ 6/1963	11213	3376	6751	Gillies (Illiac II) [G1; G7; M9]
24	4/3/1971	19937	6002	12003	Tuckerman (IBM 360/91) [T1; T3]
25	30/10/1978	21701	6533	13066	Nickel \& Noll (CDC CYBER-174) [N5; N7; S4]
26	9/2/1979	23209	6987	13973	Noll (CDC CYBER-174) [N6; N7; S13]
27	8/ 4/1979	44497	13395	26790	Nelson \& Slowinski (CRAY-1) [N1; S1; S13]
28	25/ 9/1982	86243	25962	51924	Slowinski (CRAY-1) [N21]
29	29/1/1988	110503	33265	66530	Colquitt \& Welsh (NEC SX-2/400) [C32]
30	20/ 9/1983	132049	39751	79502	Slowinski (CRAY-XMP) [C33; D4; N25]
31 ?	6/9/1985	216091	65050	130100	Slowinski (CRAY-XMP) [D6]
	6/8/1989	------	65087		391581.2216193-1 Brown, Noll, Parady, Smith Smith and Zarantonello (Amdahl 1200E) [D7])

The prime M_{p} in the 'original Mersenne number' range $p<258$ were discovered without the aid of electronic computers. Prime M_{p} beyond that range were discovered with the aid of electronic computers.

An independent computation on the ICL 2900 DAP has confirmed the Lucas residues for all M_{p} in the range $p<50024$ where no factor was known. A factor or $L R$ has been calculated on the DAP for all M_{p} in the range p < 100000 [H18] and by Colquitt/Welsh on the NEC SX/2 [C32-C34] for all p in range $100000<p<139267$.

Assuming Pomerance's conjecture on the distribution of Mersenne Primes, a computer using FFNT (or 'schoolboy') multiplication will spend twice (or four times) as long discovering the next Mersenne Prime as confirming all previous results. FFNT algorithms been implemented on the ICL DAP, CRAY-XMP, CYBER-205 and NEC SX-2/400.

Slowinski has not filed all the required $M_{p}{ }^{-f} 1 /$ LRs for $139267<p<216092$ and there may be further prime M_{p} in this range.

INCIDENCE OF MERSENNE PRIMES

$$
N=a \log _{e} P+c
$$

Best Gillies-fit:
a c
Best Pomerance-fit:
$2.88539-3.61278$

Optimal fit:
$2.56954-1.46586$
$2.56560-1.43906$

This section lists the major tabulations of M_{p}-factors.
1925 Cunningham \& Woodall [C16]
1929 Kraitchik [K12]
1938 Kraitchik [K20]
1947 Lehmer [L6]: 32 factors of $M_{n}, n<490$
1952 Ferrier [F4]: table of Factors of $M_{n}, n=3(2) 499$
1957 Robinson [R3]: some Factorizations of Numbers of the Form $2^{\text {n }} \pm 1$
1958 Riesel [R1]: first factors $f_{1}<10 * 2^{20}$ of $M_{p}: p<10,000$
1960 Brillhart \& Johnson [B2]: some factors q of $M_{p}: p<1,194$
1961 Karst [K4]: 19 new factors of $M_{p}: 3,036<p<3,434$
1961 Kravitz [K5]: first factors $f_{1}<10,485760$ of some $M_{p}: 10,000<p<15,000$
1961 Karst [K2]: some factors q of M_{p} [NB especially $p=10,009$]
1962 Karst [K23]: new divisors: $10,006<p<10,458$ \& 5,500,224<p<5,501,708
1962 Karst [K24]: synopsis of factors and search ranges
1962 Riesel [R4]: factors $q<10^{8}$ of $M_{p}: p<10^{4}$
1963 Brillhart [B3]: some miscellaneous factorizations
1963 Gillies [G1]: $2^{34}<q<2^{36}$ of $M_{p}: 5,000<p<17,000$
1963 Karst [K27]: factors $q=2 k p+1, k<10$, of $M_{p}, p<15,000$
1964 Karst [K6]: miscellaneous
1964 Brillhart [B4]: remaining $q<2^{34}$ of $M_{p}: 258<p<20,000$
1965 Kravitz \& Madachy [K8]: the factors $q<2^{25}$ of $M_{p}: 20,000<p<100,000$
1966 Ehrman [E9]: factors $q<2^{31}$ of $M_{p}: 100,000<p<300,000$
1975 Brillhart, Lehmer \& Selfridge [B6]: some factorizations of $2^{n} \pm 1$
1976 Wagstaff's factor-table [W8]:
factors $q<2^{35}$ of $M_{p}: 17,000<p<50,000$
further $f_{1}<10^{11}$ of M_{p} : $21,000<p<50,000$
1977 Keller [K30]: factors $q<\max \left(2^{36}, 10^{7} p\right)$ of $M_{p}, p<10^{5}$
1978 Ehrman's factors of M_{p} : factors $q<2^{31}$ for $p<1,000,000$ [c N3; N10]
1981 Brent [B23]: factors q of $M_{p}, p<1,000$
1981 Lake [L45]: first factors $f_{1}<2^{40}$ for $50,000<p<100,000$
1982 Wagstaff [W12]: factors $2^{31}<q<2^{34}, 20000<p<10^{5}+$ others
1983 The 'Cunningham Project' [B17]: factors of $M_{p}, p<1200$

Factorisation

This section lists M_{p} 'status' (prime or completely factorised), the number of known factors, discovering authorities and dates. References, confirmation results, negative results, errors and further details are included in the fuller section 6 .

p	Status	Notes
2	PR	? Pythagoras (500BC ?); ? Euclid (275BC ?); In earliest tables (250BC ?); Nicomachus (100AD)
3	PR	? Euclid (275BC ?); Earliest tables (250BC ?); Nicomachus (100AD)
5	PR	? Euclid (275BC ?); Earliest tables (250BC ?); Nicomachus (100AD)
7	PR	? Euclid (275BC ?); ? Earliest tables (250BC ?); Nicomachus (100AD)
11	FACT	Manuscript Codex lat. Monac. 14908 (1456); f_{1} \& f_{2} - Regius (1536)
13	PR	Manuscript Codex lat. Monac. 14908 (1456)
17	PR	Cataldi (1588)
19	PR	Cataldi (1588)
23	FACT	f_{1} - Fermat (1640); f_{2} - Euler (1733)
29	FACT	f_{1} (?) \& f_{2} - Euler (1733); f_{3} - Euler (1750)
31	PR	Euler (1772)
37	FACT	f_{1} - Fermat (1640); f_{2} - Landry (1867)
41	FACT	f_{1} \& f_{2} - Plana (1859)
43	FACT	f_{1} - Euler (1733); f_{2} \& f_{3} - Landry (1869)
47	FACT	f_{1} - Euler (1741); f_{2} - Reuschle (1856); f_{3} - Landry (1869)
53	FACT	f_{1}, f_{2} \& f_{3} - Landry (1869)
59	FACT	f_{1} \& f_{2} - Landry (1869)
61	PR	Pervouchine by ZLR (1883)
67	FACT	```COMP (?) - Lucas by NZLR (1876); COMP (?) - Fauquembergue (1894); f```
71	FACT	f_{1} - Cunningham (1909); f_{2} \& f_{3} - Ramesam (1912)
73	FACT	f_{1} - Euler (1733); f_{2} \& f_{3} - Poulet (1923)
79	FACT	f_{1} - Reuschle (1856); f_{2} \& f_{3} - Lehmer (1933)
83	FACT	f_{1} - Euler (1733); f_{2} - Ferrier (1950)
89	PR	```Independently by ZLR - Powers (June 1911), Tarry (?) (November 1911) and Fauquembergue (1912)```
97	FACT	f_{1} - Le Lasseur (1881); f_{2} - Ferrier (1952)
101	FACT	COMP - Robinson by NZLR (1952); f_{1} \& f_{2} - Brillhart, Lehmer \& Johnson (1967)
103	FACT	```COMP (?) - Powers by NZLR (1914); COMP - Robinson by NZLR (1952); f```
107	PR	Powers by ZLR (1914) and independently Fauquembergue by ZLR (1914)
109	FACT	```COMP (?) - Powers by NZLR (1914); COMP - Robinson by NZLR (1952); f}1\mathrm{ - Robinson (1957); f2 - Gabard (1958)```
113	FACT	```f f4 & f5 - Lehmer (1946)```
127	PR	Lucas by ZLR (1876)
131	FACT	f_{1} - Euler (1733); f_{2} - Brillhart (1966)
137	FACT	COMP - Robinson by NZLR (1952); f_{1} \& f_{2} - Schroepepel (1971)
139	FACT	COMP - Lehmer by NZLR (1926); f_{1} \& f_{2} - Brillhart (1974)
149	FACT	COMP - Lehmer by NZLR (1927); f_{1} \& f_{2} - Schroepepel (1972)
151	FACT	f_{1} - Le Lasseur (1881); f_{2} - Cunningham (1909); f_{3} - Kraitchik (1921); f4 - Lehmer (1946); f5 - Gabard (1952)

p	Status	Notes
157	FACT	$\begin{aligned} & \text { COMP - Uhler by NZLR (1944); } f_{1} \text { - Robinson (1957); } \\ & f_{2}, f_{3} \& f_{4}-\text { Brillhart (1974) } \end{aligned}$
163	FACT	```f f}4\mathrm{ & f f5 - Brillhart (1963)```
167	FACT	```COMP - Uhler by NZLR (1944); f f}2\mathrm{ - Brillhart (1974)```
173	FACT	```f f}3&&\mp@subsup{f}{4}{}-Naur (1979```
179	FACT	f_{1} - Euler (1733); f_{2} - Reuschle (1856); f_{3} - Brillhart (1963)
181	FACT	$\begin{aligned} & f_{1}-\text { Woodall (1911); } f_{2}-\text { Lehmer (1946); } f_{3}-\text { Brillhart (1960); } \\ & f_{4}-\text { Brillhart (1963) } \end{aligned}$
191	FACT	$\begin{aligned} & f_{1} \text { - Euler (1733); } f_{2} \text { - Brillhart (1963); } \\ & f_{3}, f_{4} \& f_{5}-\text { "Cunningham Project" (1974) } \end{aligned}$
193	FACT	```COMP - Uhler by NZLR (1947); f f}2& & f3 - Naur (1981```
197	FACT	f_{1} - Cunningham (1895); f_{2} - Brillhart (1974)
199	FACT	COMP - Uhler by NZLR (1946); f_{1} \& f_{2} - Schroepepel (1976)
211	FACT	f_{1} - Le Lasseur (1881); f_{2} \& f_{3} - Davis \& Holdridge (1983)
223	FACT	```f f}3& & f4 - Lehmer (1946) f5 & f6 - "Cunningham Project" (1981)```
227	FACT	COMP - Uhler by NZLR (1947); f_{1} \& f_{2} - Brent (1982)
229	FACT	```COMP - Uhler by NZLR (Feb. 1946); ff - Lehmer (0ct. 1946); f}2\mathrm{ - Brillhart (1960); f}3&&\mp@subsup{f}{4}{}-\mathrm{ Brent (Aug. 1981)```
233	FACT	```f f4 - Brillhart (1974)```
239	FACT	```f f4 - Kraitchik (1921); f5 - Brillhart (1960); f6 - Brillhart (1974)```
241	FACT	$\begin{aligned} & \text { COMP - Powers by NZLR (1934); } f_{1} \text { - Brillhart (1960); } \\ & f_{2} \text { - Brillhart (1974) } \end{aligned}$
251	FACT	f_{1} (?) - Euler (1733); f_{1} - Lucas (1878); f_{2} - Cunningham (1909); $f_{3}, f_{4} \& f_{5}$ - Davis, Holdridge \& Simmons (1984)
257	FACT	```COMP (?) - Kraitchik by NZLR (1922); COMP - Lehmer (1927); f f2 & f3 - Baillie (1980?) [c B16, B17, B19]```

Lucas-Lehmer Test Calculations

The last octal digits of the LR are listed for the original LLT primality tests on the 'original' $M_{p} ; ~ ' ~+'$ denotes tests with $S_{1}=3$. This collection compensates for the fact that many of the LRs [G7; H8; N2; R10; T11; T12] have not been published.

Gillies' and Nelson's 1979 results confirmed that Robinson's 1952 results completed a correct set of LRs. Residual calculations in the 1980's second-sourced and sometimes corrected the other original LLT results:

```
1947 Uhler contributed last of 6 LRs ( p = 157, 167, 193, 199, 227, 229)
1952 Robinson corrected 5 LRs (p = 101, 103+, 109, 137, 167\dagger)
    contributed 2 further LRs (p = 103, 199)
    filled in for 2 unpublished LRs ( }p=109,139+
    confirmed 10 LRs (p = 139+, 149, 157, 167, 193, 199+, 227, 229, 241, 257)
1963 Gillies contributed 1 LR ( p = 139)
    confirmed 5 LRs (p = 101, 103, 137, 199, 227)
1979 Nelson confirmed 3 LRs (p = 109, 139, 229)
1981 Thomason ratified 2 LRs ( p = 167t, 199t) in decimal & octal
1984 Haworth [H17] confirmed 2 Thomason LRs (p = 67t, 103\dagger)
```

p	S_{1}	Date	Residue (oct, $\bmod 2^{60}$)		
61	4	1883			ZERO
67	3	1876			UNKNOWN
		1894			UNKNOWN
		1981	54316	42002	0434462606
	--	1903			FACTORISED
89	4	1911			ZERO
101	4	1913			INCORRECT
		1952	03353	51067	2740272066
103	3	1914			UNKNOWN
		1914			INCORRECT
		1981	74422	12107	1252517576
	4	1952	24114	55042	5215655476
107	3	1914			ZERO
109	4	1914			UnKNOWN
		1914			INCORRECT
		1952	42137	07051	4407717542
127	3	1876			ZERO
137	4	1920			INCORRECT
		1952	10134	33201	7273377550
139	3	1926	26402	01452	6535123053
	4	1963	72153	37573	3774453004
149	4	1927	16542	63652	2567604577
157	4	1944	06164	72124	5740052105
167	3	1945			INCORRECT
		1952	55023	73422	3411366527
	4	1944	03606	22171	2712624024
193	4	1947	03252	67125	3663606362
199	3	1946	76417	74230	4616134351
	4	1952	12500	24134	5507467307
227	4	1947	76675	34333	5311563716
229	4	1946	43244	27335	0010653763
241	4	1934	21746	40770	3671262747
257	4	1922			UNKNOWN
		1927	53356	13134	2020635250

Notes
Pervouchine [P13; P14; P16]; [H5; L38]
Lucas [C D1 p22 n115]
Fauquembergue [F8; F9; c D1 p27]
Thomason [T12]; [H17]
Cole [C17; c D1 p29]
Powers [C12; P9; P15; c D1 p30]; [F11]
Fauquembergue [F12; c D1 p32; R2]
Robinson [R2; R10; U9]; [G7]; [N2]
Powers [P1]
Fauquembergue [F1; R2]
Thomason [T12]; [H17]
Robinson [R2; R10]; [G7]; [H8; N2]
Powers [P2]; Fauquembergue [F1]
Powers [P1]
Fauquembergue [F1; R2]
Robinson [R2; R10]; [N2]; [H8]
Lucas [L16; L17; C D1 p22]; [F1]
Fauquembergue [F10; R2]
Robinson [R2; R10]; [G7]; [H8; N2]
Lehmer (unpub.) [L1; C A1]; [R2; R10]; [T12] Gillies [G7]; [N2]; [H8]
Lehmer [L2]; [R2; R10]; [G7; H8; N2; T11]
Uhler [U1; U2; U4]; [R2; R10]; [H8; N2; T11]
Barker [B1; R2]
Robinson [R2; R10]; [T11]
Uhler [U3; U4]; [R2; R10]; [H8; N2; T11]
Uhler [U5]; [R2; R10]; [G7; H8; N2; T11]
Uhler [U5; U6]; [R2]; [T11]
Robinson [R2; R10]; [G7]; [H8; N2]
Uhler [U5; U7]; [R2]; [G7]; [H8; N2; T11]
Uhler [U5; U8]; [R2]; [N2]; [H8; T11]
Powers [P3]; [R2; R10]; [G7; H8; N2; T11]
Kraitchik [L2]
Lehmer [L2; L26]; [R2; R10]; [G7; N2; T11]

$\mathrm{p}=2:$ 1st MERSENNE PRIME

```
-500 2) PRIME (?): Pythagoras [c D1 p4 n4] regarded E E as 'marriage, health,
        beauty'
-275
-250 4) PRIME: Included in the earliest known tables of primes [D1 p347]:
    Eratosthenes may have recorded such a table
Nicomachus [c D1 p3 n2] implied prime (by Euclid Book IX Prop.36)
6) Lucas-Lehmer test not applicable as '2' is an even number
```


$p=3: \quad$ 2nd MERSENNE PRIME

```
    1) }\mp@subsup{m}{3}{}=1;\quad\mp@subsup{e}{3}{}=2;\quadM3=7;\quadE\mp@subsup{E}{3}{}=2
-275 2) PRIME (?): Euclid [H3] presumably knew of E E 
-250 3) PRIME: Included in the earliest known tables of primes [D1 p347]:
        Eratosthenes may have recorded such a table
    100 4) Nicomachus [c D1 p3 n2] implied prime (by Euclid Book IX Prop.36)
    5) Confirmed (!) prime by ZLR [R1; H1; G1; T1; N1]
```


$\mathrm{p}=5$: 3rd MERSENNE PRIME

-250 3) PRIME: Included in the earliest known tables of primes [D1 p347]:
Eratosthenes may have recorded such a table
100 4) Nicomachus [c D1 p3 n2] implied prime (by Euclid Book IX Prop.36)
5) Confirmed (!) prime by ZLR [R1; H1; G1; T1; N1]

$\mathrm{p}=7$: \quad 4th MERSENNE PRIME

1) $m_{7}=3 ; \quad e_{7}=4 ; \quad M_{7}=127 ; \quad E_{7}=8128$
-250 2) May have been in earliest known prime-tables [D1 p347]
100 3) PRIME: Nicomachus [c D1 p3 n2] implied prime (by Euclid Book IX Prop.36)
2) Confirmed (!) prime by ZLR [R1; H1; G1; T1; N1]

$p=11$

1456 1) COMPOSITE: The authors of Codex lat. Monac. 14908 are thought by Curtze to have known that M_{11} had the factor 23 [C26; c D1 p6 n14]
2) ERROR: Carollus Bovillus [c D1 p7 n20] thought M_{n} prime for all odd n; an error repeated by others. Not true (e.g. 11, any composite ' n ')
3) COMPOSITE: Regius [c D1 p7 n26] found complete factorisation: $M_{11}=23 * 89$

1638 5) Stanislaus Pudlowski is credited with full factorisation by Broscius [c A1]
1640 6) Fermat [c D1 p12 n59] found full factorisation
1935 7) Archibald [A1] did not note Regius' or Cataldi's work

$p=13:$ 5th MERSENNE PRIME

1) $m_{13}=4 ; \quad e_{13}=8 ; \quad M_{13}=8191 ; \quad E_{13}=33,550336$

1456 2) PRIME: Manuscript Codex lat. Monac. 14908 [C26; c D1 p6 n14] correctly gave E_{13} as 5 th Perfect Number, implying that M_{13} is prime.
1536 3) Regius [c D1 p7 n26] also declared E_{13} Perfect
4) Confirmed prime by Cataldi (1588), Pauli (1678), Euler (1733)
[c D1 Ch1 ns44, 70 \& 83 respectively]
5) Confirmed prime by ZLR [R1; H1; G1; T1; N1]

$p=17:$ 6th MERSENNE PRIME

1) $m_{17}=6 ; \quad e_{17}=10 ; \quad M_{17}=131071 ; \quad E_{17}=8589,869056$

1588 2) PRIME: Cataldi [C2; c D1 p10 n44] tested with all 72 primes to 359
1750 3) Confirmed prime by Euler [E3 p27; E2 p104; c D1 p18 n89]
4) Confirmed prime by ZLR [R1; H1; G1; T1; N1]

$p=19: \quad 7$ th MERSENNE PRIME

1) $m_{19}=6 ; \quad e_{19}=12 ; \quad M_{19}=524287 ; \quad \mathrm{E}_{19}=137438,691328$ [T3; T11; U11]
2) PRIME: Cataldi [C2; c D1 p10 n44] tested with all 128 primes to 719

1752 3) Confirmed prime by Euler [E3 p27; E2 p104; c D1 p18 ns 89 \& 92]
4) Confirmed prime by ZLR [R1; H1; G1; T1; N1; H8]
$p=23$
1588 1) ERROR: regarded by Cataldi [C2; c D1 p10 n44] as prime
1640 2) COMPOSITE: Fermat [F5 p210; c D1 p12 n56] found $f_{1}=47$
1733 3) Euler [E3 p27; E2 p104; c D1 p18 n89] completed factorisation:

$$
M_{23}=47 * 178481
$$

$p=29$
1588 1) ERROR: regarded by Cataldi [C2; c D1 p10 n44] as prime
1644 2) Stated by Mersenne [M3; c D1 p13] to be composite
1733 3) COMPOSITE: Euler [E1 p106; E2 p2; c D1 p17 n83]: 1103 is a factor
1750 4) Euler [E3 p27; E2 p104; c D1 p18 n89] completed the full factorisation:
$M_{29}=233 * 1103 * 2089$
1935 5) Archibald [A1] credited Euler with 233, Dickson [D1] did not

$\mathrm{p}=31$: 8th MERSENNE PRIME

1) $m_{31}=10 ; e_{31}=19 ; \quad M_{31}=2147,483647 ; \quad E_{31}=2,305843,008139,952128$
[T3; T11; U11]
1644 2) Stated by Mersenne [M3; c D1 p13] to be prime
1733 3) Conjectured by Euler [E1 p103; E2 p2; c D1 p17 n83] as prime
1751 4) Regarded by de Winsheim [W5; c D1 p18 n90] as prime
1752 5) Euler [E8; c D1 p18 n92]: no factor < 2000
1772 6) PRIME: Euler [E6 p35; E2 p584; c D1 p18 n95] tried the 84 eligible primes
2) Confirmed prime by Landry (1859), Seelhoff (?) [c D1 p25 n142] (1887), Lucas (1876), Moret-Blanc (1881)
3) Confirmed prime by ZLR [R1; H1; G1; T1; N1; H8]

$p=37$

1588 1) ERROR: regarded by Cataldi [C2; c D1 p10 n44] as prime
1640 2) COMPOSITE: Fermat [F5 p199; c D1 p12 n59] found $f_{1}=223$
1867 3) Landry [c D1 p21 n112] claimed full factorisation
1869 4) Landry [L19; c D1 p22 n113] published full factorisation:

$$
M_{37}=223 * 616,318177
$$

$p=41$

1644 1) Stated by Mersenne [M3; c D1 p13] to be composite
1678 2) ERROR: Pauli [P11; c D1 p15 n70] gave 83 as a factor
1733 3) Euler [E1 p106; E2 p2; c D1 p17 n83] wrongly conjectured prime
1859 4) COMPOSITE: Plana [P12; c D1 p21 n110] gave full factorisation:
$M_{41}=13367 * 164,511353$
1888 5) ERROR: Christie [C27; C28; c D1 p27 n155] thought M_{41} prime

$p=43$

1644 1) Stated by Mersenne [M3; c D1 p13] to be composite
1733 2) COMPOSITE: Euler [E1 p106; E2 p2; c D1 p17 n83]: $f_{1}=431$
1867 3) Landry [L20; c D1 p21 n112] claimed full factorisation
1869 4) Landry [L19; c D1 p22 n113] published full factorisation: $M_{43}=431 * 9719 * 2,099863$

$p=47$

1644 1) Stated by Mersenne [M3; c D1 p13] to be composite
1733 2) Euler [E1 p106; E2 p2; c D1 p17 n83] wrongly conjectured prime
1741 3) COMPOSITE: Euler [K18; c D1 p19 n93] found $f_{1}=2351$
1751 4) De Winsheim [W5; c D1 p18 n90] independently (?) found $f_{1}=2351$
1856 5) Reuschle [R8; c D1 p21 n108] found $f_{2}=4513$ (note $f_{3}<f_{2} * f_{2}$)
1867 6) Landry [L20; c D1 p21 n112] claimed full factorisation
1869 7) Landry [L19; c D1 p22 n113] published full factorisation:
$M_{47}=2351 * 4513 * 13,264529$
1888 8) ERROR: Christie [C27; C28; c D1 p27 n155] thought M_{47} prime

$p=53$

1644 1) Stated by Mersenne [M3; c D1 p13] to be composite
1859 2) ERROR: Plana [P12; c D1 p21 n110] found no factor < 50033
1867 3) Landry [L20; C D1 p21 n112] claimed full factorisation
1869 4) COMPOSITE: Landry [L19; c D1 p22 n113] published full factorisation: $M_{53}=6361 * 69431 * 20,394401$

$p=59$

1644 1) Stated by Mersenne [M3; c D1 p13] to be composite
1867 2) Landry [L20; c D1 p21 n112] claimed full factorisation
1869 3) COMPOSITE: Landry [L19; c D1 p22 n113] published full factorisation: $M_{59}=179951 * 3,203431,780337$

$p=61: \quad 9$ th MERSENNE PRIME

1) $m_{61}=19 ; \quad e_{61}=37 ; \quad M_{61}=2,305843,009213,693951$; $E_{61}=2,658455,991569,831744,654692,615953,842176$ [H3; T3; T11; U11]
1644 2) ERROR: stated by Mersenne [M3; c D1 p13] to be composite
1869 3) Landry [L14; c D1 p22 n113] conjectured prime
1881 4) Le Lasseur [c D1 p24 n131] found no factor < 30,000
1883 5) PRIME: Pervouchine [P13; P14; P16; c D1 p25 n140] computed a ZLR
1886 6) ERROR: Seelhoff [S12; c D1 p25 n141] wrongly stated M_{61} prime having only found it pseudoprime (base 3)
1887 7) Hudelot [H5; L38; c D1 p25 n144] confirmed prime by ZLR (54 hours work)
1903 8) Cole [C17; c D1 p29 n173] criticised Seelhoff's 'proof' of primality
1927 9) Lehmer [L11] indicated error in Seelhoff's 'proof' of primality
2) Confirmed prime by ZLR [R1; H1; G1; T1; N1; H8]

$p=67$

1644 1) ERROR: stated by Mersenne [M3; c D1 p13] to be prime
1876 2) COMPOSITE (?): Lucas [c D1 p22 n115] computed NZLR (correctly?)
1881 3) Le Lasseur [c D1 p24 n131] found no factor < 30,000
1894 4) COMPOSITE (?): Fauquembergue [F8; F9; c D1 p27 n160] - NZLR (?)
1895 5) Cunningham [C7; C D1 p28 n165] found no factor < 50,000
1903 6) COMPOSITE: Cole [C17; c D1 p29 n173] found the full factorisation: $M_{67}=193,707721 * 761838,257287$
1935 7) Archibald [A1] did not cite Lucas or Fauquembergue (2 and 4 above)
1981 8) Thomason [T12] computed NZLR as 6754316420020434462606 ($S_{1}=3$) [H17]

$p=71$

1644 1) Stated by Mersenne [M3; c D1 p13] to be composite
1881 2) Le Lasseur [c D1 p24 n131] found no factor < 30,000
1895 3) Cunningham [C7; c D1 p28 n165] found no factor < 50,000
1908 4) Cunningham [C8] found no factor < 200,000
1909 5) COMPOSITE: Cunningham [C10; c D1 p30 n181] found $f_{1}=228479$
1912 6) Ramesam [R9; B8; c D1 p31 n191] completed the full factorisation:
$M_{71}=228479 * 48,544121 * 212,885833$
$p=73$
1644 1) Stated by Mersenne [M3; c D1 p13] to be composite
1733 2) COMPOSITE: Euler [E1 p106; E2 p2; c D1 p17 n83] found $f_{1}=439$
1923 3) Poulet [P7; C A1 n12] completed the factorisation: $M_{73}=439 * 2,298041 * 9,361973,132609$
$p=79$
1644 1) Stated by Mersenne [M3; c D1 p13] to be composite
1856 2) COMPOSITE: Reuschle [R8; c D1 p21 n108] found $f_{1}=2687$
1933 3) D H Lehmer [L7; c A1 n13] found f_{2} \& f_{3} to complete the factorisation: $M_{79}=2687 * 202,029703 * 1,113491,139767$

$p=83$

1644 1) Stated by Mersenne [M3; c D1 p13] to be composite
1733 2) COMPOSITE: Euler [E1 p105; E2 p2; c D1 p17 n83] found $f_{1}=167$ (theorem)
1946 3) D H Lehmer [L6] found no further factor < 4,538800
1950 4) Ferrier [F3] used method [F2] to complete the full factorisation:
$M_{83}=167 * 57912,614113,275649,087721$

$\mathrm{p}=89: \quad$ 10th MERSENNE PRIME

1) $m_{89}=27 ; \quad e_{89}=54 ; \quad M_{89}=618,970019,642690,137449,562111$;
$E_{89}=191561,942608,236107,294793,378084,303638,130997,321548,169216$
[T11; U11] - [T3] is incorrect
1644 2) ERROR: stated by Mersenne [M3; c D1 p13] to be composite
1876 3) ERROR: Lucas [L13 p376; c D1 p22 n115] computed a NZLR
1881 4) Le Lasseur [c D1 p24 n131] found no factor < 30,000
1895 5) Cunningham [C7; c D1 p28 n165] found no factor < 50,000
1908 6) Cunningham [C8] found no factor < 200,000
1911 7) PRIME: Powers [C12; P9; P15; c D1 p30 n185] computed ZLR (June)
1911 8) PRIME (?): Tarry [T4; c C12 \& D1 p30 n186] completed (?) calculation
1912 9) PRIME: Fauquembergue [F11; c D1 p30 n187] found ZLR independently (base 2)
2) Confirmed prime by ZLR [R1; H1; G1; T1; N1; H8]

$p=97$

1644 1) Stated by Mersenne [M3; c D1 p13] to be composite
1881 2) COMPOSITE: Le Lasseur [c D1 p24 n131] found $f_{1}=11447$
1935 3) Archibald [A1] recorded that only f_{1} had been found
1946 4) D H Lehmer [L6] found no further factor < 4,538800
1952 5) Ferrier [F4; K7 p13; K17 p48] found f_{2} to complete the factorisation:
$M_{97}=11447 * 13,842607,235828,485645,766393$
$p=101$
1644 1) Stated by Mersenne [M3; c D1 p13] to be composite
1881 2) Le Lasseur [c D1 p24 n131] found no factor < 30,000
1895 3) Cunningham [C7; c D1 p28 n165] found no factor < 50,000
1908 4) Cunningham [C8] found no factor < 200,000
1911 5) Cunningham [C4; W1] found no factor < 500,000
1912 6) Cunningham [C1] found no factor < 800,000 (working with Gerardin)
1912 7) Gerardin [G6; c D1 p31 n192b] found no factor < 1,000,000
1913 8) ERROR: Fauquembergue [F12; c D1 p32 n192c] computed incorrect NZLR
1946 9) D H Lehmer [L6] found no factor < 4,538800
1952 10) COMPOSITE: Robinson [R2; R10; U9] computed NZLR - not Fauquembergue's
1957 11) Robinson [R3] on IBM701 found no factor < 2^{30}
1960 12) Brillhart [B2] on IBM701 found no factor < 2^{31}
1963 13) Brillhart [B4] found no factor < 2^{35}
1963 14) Gillies [G1; G7] confirmed (last 5 octal digits of) Robinson's NZLR
1967 15) Brillhart, Lehmer \& Johnson [B5; C K26 p354, B19] found full factorisation: $M_{101}=7,432339,208719 * 341117,531003,194129$

$p=103$

1644 1) Stated by Mersenne [M3; c D1 p13] to be composite
1881 2) Le Lasseur [c D1 p24 n131] found no factor < 30,000
1895 3) Cunningham [C7; c D1 p28 n165] found no factor < 50,000
1908 4) Cunningham [C8] found no factor < 200,000
1911 5) Cunningham [C4; W1] found no factor < 500,000
1912 6) Cunningham [C1] found no factor < 800,000 (working with Gerardin)
1912 7) Gerardin [G6; c D1 p31 n192b] found no factor < 1,000000
1914 8) ERROR: Fauquembergue [F1] computed incorrect NZLR [R2] ($S_{1}=3$)
1914 9) COMPOSITE (?): Powers [P1] computed unpublished NZLR (correctly?) ($S_{1}=3$)
1946 10) D H Lehmer [L6] found no factor < 4,538800
1952 11) COMPOSITE: Robinson [R2; R10; U9] computed NZLRs ($S_{1}=3 \& 4$)
1957 12) Robinson [R3] on IBM701 found no factor < 2^{30}
1960 13) Brillhart [B2] found no factor < 2^{31}
1963 14) Brillhart [B3] found complete factorisation:
$M_{103}=2550,183799 * 3976,656429,941438,590393$
1963 15) Gillies [G1, G7] confirmed (last 5 octal digits of) Robinson's NZLR ($\mathrm{S}_{1}=4$)
1981 16) Thomason [T12] computed NZLR .. 74422121071252517576 ($\mathrm{S}_{1}=3$) [H17]

$\mathrm{p}=107$: 11th MERSENNE PRIME

1) | $\mathrm{m}_{107}=$ | $33 ; \quad \mathrm{e}_{107}=65 ;$ |
| ---: | :--- |
| $\mathrm{M}_{107}=$ | $162,259276,829213,363391,578010,288127 \quad[\mathrm{R} 6]$ |
| $\mathrm{E}_{107}=$ | $13164,036458,569648,337239,753460,458722,910223,472318,--->$ |
| | $\quad-->386943,117783,728128 \quad[\mathrm{~T} 11]-[\mathrm{T} 3 ;$ U11] are incorrect |

1644 2) ERROR: stated by Mersenne [M3; c D1 p13] to be composite
1881 3) Le Lasseur [c D1 p24 n131] found no factor < 30,000
1895 4) Cunningham [C7; c D1 p28 n165] found no factor < 50,000
1908 5) Cunningham [C8] found no factor < 200,000
1911 6) Cunningham [C4; W1] found no factor < 500,000
1912 7) Cunningham [C1] found no factor < 800,000 (working with Gerardin)
1912 8) Gerardin [G6; c D1 p31 n192b] found no factor < $1,000,000$
1914 9) PRIME: Powers [P2; P6; P10] computed ZLR ($S_{1}=3$) (11th June)
1914 10) PRIME: Fauquembergue [F1; c D1 p32 n200] independently computed ZLR (June)
11) Confirmed prime by ZLR [R1; H1; G1; T1; N1; H8]

$p=109$

1644 1) Stated by Mersenne [M3; c D1 p13] to be composite
1881 2) Le Lasseur [c D1 p24 n131] found no factor < 30,000
1895 3) Cunningham [C7; c D1 p28 n165] found no factor < 50,000
1908 4) Cunningham [C8] found no factor < 200,000
1911 5) Cunningham [C4; W1] found no factor < 500,000
1912 6) Cunningham [C1] found no factor < 800,000 (working with Gerardin)
1912 7) Gerardin [G6; c D1 p31 n192b] found no factor < 1,000,000
1914 8) ERROR: Fauquembergue [F1] computed incorrect NZLR (cf notes 11, 17)
1914 9) COMPOSITE (?): Powers [P1] computed (unpublished) NZLR (correctly?)
1946 10) D H Lehmer [L6] found no factor < 4,538800
1952 11) COMPOSITE: Robinson [R2; R10; U9] computed NZLR - not Fauquembergue's
1957 12) Robinson [R3] found one factor $\left\langle 2^{30}: f_{1}=745,988807\right.$
1958 13) Gabard [G2; C B5] found the unresolved part prime:
$M_{109}=745,988807 * 870035,986098,720987,332873$
1960 14) Brillhart [B2] not knowing of [G2] found no $f_{2}<2^{31}$
1963 15) Brillhart [B4] not knowing of [G2] found no $f_{2}<2^{35}$
1966 16) Brillhart [B5] confirmed Gabard's factorisation
1979 17) Nelson [N1; N2] confirmed (last 24 octal digits of) Robinson's NZLR

$p=113$

1644 1) Stated by Mersenne [M3; c D1] to be composite
1856 2) COMPOSITE: Reuschle [R8; c D1 p21 n108] found $f_{1}=3391$
1909 3) Cunningham [W1; c D1 p31 n192a] noted $f_{2}=23279$ and $f_{3}=65993$
1935 4) Archibald [A1 ns 7, 10] cited Reuschle and Cunningham for f_{1}, f_{2} and f_{3}
1946 5) D H Lehmer [L6] completed the full factorisation:
$M_{113}=3391 * 23279 * 65993 * 1,868569 * 1066,818132,868207$

$\mathrm{p}=127$: 12th MERSENNE PRIME

1) $m_{127}=39 ; \quad e_{127}=77$; $M_{127}=170,141183,460469,231731,687303,715884,105727$ [01 p73; B11]
$E_{127}=14474,011154,664524,427946,373126,085988,481573,677491, \cdots$ ---> 474835,889066,354349,131199,152128 [T3; T11] - [U11] is incorrect
1644 2) Stated by Mersenne [M3; c D1 p13] to be prime
1876 3) PRIME: Lucas [L16; L17; c D1 p22 n116, A1 n17] computed ZLR ($S_{1}=3$)
1881 4) Le Lasseur [c D1 p24 n131] found no factor < 30,000
1895 5) Cunningham [C7; c D1 p28 n165] found no factor < 50,000
1914 6) Fauquembergue [F1; c D1 p32 n200] confirmed prime by $\operatorname{ZLR}\left(S_{1}=3\right)$
2) Confirmed prime by ZLR [R1; H1; G1; $\mathrm{T} 1 ; \mathrm{N} 1 ; \mathrm{H} 8]$

$p=131$

1644 1) Stated by Mersenne [M3; c D1 p13] to be composite
1733 2) COMPOSITE: Euler [E1 p105; E2 p2; c D1 p17 n83] found $f_{1}=263$ by theorem
1946 3) D H Lehmer [L6] found no further factor < 4,538800
1957 4) Robinson [R3] found no further factor < 2^{30}
1960 5) Brillhart [B2] found no further factor < 2^{31}
1963 6) Brillhart [B4] found no further factor < 2^{35}
1966 7) Brillhart [B5] found f_{2} prime to complete the factorisation:
$M_{131}=263 * 10,350794,431055,162386,718619,237468,234569$

$p=137$

1644 1) Stated by Mersenne [M3; c D1 p13] to be composite
1881 2) Le Lasseur [c D1 p24 n131] found no factor < 30,000
1895 3) Cunningham [C7; c D1 p28 n165] found no factor < 50,000
1908 4) Cunningham [C8] found no factor < 200,000
1911 5) Cunningham [C4; W1] found no factor < 500,000
1912 6) Cunningham [C1] found no factor < 800,000 (working with Gerardin)
1912 7) Gerardin [G6; c D1 p31 n192b] found no factor < 1,000,000
1920 8) ERROR: Fauquembergue [F10] computed incorrect NZLR (cf ns 10, 14)
1946 9) D H Lehmer [L6] found no factor < 4,538800
1952 10) COMPOSITE: Robinson [R2; R10; U9] computed NZLR - not Fauquembergue's
1957 11) Robinson [R3] found no factor < 2^{30}
1960 12) Brillhart [B2] found no factor < 2^{31}
1963 13) Brillhart [B4] found no factor < 235
1963 14) Gillies [G1; G7] confirmed (last 5 octal digits of) Robinson's NZLR
1971 15) Schroepepel [B7 p13; c B6 p645; B19] found full factorisation (cf):
$M_{137}=32,032215,596496,435569 * 5439,042183,600204,290159$

```
p = 139
```

1644 1) Stated by Mersenne [M3; c D1 p13] to be composite
1881 2) Le Lasseur [c D1 p24 n131] found no factor < 30,000
1895 3) Cunningham [C7; c D1 p28 n165] found no factor < 50,000
1908 4) Cunningham [C8] found no factor < 200,000
1911 5) Cunningham [C4; W1] found no factor < 500,000
1912 6) Cunningham [C1] found no factor < 800,000 (working with Gerardin)
1912 7) Gerardin [G6; c D1 p31 n192b] found no factor < 1,000,000
1926 8) COMPOSITE: D H Lehmer [L1; c A1 n13] computed (unpublished) NZLR ($S_{1}=3$)
1946 9) D H Lehmer [L6] found no factor < 4,538800
1953 10) Robinson [R2; R10] on SWAC confirmed Lehmer's NZLR ($S_{1}=3$)
1957 11) Robinson [R3] found no factor < 2^{30}
1960 12) Brillhart [B2] found no factor < 2^{31}
1963 13) Brillhart [B4] found no factor < 2^{35}
1963 14) Gillies [G1; G7] computed NZLR ($S_{1}=4$)
1972 15) Brillhart [B6; S28] found full factorisation (cf):
$M_{139}=5,625767,248687 * 123876,132205,208335,762278,423601$
1979 16) Nelson [N2] confirmed Gillies' NZLR
1981 17) Thomason [T12] confirmed Robinson's NZLR ($S_{1}=3$)

$p=149$

1644 1) Stated by Mersenne [M3; c D1 p13] to be composite
1881 2) Le Lasseur [c D1 p24 n131] found no factor < 30,000
1895 3) Cunningham [C7; c 01 p28 n165] found no factor < 50,000
1908 4) Cunningham [C8] found no factor < 200,000
1911 5) Cunningham [C4; W1] found no factor < 500,000
1912 6) Cunningham [C1] found no factor < 800,000 (working with Gerardin)
1912 7) Gerardin [G6; c D1 p31 n192b] found no factor < $1,000,000$
1927 8) COMPOSITE: D H Lehmer [L2; L27; c A1 n13] computed correct NZLR [R2; T11]
1946 9) D H Lehmer [L6] found no factor < 4,538800
1952 10) Robinson [R2; R10] confirmed Lehmer's NZLR on SWAC
1957 11) Robinson [R3] found no factor < 2^{30}
1960 12) Brillhart [B2] found no factor < 2^{31}
1963 13) Brillhart [B4] found no factor < 2^{35}
1972 14) Schroepepel [C B6 p645, B16, B17, B19] found full factorisation (cf):
$M_{149}=86,656268,566282,183151 * 8,235109,336690,846723,986161$

$p=151$

1644 1) Stated by Mersenne [M3; c D1 p13] to be composite
1881 2) COMPOSITE: Le Lasseur [L18; c D1 p24 n131] found $f_{1}=18121$
1909 3) Cunningham [W1; c D1 p31 n192a] found $f_{2}=55871$
1921 4) Kraitchik [K3; K16; c A1 n18] found $f_{3}=165799$
1946 5) DH Lehmer [L6] found $f_{4}=2,332951$ and no other factor < 4,538800
1952 6) Gabard [G12] found the unresolved part prime:
$M_{151}=18121 * 55871 * 165799 * 2,332951 * 7,289088,383388,253664,437433$

$p=157$

1644 1) Stated by Mersenne [M3; c D1 p13] to be composite
1881 2) Le Lasseur [c D1 p24 n131] found no factor < 30,000
1895 3) Cunningham [C7; c D1 p28 n165] found no factor < 50,000
1908 4) Cunningham [C8] found no factor < 200,000
1911 5) Cunningham [C4; W1] found no factor < 500,000
1912 6) Cunningham [C1] found no factor < 800,000 (working with Gerardin)
1912 7) Gerardin [G6; c D1 p31 n192b] found no factor < 1,000,000
1944 8) COMPOSITE: Uhler [U1; U2; c A3] computed correct NZLR [R2; R10; T11]
1945 9) Barker [U4] confirmed Uhler's NZLR
1946 10) D H Lehmer [L6] found no factor < 4,538800
1952 11) Robinson [R2; R10] confirmed Uhler's NZLR on SWAC
1957 12) Robinson [R3] found $f_{1}=852,133201$ below search-1imit 2^{30}
1960 13) Brillhart [B2] found no further factor < 2^{31}
1963 14) Brillhart [B4] found no further factor < 2^{35}
1974 15) Brillhart [B6] found f_{2}, f_{3} and f_{4} to complete the full factorisation:
$M_{157}=852,133201 * 60726,444167 * 1,654058,017289 *$ 2134,387368,610417

$p=163$

1644 1) Stated by Mersenne [M3; c D1 p13] to be composite
1881 2) Le Lasseur [c D1 p24 n131] found no factor < 30,000
1895 3) Cunningham [C7; c D1 p28 n165] found no factor < 50,000
1908 4) COMPOSITE: Cunningham [C8; C9; c D1 p30 n180] found $f_{1}=150287$
1946 5) D H Lehmer [L6] found $f_{2}=704161$ and no other factor < 4,538800
1960 6) Brillhart [B2] found $f_{3}=110,211473$ below search-limit 2^{31}
1963 7) Brillhart [B3] found f_{4} and f_{5} to complete the factorisation:
$M_{163}=150287 * 704161 * 110,211473 * 27669,118297 *$ $36,230454,570129,675721$

$$
p=167
$$

1644 1) Stated by Mersenne [M3; c D1 p13] to be composite
1881 2) Le Lasseur [c D1 p24 n131] found no factor < 30,000
1895 3) Cunningham [C7; c D1 p28 n165] found no factor < 50,000
1908 4) Cunningham [C8] found no factor < 200,000
1911 5) Cunningham [C4; W1] found no factor < 500,000
1912 6) Cunningham [C1] found no factor < 800,000 (working with Gerardin)
1912 7) Gerardin [G6; c D1 p31 n192b] found no factor < $1,000,000$
1944 8) COMPOSITE: Uhler [U3; U4; C A3] computed correct NZLR [R2; T11] $\left(S_{1}=4\right)$
1945 9) ERROR: Barker [B1] computed incorrect NZLR [R2; T11] ($S_{1}=3$)
1946 10) D H Lehmer [L6] found $f_{1}=2,349023$ and no further factor < 4,538800
1952 11) Robinson [R2; R10] computed NZLRs ($S_{1}=3 \& 4$) confirming Uhler's NZLR
1960 12) Brillhart [B2] confirmed f_{1} and found no further factor < 2^{31}
1963 13) Brillhart [B4] found no further factor < 2^{35}
1974 14) Brillhart [$B 6$ p645] found f_{2} prime to complete the factorisation:
$M_{167}=2,349023$ * 79,638304,766856,507377,778616,296087,448490,695649
1981 15) Thomason [T11] confirmed Robinson's NZLR $\left(S_{1}=3\right)$

$p=173$

1644 1) Stated by Mersenne [M3; c D1 p13] to be composite
1881 2) Le Lasseur [c D1 p24 n131] found no factor < 30,000
1895 3) Cunningham [C7; c D1 p28 n165] found no factor < 50,000
1908 4) Cunningham [C8] found no factor < 200,000
1911 5) Cunningham [C4; W1] found no factor < 500,000
1912 6) COMPOSITE: Cunningham [C1; c D1 p31 n190]: $f_{1}=730753$ (with Gerardin)
1946 7) D H Lehmer [L6] found $f_{2}=1,505447$ and no further factor < 4,538800
1960 8) Brillhart [B2] confirmed $f_{1} \& f_{2}$ and found no further factor < 2^{31}
1963 9) Brillhart [B4] found no further factor < 2^{35}
1974 10) Brillhart [B6] found the unresolved part composite
1979 11) Naur [N 20] found $\mathrm{f}_{3}(\mathrm{Pp})$ \& f_{4} prime to complete the factorisation:
$M_{173}=730753 * 1,505447 * 70084,436712,553223 *$ $155285,743288,572277,679887$

$p=179$

1644 1) Stated by Mersenne [M3; c D1 p13] to be composite
1733 2) COMPOSITE: Euler [E1 p105; E2 p2; c D1 p17 n83] found $f_{1}=359$ (theorem)
1856 3) Reuschle [R8; c D1 p21 n108] found $f_{2}=1433$
1946 4) D H Lehmer [L6] found no further factor < 4,538800
1960 5) Brillhart [B2] confirmed $f_{1} \& f_{2}$ and found no further factor < 2^{31}
1963 6) Brillhart [B3] found f_{3} prime to complete the factorisation:
$M_{179}=359 * 1433 *$
$1,489459,109360,039866,456940,197095,433721,664951,999121$

$p=181$

1644 1) Stated by Mersene [M3; c D1 p13] to be composite
1881 2) Le Lasseur [c D1 p24 n131] found no factor < 30,000
1895 3) ERROR: Cunningham [C7; c D1 p28 n165] found no factor < 50,000
1908 4) ERROR: Cunningham [C8] found no factor < 200,000
1911 5) COMPOSITE: Woodall [C11; W1; c D1 p30 n184] found $f_{1}=43441$
1946 6) D H Lehmer [L6] found $f_{2}=1,164193$ and no further factor < 4,538800
1960 7) Brillhart [B2] found $f_{3}=7,648337$ and no further factor < 2^{31}
1963 8) Brillhart [B3] found f_{4} prime to complete the factorisation:
$M_{181}=43441 * 1,164193 * 7,648337 *$
$7,923871,097285,295625,344647,665764,672671$

$p=191$

1644 1) Stated by Mersenne [M3; C D1 p13] to be composite
1733 2) COMPOSITE: Euler [E1 p105; E2 p2; c D1 p17 n83] found $f_{1}=383$ (theorem)
1946 3) D H Lehmer [L6] found no further factor < 4,538800
1960 4) Brillhart [B2] confirmed f_{1} and found no further factor < 2^{31}
1963 5) Brillhart [B3] found $f_{2}=7068,569257$ (TD)
1963 6) Brillhart [B4] found no further factor < 2^{35}
1974 7) Brillhart [B6] found the unresolved part composite
1974 8) "Cunningham Project" [c B16; B17; B19; R12] found $\mathrm{f}_{4}=332,584516,519201$ (Pp)
1974 9) "Cunningham Project" [c B16; B17; B19; R12] completed the factorisation (cf); note the four different factorisation methods used on M_{191} :
$M_{191}=383 * 7068,569257 * 39940,132241 * 332,584516,519201 *$ 87,274497,124602,996457

$p=193$

1644 1) Stated by Mersenne [M3; c D1 p13] to be composite
1881 2) Le Lasseur [c D1 p24 n131] found no factor < 30,000
1895 3) Cunningham [C7; c D1 p28 n165] found no factor < 50,000
1908 4) Cunningham [C8] found no factor < 200,000
1911 5) Cunningham [C4; W1] found no factor < 500,000
1912 6) Cunningham [C1] found no factor < 800,000 (working with Gerardin)
1912 7) Gerardin [G6; c D1 p31 n192b] found no factor < 1,000,000
1946 8) D H Lehmer [L6] found no factor < 4,538800
1947 9) COMPOSITE: Uhler [U5; c A3] computed a NZLR
1952 10) Robinson [R2; R10; T11] on SWAC confirmed Uhler's NZLR
1960 11) Brillhart [B2] found $f_{1}=13,821503$ only below search-limit 2^{31}
1963 12) Brillhart [B4] found no further factor < 2^{35}
1963 13) Gillies [G1; G7] confirmed (last 5 octal digits of) Robinson's NZLR
1974 14) Brillhart [B6] found the the unresolved part composite
1981 15) Naur [N18; N19] found primes $f_{2}(c f) \& f_{3}$ to complete the factorisation: $M_{193}=13,821503 * 61654,440233,248340,616559 *$ $14732,265321,145317,331353,282383$

$p=197$

1644 1) Stated by Mersenne [M3; c D1 p13] to be composite
1881 2) ERROR: Le Lasseur [c D1 p24 n131] found no factor < 30,000
1895 3) COMPOSITE: Cunningham [C3; C6; c D1 p28 n164] found $f_{1}=7487$
1946 4) D H Lehmer [L6] found no further factor < 4,538800
1960 5) Brillhart [B2] confirmed f_{1} and found no further factor < 2^{31}
1963 6) Brillhart [B4] found no further factor < 2^{35}
1974 7) Brillhart [B6] found f_{2} prime to complete the factorisation:
$M_{197}=7487$ *
$26,828803,997912,886929,710867,041891,989490,486893,845712,448833$
[S18; T10]

$p=199$

1644 1) Stated by Mersenne [M3; c D1 p13] to be composite
1881 2) Le Lasseur [c D1 p24 n131] found no factor < 30,000
1895 3) Cunningham [C7; c 01 p28 n165] found no factor < 50,000
1908 4) Cunningham [C8] found no factor < 200,000
1911 5) Cunningham [C4; W1] found no factor < 500,000
1912 6) Cunningham [C1] found no factor < 800,000 (working with Gerardin)
1912 7) Gerardin [G6; c D1 p31 n192b] found no factor < 1,000,000
1946 8) COMPOSITE: Uhler [U5; U6] computed correct NZLR [R2; T11] ($\left.S_{1}=3\right)$
1946 9) D H Lehmer [L6] found no factor < 4,538800
1952 10) Robinson [R2; R10] computed NZLRs ($S_{1}=3$ \& 4) confirming Uhler's NZLR
1960 11) Brillhart [B2] found no factor < 2^{31}
1963 12) Brillhart [B4] found no factor < 2^{35}
1963 13) Gillies [G7] confirmed Robinson's NZLR ($S_{1}=4$)
1976 14) Schroepepel [C B16; B17; B19; C R12] found the factorisation (rho):
$M_{199}=164504,919713 * 4,884164,093883,941177,660049,098586,324302, \cdots$ ---> 977543,600799 [S18; T10]
1981 15) Thomason [T11] confirmed Uhler's NZLR $\left(S_{1}=3\right)$

$p=211$

1644 1) Stated by Mersenne [M3; c D1 p13] to be composite
1881 2) COMPOSITE: Le Lasseur [L18; c D1 p24 n131] found $f_{1}=15193$
1946 3) D H Lehmer [L6] found no further factor < 4,538800
1960 4) Brillhart [B2] confirmed f_{1} and found no further factor < 2^{31}
1963 5) Brillhart [B4] found no further factor < 2^{35}
1974 6) Brillhart [B6] found the unresolved part composite, c60
1983 7) Davis \& Holdridge found $f_{2}(q s) \& f_{3}$ to complete the factorisation:
$M_{211}=15193 * 60,272956,433838,849161$ * $3593,875704,495823,757388,199894,268773,153439$

$p=223$

1644 1) Stated by Mersenne [M3; c D1 p13] to be composite
1881 2) COMPOSITE: Le Lasseur [L18; c D1 p24 n131] found $f_{1}=18287$
1921 3) Kraitchik [K3 p24; K16; c A1 n18] found $f_{2}=196687$
1946 4) D H Lehmer [L6] added just $f_{3}=1,466449$ and $f_{4}=2,916841$ below 4,538800
1960 5) Brillhart [B2] confirmed f_{1} to f_{4} and found no further factor < 2^{31}
1963 6) Brillhart [B4] found no further factor < 2^{35}
1974 7) Brillhart [B6] found the unresolved part composite
1981 8) "Cunningham Project" [B22] completed the factorisation (cf):

$$
\begin{aligned}
M_{223}= & 18287 * 196687 * 1,466449 * 2,916841 * \\
& 1469,495262,398780,123809 * 596242,599987,116128,415063
\end{aligned}
$$

$p=227$

1644 1) Stated by Mersenne [M3; c D1 p13] to be composite
1881 2) Le Lasseur [c D1 p24 n131] found no factor < 30,000
1895 3) Cunningham [C7; c 01 p28 n165] found no factor < 50,000
1908 4) Cunningham [C8] found no factor < 200,000
1911 5) Cunningham [C4; W1] found no factor < 500,000
1912 6) Cunningham [C1] found no factor < 800,000 (working with Gerardin)
1912 7) Gerardin [G6; c D1 p31 n192b] found no factor < 1,000,000
1946 8) D H Lehmer [L6] found no factor < 4,538800
1947 9) COMPOSITE: Uhler [U5; U7; C A3] computed correct NZLR [R2; T11]
1952 10) Robinson [R2] on SWAC confirmed Uhler's NZLR
1960 11) Brillhart [B2] found no factor < 2^{31}
1963 12) Brillhart [B4] found no factor < 2^{35}
1982 13) Brent [B30] found primes f_{1} (rho) \& f_{2} to complete factorisation: $M_{227}=26986,333437,777017 *$

7992,177738,205979,626491,506950,867720,953545,660121,688631

$p=229$

1644 1) Stated by Mersenne [M3; c D1 p13] to be composite
1881 2) Le Lasseur [c D1 p24 n131] found no factor < 30,000
1895 3) Cunningham [C7; c D1 p28 n165] found no factor < 50,000
1908 4) Cunningham [C8] found no factor < 200,000
1911 5) Cunningham [C4; W1] found no factor < 500,000
1912 6) Cunningham [C1] found no factor < 800,000 (working with Gerardin)
1912 7) Gerardin [G6; c D1 p31 n192b] found no factor < $1,000,000$
1946 8) COMPOSITE: Uhler [U5; U8; c A3] computed correct NZLR [R2; T11] (February)
1946 9) D H Lehmer [L6] found $f_{1}=1,504073$ and no other factor < 4,538800 (Oct.)
1952 10) Robinson [R2] on SWAC confirmed Uhler's NZLR
1960 11) Brillhart [B2] confirmed f_{1}, added $f_{2}=20,492753$ and found NFF < 2^{31}
1963 12) Brillhart [B4] found no further factor < 2^{35}
1974 13) Brillhart [B6] found the unresolved part composite
1981 14) Brent [B24; B27; B28] found f_{3} (rho) \& f_{4} to complete the factorisation:
$M_{229}=1,504073 * 20,492753 * 59833,457464,970183 *$ $467,795120,187583,723534,280000,348743,236593$

$p=233$

1644 1) Stated by Mersenne [c D1 p13] to be composite
1856 2) COMPOSITE: Reuschle [R8; c D1 p21 n108] found $f_{1}=1399$
1921 3) Kraitchik [K3 p24; K16; c A1 n18] found $f_{2}=135607$
1946 4) D H Lehmer [L6] found $f_{3}=622577$ and no further factor < 4,538800
1960 5) Brillhart [B2] confirmed f_{1}, f_{2} and f_{3} above and found NFF < 2^{31}
1963 6) Brillhart [B4] found no further factor < 2^{35}
1974 7) Brillhart [B6; B16] found f4 prime by Corollary 11 [B6]:
$M_{233}=1399 * 135607 * 622577 *$ $116,868129,879077,600270,344856,324766,260085,066532,853492,178431$ [S18; T10]

1644 1) Stated by Mersenne [M3; c D1 p13] to be composite
1733 2) COMPOSITE: Euler [E1; E2 p2; c D1 p17 n83] found $f_{1}=479$ by observation
1856 3) Reuschle [R8; c D1 p21 n108] found $f_{2}=1913$
1896 4) Bickmore [B12; c D1 p28 n166] confirmed f_{2} and added $f_{3}=5737$
1921 5) Kraitchik [K3 p24; K16; c A1 n18] found $f_{4}=176383$
1946 6) D H Lehmer [L6] found no further factor < 4,538800
1960 7) Brillhart [B2] confirmed $f_{1}-f_{4}$; added $f_{5}=134,000609$; found NFF < 2^{31}
1963 8) Brillhart [B4] found no further factor < 2^{35}
1974 9) Brillhart [B6] found f_{6} prime to complete the factorisation:
$M_{239}=479 * 1913 * 5737 * 176383 * 134,000609 *$ $7,110008,717824,458123,105014,279253,754096,863768,062879$
[S18; T10]

$p=241$

1644 1) Stated by Mersenne [M3; c D1 p13] to be composite
1881 2) Le Lasseur [c D1 p24 n131] found no factor < 30,000
1895 3) Cunningham [C7; c D1 p28 n165] found no factor < 50,000
1908 4) Cunningham [C8] found no factor < 200,000
1911 5) Cunningham [C4; W1] found no factor < 500,000
1912 6) Cunningham [C1] found no factor < 800,000 (working with Gerardin)
1912 7) Gerardin [G6; c D1 p31 n192b] found no factor < 1,000,000
1934 8) COMPOSITE: Powers [P3] computed correct NZLR [R2; T11]
1946 9) D H Lehmer [L6] found no factor < 4,538800
1952 10) Robinson [R2; R10] on SWAC confirmed Powers' NZLR
1960 11) Brillhart [B2] found $f_{1}=22,000409$ and no further factor $<2^{31}$
1963 12) Brillhart [B4] found no further factor < 2^{35}
1974 13) Brillhart [B6] found f_{2} prime to complete the factorisation:
$M_{241}=22,000409 * 160619,474372,352289,412737,508720,216839,-->$ ---> $225805,656328,990879,953332,340439$

$p=251$

1644 1) Stated by Mersenne [M3; c D1 p13] to be composite
1733 2) An observation of Euler gives $f_{1}=503$; did Euler state this explicitly?
1878 3) COMPOSITE: Lucas [L14 p236; c D1 p23 n123] found $f_{1}=503$
1909 4) Cunningham [W1; c D1 p31 n192a, A1 n10] found $f_{2}=54217$
1946 5) D H Lehmer [L6] found no further factor < 4,538800
1960 6) Brillhart [B2] confirmed $f_{1} \& f_{2}$ and found no further factor < 2^{31}
1963 7) Brillhart [B4] found no further factor < 2^{35}
1974 8) Brillhart [B6] found the unresolved part composite, c69
1984 9) Davis et al found f_{3}, f_{4} (qs) \& f_{5} prime [T14], completing the factorisation: $M_{251}=503 * 54217 * 178,230287,214063,289511 *$
$61676,882198,695257,501367$ * $12,070396,178249,893039,969681$

$p=257$

1644 1) ERROR: Stated by Mersenne [M3; c D1 p13] to be prime
1881 2) Le Lasseur [c D1 p24 n131] found no factor < 30,000
1895 3) Cunningham [C7; c D1 p28 n165] found no factor < 50,000
1911 4) Powers [C15; P8] found no factor < 10,017000
1922 5) COMPOSITE (?): Kraitchik [L2] computed a NZLR - lost in Gerardin's files
1927 6) COMPOSITE: D H Lehmer [L2; L26] computed correct NZLR [R2; R10; T11]
1936 7) ERROR: Krieger [K19] thought M257 prime
1952 8) Robinson [R2; R10] confirmed Lehmer's NZLR
1960 9) Brillhart [B2] found no factor < 2^{31}
1963 10) Brillhart [B4] found no factor < 2^{35}
1979 11) Penk [C B16; B17; B19] found $f_{1}=535,006138,814359$ (rho) to be prime
1980 12) Baillie [c B16; B17; B19] found $f_{2}(P p) \& f_{3}$ to complete the factorisation:
$M_{257}=535,006138,814359 * 1,155685,395246,619182,673033 *$ $374,550598,501810,936581,776630,096313,181393$ [S18; T10]

A trivial computation will satisfy the reader that the above statements $M_{p}=\prod_{i} f_{i}$ are correct. The confirmation, if required, that the f_{i} are prime is a much more ${ }^{*}$ significant computation which could be simplified by the provision of supporting evidence in the form of a primality-certificate; Vaughn Pratt [P5] proved that succinct certificates exist in all cases. The author [H2O] has compiled certificates using factorisations by Brent, Davis \& Holdridge, Naur, Pollard and Wagstaff. These certificates minimise the verifier's work and 'go down' the 'p-1 route'.

Results are grouped in line with the ranges of prime indexes of "original" computations. All prime-indexes ' p ' have been accounted for by Lucas Residue (LR) or prime factor for $p<100,000$.

$258<p<2304$

1949 NEWMAN, KILBURN \& TOOTILL [H21; N16; T13]

1) Computed LRs for all (?) p < 354
2) Confirmed prime/composite pattern for $p<258$
3) Did not publish p or LRs

1952 LEHMER \& ROBINSON [L3; L4; L5; R2; R3]

1) Lehmer eliminated M_{p} where a factor was known
2) Robinson computed $L R$ for all (sic) remaining M_{p} in this range
3) PRIME: 13th Mersenne Prime M_{521} discovered on $30 / 1 / 1952$ [L3]
4) PRIME: 14th Mersenne Prime M_{607} discovered on $30 / 1 / 1952$ [L3]
5) PRIME: 15th Mersenne Prime M_{1279} discovered on $25 / 6 / 1952$ [L4]
6) PRIME: 16th Mersenne Prime M_{2203} discovered on $7 / 10 / 1952$ [L5]
7) PRIME: 17th Mersenne Prime M2281 discovered on $9 / 10 / 1952$ [L5]
8) Checked with identical runs on different days until two results agreed
9) Used an alternative starting value, $S_{1}=10$, for the Lucas test
10) Made residues available to subsequent workers (Selfridge \& Hurwitz)
11) ERROR: incorrect NZLR for M_{1889}. Found by Hurwitz' IBM7090 [S3]
12) Did not use modulus check on the computation [R10]
13) Did not publish p, LRs, M_{p}-factors and factor-table sources
14) Did not remark on the frequency of residue disagreements (8 above)

1961 SELFRIDGE \& HURWITZ [H1; H2; S3]

1) Computed LR for all (sic) M_{p} where no M_{p}-factor was known
2) Found SWAC LR for M1889 incorrect; SWAC confirmed error [S3]
3) Did not publish p, LRs, M_{p}-factors and factor-table references

1963 GILLIES [G1; G7]

1) Computed LR for all M_{p} where no M_{p}-factor was known [G7]
2) Tabled last 5 octal digits of LRs [G7]

1971 TUCKERMAN [T1]

1) Computed $L R$ for all (sic) M_{p} where no M_{p}-factor was known
2) Did not publish p, LRs, M_{p}-factors and factor-table references

1979 NELSON \& SLOWINSKI [N1; N12; S1]

1) Computed LR for all p < 16310, 16400-17188, 18020-24000 et al [N12]
2) Second-sourced all LRs in the above three ranges [N12]
3) Confirmed prime/composite-M pattern for $p<21000$
4) Deposited LRs in Maths. Comp. UMT file for p < 50024 [N12]

1982 ICL 2900 DAP [H8 - H15]

1) Computed 2828 LRs for $p<50024$
2) Confirmed all LRs or corrected LRs in [G1; G7; H2; K1; N7; R10; S3; T6]
3) Confirmed all LRs in [N12] where no factor was known with 16 corrections
4) Deposited LRs for $p<62982$ in MC UMT file [H15]

$2304<p<3300$

1957 RIESEL [R5; R1]

1) Examined all $M_{p}, p<10000$, for a factor $q<10.2^{20}$
2) Computed LR for all (sic) remaining M_{p} in this range
3) PRIME: 18th Mersenne Prime M_{3217} discovered on $8 / 9 / 1957$
4) Checked with second run that M_{3217} is prime
5) Checked all previously known prime M_{p} for zero residue
6) Checked factor values against other sources: Lehmer, Kraitchik, ...
7) Double-checked that (all?) factors are of form ' $2 \mathrm{kp}+1$ '
8) Published first factor of M_{p} where known
9) Cautioned that 'factors' tabled may not be true divisors of M_{p}
10) Cautioned that BESK only did one run on 'composite' M_{p}
11) Made the LRs available (in hexadecimal) to Selfridge \& Hurwitz [S3]
12) ERRORS: Two proof-preparation errors in factor table; corrected [S5]
13) ERRORS (?): 4 (?) NZLRs ($p=2957,2969,3049,3109$) incorrect [S3]
14) Did not use modulus check on the calculation [R12]
15) Did not use alternative starting value $S_{1}=10$ for Lucas test
16) Did not residue test for $p<2304$ and check against SWAC LRs
17) Did not publish the computed LRs

1961 SELFRIDGE \& HURWITZ [H1; H2; S3]

1) Computed LR for all (sic) M_{p} where no M_{p}-factor was known
2) Disagreed with Riesel's LRs for 4 indexes ' p ', see note 13 above [S3]
3) ERRORS: 4 incorrect NZLRs originally computed; later corrected [S3]
4) Did not publish p, LRs, M_{p}-factors and factor-table references

1963 GILLIES [G1; G7]

1) Computed LR for all M_{p} where no factor was known for $p<12124$
2) Tabled last 5 octal digits of LRs [G7]

1971 TUCKERMAN [T1]

1) Computed LR for all (sic) M_{p} where no factor was known for $p<21000$
2) Did not publish p, LRs, M_{p}-factors and factor-table references

1979 NELSON \& SLOWINSKI [N1; N12; S1]

1) Computed LR for all p < 16310, 16400-17188, 18020-24000 et al [N12]
2) Second-sourced all LRs in the above three ranges [N12]
3) Confirmed prime/composite-M pattern for $p<21000$
4) Deposited LRs in Maths. Comp. UMT file for p < 50024 [N12]

1982 ICL 2900 DAP [H8 - H15]

1) Computed 2828 LRs for $p<50024$
2) Confirmed all LRs or corrected LRs in [G1; G7; H2; K1; N7; R10; S3; T6]
3) Confirmed all LRs in [N12] where no factor was known with 16 corrections
4) Deposited LRs for $p<62982$ in MC UMT file [H15]

1961 SELFRIDGE \& HURWITZ [H1; H2; S3]

1) Computed LR for all M_{p} in this range where no factor was known
2) PRIME: 19th Mersenne Prime M4253 discovered on or before $3 / 11 / 1961$
3) PRIME: 20th Mersenne Prime M_{4423} discovered on or before $3 / 11 / 1961$
4) Used Lucas test with both $S_{1}=4$ and $S_{1}=10$ on prime M_{p}
5) Used Brillhart's factors to eliminate some composite M_{p}
6) Published last 5 octal digits of LRs
7) Published sign of S_{p-2} for prime M_{p}
8) ERRORS : 4 incorrect NZLRs ($p=3637,3847,4397,4421$) [S3]
9) Did not check Brillhart's factors
10) Did not modulus-check the computation

1963 GILLIES [G1; G7]

1) Computed LR for all M_{p} where no factor was known [G7]
2) Corrected Hurwitz' four errors [G7; G1], see note 7 above
3) Confirmed (last 5 octal digits of) all Hurwitz' remaining LRs in this range
4) Tabled last 5 octal digits of LRs [G7]

1971 TUCKERMAN [T1]

1) Computed LR for all (sic) M_{p} where no M_{p}-factor was known
2) Did not publish p, LRs, M_{p}-factors and factor-table references

1979 NELSON \& SLOWINSKI [N1; N12; S1]

1) Computed LR for all $M_{p}, p<16310$, $16400-17188,18020$ - 24000 et al [N12]
2) Second-sourced all LRs in the above three ranges [N12]
3) Confirmed prime/composite- M_{p} pattern for $p<21000$
4) Deposited LRs in Maths. Comp. UMT file for p < 50024 [N12]

1982 ICL 2900 DAP [H8 - H15]

1) Computed 2828 LRs for $p<50024$
2) Confirmed all LRs or corrected LRs in [G1; G7; H2; K1; N7; R10; S3; T6]
3) Confirmed all LRs in [N12] where no factor was known with 16 corrections
4) Deposited LRs for $p<62982$ in MC UMT file [H15]

1963 SELFRIDGE \& HURWITZ [S3]

1) Computed LR for all M_{p} where no M_{p}-factor was known
2) Published last 5 octal digits of LRs
3) Checked both S_{i} squaring and mod M_{p} reduction modulo $2^{35}-1$

1963 GILLIES [G1; G7]

1) Computed LR for all M_{p} where no M_{p}-factor was known [G7]
2) Tabled last 5 octal digits of LR [G7]
3) Found factor and did not compute NZLR for $p=5387,5591,5641,5987$
4) Confirmed (last 5 octal digits of) Selfridge/Hurwitz's remaining NZLRs

1971 TUCKERMAN [T1]

1) Computed LR for all (sic) M_{p} where no M_{p}-factor was known
2) Did not publish p, LRs, M_{p}-factors and factor-table references

1979 NELSON \& SLOWINSKI [N1; N12; S1]

1) Computed LR for all $M_{p}, p<16310$, 16400-17188, 18020-24000 et al [N12]
2) Second-sourced all LRs in the above three ranges [N12]
3) Confirmed prime/composite- M_{p} pattern for $p<21000$
4) Deposited LRs in Maths. Comp. UMT file for p < 50024 [N12]

1982 ICL 2900 DAP [H8 - H15]

1) Computed 2828 LRs for $p<50024$
2) Confirmed all LRs or corrected LRs in [G1; G7; H2; K1; N7; R10; S3; T6]
3) Confirmed all LRs in [N12] where no factor was known with 16 corrections
4) Deposited LRs for $p<62982$ in MC UMT file [H15]

1963 KRAVITZ \& BERG [K1]

1) Computed $L R$ for all M_{p} in this range where no factors was known
2) Published last 5 octal digits of LRs: last 12 octal digits tabled [B14]
3) ERROR: originally computed incorrect NZLR for $10 \mathrm{M}_{\mathrm{p}}$ (asterisked [K1])
4) Corrected these errors after Gillies' letter and before publication
5) Did not modulus-check the computation [B14; K21; K22]

1963 GILLIES [G1; G7]

1) Computed LR for all M_{p} where no factor was known, $p<12124$
2) Computed extended factor-table after LR computations
3) Tabled last 5 octal digits of LRs
4) Did not table computed $L R s$ for $p=6089,6661,6779,6907$

1971 TUCKERMAN [T1]

1) Computed LR for all (sic) M_{p} where no. M_{p}-factor was known
2) Did not publish p, LRs, M_{p}-factors and factor-table references

1979 NELSON \& SLOWINSKI [N1; N12; S1]

1) Computed LR for all $M_{p}, p<16310,16400-17188,18020-24000$ et al [N12]
2) Second-sourced all LRs in the above three ranges [N12]
3) Confirmed prime/composite- M_{p} pattern for $p<21000$
4) Deposited LRs in Maths. Comp. UMT file for $p<50024$ [N12]

1982 ICL 2900 DAP [H8 - H15]

1) Computed 2828 LRs for $p<50024$
2) Confirmed all LRs or corrected LRs in [G1; G7; H2; K1; N7; R10; S3; T6]
3) Confirmed all LRs in [N12] where no factor was known with 16 corrections
4) Deposited LRs for $p<62982$ in MC UMT file [H15]

1963 GILLIES [G1; G7]

1) Computed M_{p}-factors < 2^{36} to eliminated some composite M_{p} [B16]
2) Computed $L R$ for all remaining M_{p} in this range
3) PRIME: 21st Mersenne Prime Mg689 discovered on or before $11 / 5 / 1963$ [G5]
4) PRIME: 22nd Mersenne Prime Mg941 discovered around 16/5/1963 [G5; M9]
5) PRIME: 23rd Mersenne Prime M_{11213} discovered on $2 / 6 / 1963$ [M9]
6) Checked calculation modulo $2^{44}-1$
7) Published p, LRs and M_{p}-factors discovered and/or used to eliminate M_{p}
8) ERROR: NZLR for $p=12143$ corrected by Tuckerman [T2]
9) Did not use Lucas test with $S_{1}=10$ or do a confirmation run
10) Did not check available residues of composite $M_{p}, p<3300$

1971 TUCKERMAN [T1; T2]

1) Computed LR for all (sic) M_{p} where no factor was known, $p<21000$
2) Corrected Gillies' NZLR for $p=12143$ [72]
3) Did not publish p, LRs, M_{p}-factors and factor-table references

1979 NELSON \& SLOWINSKI [N1; N12; S1]

1) Computed LR for all $M_{p}, p<16310,16400-17188,18020-24000$ et al [N12]
2) Second-sourced all LRs in the above three ranges [N12]
3) Confirmed prime/composite-Mp pattern for $p<21000$
4) Deposited LRs in Maths. Comp. UMT file for p < 50024 [N12]

1982 ICL 2900 DAP [H8 - H15]

1) Computed 2828 LRs for $p<50024$
2) Confirmed all LRs or corrected LRs in [G1; G7; H2; K1; N7; R10; S3; T6]
3) Confirmed all LRs in [N12] where no factor was known with 16 corrections
4) Deposited LRs for $p<62982$ in MC UMT file [H15]

$12144<p<21000$

1971 TUCKERMAN [T1; T6]

1) Eliminated some composite M_{p} using factor-tables
2) Computed $L R$ for remaining M_{p} in this range
3) PRIME: 24 th Mersenne Prime M_{19937} discovered on $4 / 3 / 1971$
4) Checked calculation-steps modulo $2^{24}-1$ and $2^{24}-3$
5) Confirmed known factors of these M_{p} before eliminating them
6) Checked zero residue for M_{19937} with altered program
7) Communicated result to MIT; it was confirmed by Speciner \& Schroepepel
8) Tabled last 5 octal digits of LRs [T3]
9) Did not use Lucas test with $S_{1}=10$

1979 NELSON \& SLOWINSKI [N1; N12; S1]

1) Computed LR for all $M_{p}, p<16310$, 16400 - 17188, 18020-24000 et al [N12]
2) Second-sourced all LRs in the above three ranges [N12]
3) Confirmed prime/composite-M pattern for $p<21000$
4) Deposited LRs in Maths. Comp. UMT file for p < 50024 [N12]

1982 ICL 2900 DAP [H8 - H15]

1) Computed 2828 LRs for $p<50024$
2) Confirmed all LRs or corrected LRs in [G1; G7; H2; K1; N7; R10; S3; T6]
3) Confirmed all LRs in [N12] where no factor was known with 16 corrections
4) Deposited LRs for $p<62982$ in MC UMT file [H15]
```
1979 NICKEL & NOLL [N5; N6; N7; S4; S13]
    1) Eliminated some composite Mp
    2) Computed LR for remaining Mp
    3) PRIME: 25th Mersenne Prime M21701 discovered on 30/10/1978
    4) PRIME: 26th Mersenne Prime M M 23209 discovered on 9/2/1979
    5) Checked results with second computation
    6) Submitted the prime M21701 to Lehmer & Tuckerman for checking [N5]
    7) Published p, LRs, M
    8) ERROR: omitted "22501 67260" from first table [N7]: f
    9) No modulus check included in the code [N4]
1979 NELSON & SLOWINSKI [N1; N2; N12; S1]
    1) Computed LR for all M M, p < 16310, 16400-17188, 18020-24000 et al [N2]
    2) PRIME: independently discovered M23209 on 23/2/1979
    3) Confirmed prime/composite-Mp pattern for p < 21000
    4) Deposited LRs in Maths. Comp. UMT file [N12]
    5) Did not compare NZLR values for all computed tests [N2]
1981 ICL 2900 DAP [H8 - H15]
    1) Computed 2828 LRs for p < 50024
    2) Confirmed all LRs or corrected LRs in [G1; G7; H2; K1; N7; R10; S3; T6]
    3) Confirmed all LRs in [N12] where no factor was known with 16 corrections
    4) Deposited LRs for p<62982 in MC UMT file [H15]
```

$24500<p<50024$
1979 NELSON \& SLOWINSKI [N1; N12; N14; N15; S1; S13]
1) Computed LR for all p < 16310 [N2]
2) Eliminated some composite M_{p} using Wagstaff's factor-table [W8]
3) Computed LR for remaining $p, 30000<p<50024$
4) PRIME: 27 th Mersenne Prime M_{44497} discovered on $8 / 4 / 1979$
5) Noll confirmed M44497 prime [N9]
6) Checked the squaring modulo $2^{24}-1$ [N1]
7) Deposited LRs in Maths. Comp. UMT file [N12]
8) Did not confirm the M_{p}-eliminating factors used
9) Did not check against many known Lucas residues
10) Did not use Lucas test with $S_{1}=10$
11) ERROR: omitted indexes 24733, 40639 and 44623
12) ERROR: wrong residue on 32831 due to ' $\mathrm{p}=23 \bmod 24$ ' error [N12; N14; N15]
13) ERROR: wrong residue on 43793 due to transient fault during (?) mod-reduction
14) ERROR: wrong residues on 14 indexes due to possible code-experimentation:
46399, 47137, 48079, 48119, 48157, 48164, 48193, 48409, 48413, 48437,
48449, 48473, 48481, 50021
15) Corrected errors above given ICL DAP results below [N14; N15]
1981 ICL 2900 DAP [H8 - H15]
1) Computed 2828 LRs for $p<50024$
2) Confirmed all LRs or corrected LRs in [G1; G7; H2; K1; N7; R10; S3; T6]
3) Confirmed all LRs in [N12] where no factor was known with 16 corrections
4) Deposited LRs for $p<62982$ in MC UMT file [H15]

```
1982 ICL 2900 DAP [H8 - H15; L45]
    1) Computed }2828\mathrm{ LRs for p < 50024
    2) Confirmed all LRs or corrected LRs in [G1; G7; H2; K1; N7; R10; S3; T6]
    3) Confirmed all LRs in [N12] after 16 corrections and 3 additions
    4) Checked the squaring modulo 2 2 -1 and computed on }32\mathrm{ numbers in parallel
    5) Computed factor-table and checked against others [K30; L45; W8; W12]
    6) Deposited last }15\mathrm{ octal digits of LRs and factor-table in MC UMT file [H15]
```


$62982<p<216092$

At this point, the previous strict chronology breaks down. Isolated M_{p} have been tested, a number of computer codes are simultaneously active and slowinski's testing is both non-sequential and unfiled.

1978 NOLL [N10]

1) Computed NZLR (25/12/1978) for M65537 in 168° on CDC CYBER-174
2) NZLR for M_{65537} is 56172704547775045726

1979 NELSON [N17]

1) Confirmed NZLR (13/3/1979) for M_{65537} in $1^{\circ} 1^{\prime} 51^{\prime \prime}$
2) Computed NZLR (29/4/1979) for M_{131071} as $\ldots 216735375740460$ in $7^{\circ} 28^{\prime}$

1981 NELSON [N17]

1) Computed NZLR for M_{65539} as 216160546450663
2) Computed NZLR for M_{65543} as 024051672260672
```
1982 SLOWINSKI [N21; N23]
```

1) Computed factor or LR for 'most' M_{p} in $75000<p<90000$ [N21]
2) PRIME: 28th known Mersenne prime M86243 discovered on $25 / 9 / 1982$ in $1^{\circ} 36^{\prime} 22^{\prime \prime}$
3) Nelson confirmed M86243 prime using the CRAY/1 '1979' code
4) McGrogan \& Noll confirmed M86243 prime using a CYBER-205 in 1° [N23]
5) Holmes et al confirmed M86243 prime using an ICL-DAP on $22 / 12 / 1982$ in $38^{\prime} 38^{\prime \prime}$

1983 ICL 2900 DAP [B32; B33; B34; H15]

1) Tabulated the $1913 \mathrm{M}_{\mathrm{p}}-\mathrm{f}_{1}<2^{40}$ for $62982<\mathrm{p}<100000$
2) Confirmed factor-table against those of Keller and Wagstaff [K30; W14]
3) Code C confirmed 520 known LRs
4) Computed NZLR for the 397 remaining $p, 62982<p<73180$
5) Computed NZLR for the 339 remaining p, $90534<p<100000$
6) Checked the squaring modulo $2^{16}-1$ and computed $16 M_{p}$ in parallel

1983 SLOWINSKI

1) PRIME: 29th known Mersenne prime M132049 discovered on 20/9/83 in $32^{\prime} 30^{\prime \prime}$
2) Reportedly computed LR for all p<103,000 [D4]

1984 ICL 2900 DAP [H18; H19]

1) Computed LR for the $626 \mathrm{M}_{\mathrm{p}}, 73180<\mathrm{p}<90534$
2) Confirmed M86243 as the 28th Mersenne Prime in order of size
3) Deposited LRs for the complete range, 50024 < p < 100000 [H19] in MC UMT

1985 SLOWINSKI [D6]

1) PRIME: 30th known Mersenne prime M_{216091} discovered on $6 / 9 / 86$ in 3°
2) McGrogan confirmed prime prior to publication

1988 COLQUITT \& WELSH [C32; C33]

1) PRIME: 31st known Mersenne prime M_{110503} discovered on $29 / 1 / 88$
2) NEC $S X-2$ program included a modulus-check on the squaring
3) M_{110503} confirmed prime by MCGrogan (ELXSI), SLowinski (CRAY XMP), Young (CRAY XMP) and Colquitt (NEC SX-2, 'schoolboy multiplication' code) [C33]
4) Computed an $M_{p}-f 1$ or $M_{p}-L R$ for all $p, 10^{5}<p \leq 132049$ [C33]

1989 COLQUITT \& WELSH [C34; H22]

1) Computed an $M_{p}-f 1$ or $M_{p}-L R$ for all $p, 10^{5}<p \leq 139267$ [C34; H22]
2) Confirmed 1134 of 2828 LRs with p < 50000 [H19] with no disagreements [H22]

This section does not claim to be complete as the errors have been noticed 'en passant' rather than as a result of deliberate proof-reading. Published errata and corrigenda have been included here.
R. C. ARCHIBALD

A1 1) Attributions in doubt or incomplete: $M_{11}, M_{13}, M_{23}, M_{37}$
2) Note 6: Lucas authored Amer. J. Math. v1 p240 - table is 'apres Landry'
3) Note 10: On M 163 , for "30th April 1908" read "7th May 1908"

The date was incorrectly printed on that page of 'Nature'.
4) Note 11: For "p80" read "p86" - unclear 'Nature' typeface
5) Note 13: end of 2nd paragraph: "p118" may be incorrect
6) Note 14: for "p383" read "p883"
7) Euler's "Opuscula": On p113, "2 ---> 36"; on p116, " ---> 37"
C. B. BARKER

1) NZLR incorrect even though he used modulus checks [R2; T11]
A. H. BEILER
2) p18, ending paragraph 1: Uhler found that none of the numbers corresponding to the six indices (157, 167, 193, 199, 227, 229) were perfect.
3) p247: references 5 \& 6 are by D H Lehmer, not D N Lehmer
C. E. BICKMORE
4) p17, line 10: for " $2^{31}-1$ " read " $237-1$ "

R. P. BRENT

B26 1) Against $k=337$, for "prp67" read "prp68", later proved "p68" [B28]

J. BRILLHART

B2 1) p366, 3A: for " 55 " read " 47 "
2) $p 368$: remove the " $*$ " against all $f_{i}<10^{6}$ except for $p=1049$, ie for $p=571,641,719,761,883,967,1019,1093$. See MR23\#A832. Source of factors for $p=719,967,1019,1093$ unknown to this author.

B4 1) Tenth reference needed - should be to [K2]
[K2] on p85 has a reference to 3 factors, namely:
f_{2} of $M_{10,007} ; \quad f_{1}$ of $M_{10,009 ;} f_{2}$ of $M_{10,091}$
B6

1) p644: for "The eight new" read "The nine new" and insert " 233 " in the list. f_{3} of M233 was found prime by Corollary 11 [B16]
2) p645: Schroeppel did not publish M_{149} 's factorisation in AIM 239 (ref [1]), but communicated it privately to the author [B16]
3) see MC v39 (1982) p747
P. A. CATALDI

C2 1) Regarded M_{23}, M_{29} and M_{37} as primes
A. J. C. CUNNINGHAM

C7 1) Found no factor $<50,000$ for M_{181}; in fact $f_{1}=43441$ [C11; W1]
2) $14831 \nmid M_{1483}$ but $14591 \mid M_{1459}$ [B29; K30]

1) For "Only 18 Mersenne's numbers remain unverified" read
"Only 18 Mersenne's numbers stated to be composite by Mersenne remain unverified. M_{257}, stated by Mersenne to be prime, also remains unverified."
Evidence of Cunningham's concentration on 'composite M_{p} ' comes from [C11; C4; C29]
2) Found no factor $<200,000$ for M_{181}; in fact $f_{1}=43441$ [C11; W1]

C16 1) Various errors; see original copy \& Thorkil Naur's letter
L. E. DICKSON

1) p18 n89: for "p25" read "pp26-7". Euler did not claim all factors prime.
2) p30 n184: for "BAMS v16" read "BAMS v17"
3) p31 n191: for "p87" read "p86"
4) $p 31$ n192b: $" d=1 \bmod 24 "$ is incorrect for $p=31,61$ (Gerardin's error?)
5) p31 n192c: Fauquembergue's NZLR for M101 was found incorrect in 1952 [R2]
6) p32 n199: for " 31 " read " 131 " in the reference to Lucas' test
7) p32 n200: Fauquembergue's NZLRs for M_{103} \& M_{109} were also found to be incorrect in 1952 [R2]
L. EULER
8) p27, against 221: for "3 2389 " read "3.23.89"
9) p27, against 3: for " 2 " read " 2 "
10) p27, against $3^{3}:$ for " 2 " read " $2^{3 "}$
11) p27, against 5^{5} : for " $3^{3 "}$ read " 3^{2} "
12) p27, against 710 : for "329554457" read "1123.293459" [B29]
13) p28, against 373: for "2603" read "19.137"
14) $p 28$, against 41^{3} : for " 292 " read " 29^{2} "
15) p28, entries for $79,79^{2}$ and 79^{3} have been omitted. They should read [E4]:
$79:: 2^{4} .5, \quad 79^{2}:: 3.7^{2} .43, \quad 79^{3}:: 2^{5} \cdot 5.3121$
16) p 28 , against 137^{3} : for " 2 " read " 2 " "
17) p 28 , against 149^{3} : for " 11.101 " read " $17.653^{\prime \prime}$
18) p28, against 1573: for "29 79" read " 29.79 "
19) p28, against 1673: for "3 5.7 2789" read "3.5.7.2789"
20) p28, against 1732: for " 67.449 " read " 30103 "
21) p28, against 1932: for " 37 " read " 3.7 "
22) p29, against 2572: for "43 1321" read "43.1321"
23) p29, against 283^{2} : for " $2^{2 "}$ read " $2^{3 "}$
24) p29, against 311^{3} : for " $2^{4} 3$ " read " $2^{4} \cdot 3$ "
25) p29, against 347^{3} : for $" 2^{3} 3^{\prime \prime}$ read " $2^{3} .3$ "
26) p29, against 353^{3} : for " $517^{\prime \prime}$ read " 5.17 "
27) p30, against 4613: for "11106261" read " 11.106261 "
28) p30, against 523^{3} : for " 7 " read " 17 "
29) p30, against 563^{3} : for "3 5 29" read "3.5.29"
30) p30, against 5713: for "163041" read "163021"
31) p30, against 6132: for "125461" read "7.17923"
32) p31, against 7693: for " 71 " read " 17 "
33) p31, against 811: for " 2 " read " 2 "
34) p31, against 827: for " $3^{3 "}$ read " $3^{2 \text { " }}$
35) p31, against 863: for " 25 " read " 2 "
36) p31, against 907^{3} : for " $23^{\prime \prime}$ read " $2^{3 "}$
37) p31, against 9293: for "31 431521" read " 31.431521 "

E2 1) The errors in [E3] listed above as 4-6, 8, 10, 13, 16, 20, 21, 23-27 are reproduced here.
2) p104, against 17: for " $3^{3 "}$ read " $3^{2 \text { " }}$
3) p105, against 413: for " 29 " read " $29^{2 \text { " }}$
4) p106, against 359^{3} : for " $3^{3 "}$ read " $3^{2 \text { ". }}$
5) p 109 , below "929", for "9192" read "9292" and for "9193" read "9293"

E4 1) p90, against 710: for "329554457" read "1123.293459" [B29]

E. FAUQUEMBERGUE

F12

1) Incorrect NZLR for M $_{101}$: discovered by Robinson on SWAC in 1952 [R2]

F1 1) Incorrect NZLR for M_{103} : discovered by Robinson on SWAC in 1952 [R2]
2) Incorrect NZLR for M $_{109}$: discovered by Robinson on SWAC in 1952 [R2]

F10 1) Incorrect NZLR for M_{137} : discovered by Robinson on SWAC in 1952 [R2]

A. FERRIER

F4 1) p5, against $p=359$: for "855851" read "855857" [K30]

D. B. GILLIES

1) NZLR for M12143 incorrect [H8; T2]. For " 27361 " read " 71510 ".
2) (Author's copy) M_{12641}, f_{4} : for " 4124,947915 " read "41249,479151" [G1]
3) (Author's copy) M $\mathrm{M}_{14593}, \mathrm{f}_{5}$: for " 6336,911017 " read "63369,110177" [G1]

G1 1) NZLR for M12143 incorrect [H8; T2]. For "27361" read "71510".
V. A. GOLUBEV

G11 1) p258: add two columns to the table of Seredinskij:
(130 .. 23 .. 5197 .. 31183) and (50 .. 47 .. 10357 .. 62143) [K28]
2) p 259 : In Theoreme II, for " $212 n+1-1 \ldots 12 n+1$ " read " $2^{2 n+1}-1 \ldots 2 n+1$ "
3) p 259 : In Theoreme II, for " $=2^{12 n+1}$ " read " $=2^{2 n+1}$ "
4) p259: In the 5th row of the table, x, for " 36 " read " 86 "
5) p259: In the 7th row of the table, p_{1}, for " 1692 " read " 1693 "
6) p 260 : Theoreme IV. For " $2^{\mathrm{n}}-1$ " read " $2 \mathrm{p}-1$ "
7) p260: In the 3rd row of the first table, p, for "1365" read "1367"
8) p260: Delete the 14 th column of the first table because $19337=61 * 317$
9) $p 260$: Exchange the " x " and " y " in the labellings of the second table
10) p260: In the 1st row of the second table, for " 15 " read " 25 "
11) p261: Add to the first table the column (13 .. $31 \ldots 4447 \ldots 71153$)
G. H. HARDY \& E. M. WRIGHT

A. HURWITZ

E. KARST

K2 1) p80: proof that \nexists prime q s.t. $q^{2} \mid M_{p}$ is fallacious [K8]
D. E. KNUTH

1) NZLRs found incorrect [S3] for $4 M_{p}$ with $p<3300$
2) NZLRs found incorrect [G1; G7; N2; N3] for $4 M_{p}$: for M_{3637} 's "67413" read "53313", for M3847's "57652" read "14400", for M_{4397} 's "40174" read "44327", for M_{4421} 's "25131" read "03013"
3) p391: credited Lucas with showing M_{67} composite. NZLR unconfirmed
4) p391: credited Kraitchik with showing M 257 composite. NZLR unconfirmed
5) p391: for "CRAY-I" read "CRAY-1"
6) p394: "The world's largest explicitly known prime numbers have always been Mersenne primes, at least from 1772 until 1980" is incorrect.
In 1867 [L20; C D1] and 1869 [L19 p4; c D1], Landry preceded Lucas' prime M_{127} of 1876 by listing 14 primes $>M_{31}$. Landry's work may be regarded as reliable although he pronounced one composite number prime in those tables. The two 1867 primes of the 14 are asterisked below:

$$
\begin{array}{rrr|c|c|c|c|}
2931,542417 \mid 2^{44}+1 & 77158,673929 \mid 2^{63}+1 & 4,363953,127297 \mid 2^{49}+1 \\
4278,255361 \mid 2^{40+1} & 165768,537521 \mid 2^{47}+1 & 4,432676,798593 \mid 2^{49}-1 \\
4562,284561 \mid 2^{60+1} & 168749,965921 \mid 2^{69}+1^{*} & 3,203431,780337 \mid 2^{59}-1 \\
8831,418697 \mid 2^{41}+1 & 1,133836,730401 \mid 2^{75}+1^{*} & 28,059810,762433 \mid 2^{53}+1 \\
54410,972897 \mid 2^{56}+1 & 2,932031,007403 \mid 2^{43+1} &
\end{array}
$$

In 1951-2, the primes of Miller \& Wheeler and of Ferrier [M2; M5] superceded M_{127} and preceded M_{521}.

M. KRAITCHIK

1) Chapter 3, p24, Section 65 table: against $n=163$, for " 160287 " read " 150287 "

K13

1) p756, table 1, against $n=67:$ for "19,370721" read "193,707721"
2) $p 756$, table 2, against $n=163$: for "160287" read " 150287 "

K32

1) $p 756$, against $n=67$: for " 19,370721 " read " 193,707721 "
2) $p 756$, against $n=67$: for " $7,618388,257287$ " read " $761838,257287^{\prime \prime}$
3) $p 756$, against $n=87$: for "1107" read "1103" [B29; F4]
4) $p 756$, against $n=127$: for "...864..." read "...884..."
S. KRAVITZ
5) After $p=13049$, for " 12063 " read " 13063 "

K1

1) For ten asterisked M_{p}, incorrect NZLRs were corrected before publication. These were caused by an inadmissable value of S_{1} being introduced by a card-punch error while making up three 'identical' program-decks.

Le LASSEUR de SANZY
L25 1) Found no factor $<30,000$ for M_{197} [c D1 p24 n131]; $f_{1}=7487$ [C3; C6]
D. H. LEHMER

L2 1) M_{233} is listed as "only one factor known". N G W H Beeger noted [L7] that f_{2} was known at that time.

L3 1) For $" k=744$ " read $" k=774$ ": corrected by T Wilcox [W4]

E. LUCAS

1) p 283 : for "177951" read "179951"
2) p376: the prime M_{89} was pronounced composite following NZLR computation

Several historical misattributions; unsubstantiated claims about machines [A1]
M. MERSENNE

M3 1) Stated M_{67} to be prime; it is composite [F8; F9; C17]
2) Stated M_{257} to be prime; it is composite [L2]
3) Stated M_{61} to be composite; it is prime [P13; P14; P16]
4) Stated M_{89} to be composite; it is prime [C12; P9; P15]
5) Stated M_{107} to be composite; it is prime [P2; P6; P10]
6) Stated in effect that M_{p} was composite for $17000<p<32000$:
M_{p} is prime for $p=19937$ [T1; N1], 21701 [S4; N5; N1; T6]
and 23209 [N6; N1; S13; S1] and only for those p [N1]
M6

1) $" \mathrm{p}=2^{2 \mathrm{n}}+k ; k=1,2$ or $3 \Rightarrow M_{p}$ prime"

Correct for $p=2,3,5,7,17,19$ (known to Mersenne)
Incorrect for $p=67,257 \& 4099$
H. L. NELSON

1) Credited Mersenne with a knowledge of M_{29} 's f_{2}
2) Did not credit Mersenne with the knowledge of M_{37} 's f_{1}
3) p266: for " 2100 by 1971 " read " 21000 by 1971 "
4) p266: for " $2,3,4,5$ " read $" 2,3,5,7 "$
C. L. NOLL
5) Credited Gillies with search-range $p<11400$ and not $p<12144$
6) Omitted " 2250167260 " from first table: $M_{22501-f}=3026,834521$
7) Reference 2 - Knuth: for "1963" read "1973"
J. W. PAULI

P11 1) Gave 83 as a factor of M_{41}

J. PLANA

H. RIESEL

R. M. ROBINSON

P. SEELHOFF

W. SIERPINSKI

1) p341, 2nd para: for "r r_{101} " read " r_{100} "
2) p341, 4th para: for " 376 digits" read " 386 digits"
3) p 341 , 6th para: for "M 941 " read "M9941"
4) p341, 6th para: for " 3381 digits" read " 3376 digits"; see Lal [L12]
5) p341, 6th para: for "Gilles" read "Gillies"
D. SLOWINSKI

The "TIMES"

1) $\mathrm{p9}$: for "221701" read "221701 - 1": corrected [T 9]

J. TRAVERS

T3 1) Against E_{89}, for ". .378082.." read "..378084.." [T11; U11]
2) Against E_{107}, for "..975360.." read ". .9753460.." [T11; U11]
H. S. UHLER

U2 1) For "page iii" read "page xxxvi"

U11 1) v_{5} : for " 3335 " read " 3355 "
2) v_{11} : for "14 13164" read " 13164 " (there are 65 digits not 67) [T3; T11]
3) v_{12} : for " 47401 " read " 1447401 " (there are 77 digits not 75) [T3; T11]

In these notes, 'conjecture' is interpreted in the widest sense to include explicit conjectures, observations and statements not backed by proof whose status is lost in the mists of time.

1) " $2^{n-1} * M_{n}$ is perfect for all odd n " [c D1 Ch1 ns 20, 24, 38, 42, 43]

FALSE: n composite $==\Rightarrow M_{n}=\left(2^{a}-1\right)\left(2^{b}-1\right) c==\Rightarrow 2^{n-1} *\left(2^{n}-1\right)$ not perfect. M_{p} composite $=\Rightarrow 2^{p-1} * M_{p}$ is not perfect, the case also for most prime p.
2) " E_{p} ends alternately in 6 and $8 "$
[c D1 Ch1 ns $4,6,15-20,25,26,28,38,42,43,45]$
FALSE: E_{p} ends in $6,8,6,8,6, \underline{6}, 8, \underline{8}, 6, \underline{6}, 8, \underline{8}, 6,8, \underline{8}, \underline{8}, 6, \underline{6}, \underline{6}, 8$, $6, \underline{6}, \underline{6}, \underline{6}, \underline{6}, \underline{6}, \underline{6}, 8, \underline{8}, 6,8$
Thus, " 6 \& 8 alternate" is so far ($31 E_{p}$) true 15 times, false 15 times, assuming M_{216091} is 31 st in order of size. It's likely that this conjecture arises from observation and the mistaken belief that E_{n} is perfect for all odd n.
3) "E exists with any number of decimal digits" [D1 Ch1 ns 4, 27, 29, 33, 45, 53]

FALSE: The E_{p} sequence begins 6; 28; 496; 8128; 33,550336 The 28 th E_{p} has 51,924 decimal digits Would not be true even if $2^{n-1} * M_{n}$ were perfect for all odd ' n '
4) MERSENNE: [M3; c D1 p12 n60]

Effectively, "For $28<p<258, M_{p}$ is prime only for $p=31,67,127,257$ "
FALSE: Incorrect on $p=61,89 \& 107$ (later found prime) and on $p=67 \& 257$ (later found composite)
Mersenne knew the status of M_{p} for $p<24$ and $p=37$ (10 of $55 M_{p}$) His statement was correct on the remaining $40 \mathrm{M}_{\mathrm{p}}$
5) MERSENNE: [c D1 p13 n60]
"There is no perfect number from the power 17000 to 32000"
FALSE: Let us assume this means " M_{p} is composite for $17000<p<32000$ ". There are 3 prime $M_{p}(p=19937,21701 \& 23209)$ in this range. This conjecture is perhaps based on the belief that ' M_{p} prime $==\Rightarrow p$ near 2^{k}, the relevant 2^{k} here being 16,384 and 32,768 .
6) MERSENNE: " $\mathrm{p}=2^{2 n}+k ; k<4==\Rightarrow M_{p}$ prime" [M6; c D1 p13 n61]

FALSE: Correct for $\mathrm{p}=2,3,5,7,17,19$, all known to Mersenne. Incorrect for $p=67,257,4099,65537 \& 65539$ Suggests that '67' was not a misprint of '61' - Conjecture 4 above [B10 p316; B11]
7) MERSENNE (according to Lucas \& Tannery) [c D1 p28 n162]:
$" M p$ prime $\Leftrightarrow=\Rightarrow p$ prime and $p=2^{2 n}+1,2^{2 n} \pm 3$ or $2^{2 n+1}-1^{1 "}$
FALSE: Correct only for (known) $p=2,5,7,13,-17,19$ and $p=31,61,127$ $==\Rightarrow$ incorrect for $p=3,89,107$ and the next 16 prime $M_{p}, p>257$ <== incorrect for $p=67,257,1021,4093,4099,8191,16381,65537$, 65539 \& 131071.
These are the counterexamples for $p<262140$.
This attribution explains four out of five of Mersenne' errors BUT

1) Clearly, Mersenne knew $M_{3}=7$ to be prime
2) Mersenne regarded M_{61} as composite (prime by this conjecture)
3) MERSENNE (according to Drake) [D2]:
"p prime, $p=2^{n} \pm k, k<4 \Leftrightarrow==\Rightarrow M_{p}$ prime"
FALSE: Correct for $p=2,3,5,7,13,17,19,31,61,127$
$===>$ incorrect for $p=67,257,1021,4093,4099,8191,16381,65537$, 65539 \& 131071. <== incorrect for $p=89,107$ and the 13th-31st prime M_{p}. These are the counterexamples for $p<262140$.
4) CATALAN: $" q=M_{p}$ prime $==\Rightarrow M_{q}$ prime" $\left[\begin{array}{llll}c & \text { D1 } & p 24 & \text { n135 }\end{array}\right]$:

FALSE: Correct for $p=2,3,5,7$. Incorrect for $p=13,17,19$ and 31.
Catalan knew only of the cases $p=2$ and 3 . Let \widetilde{M} represent M_{M}.
NZLR for $M_{13}=M_{8191}$ computed by Wheeler et al [G1; H2; H14; N12; T1]
$2 * 20,644229 * M_{13}+1=338193,759479 \mid \widetilde{M}_{13} \quad[\mathrm{~K} 31]$
$2 * 884 * M_{17}+1=231,733529 \mid \tilde{M}_{17} \quad[R 3]$
$2 * 245273 * M_{17}+1=64296,354767 \mid \widetilde{M}_{17} \quad[K 31]$
$2 * 60 * M_{19}+1=62,914441 \mid \bar{M}_{19} \quad[R 3]$
$2 * 68745 * M_{31}+1=295,257526,626031 \mid \widetilde{M}_{31} \quad[K 31]$
10) CUNNINGHAM: "Mprime $==\Rightarrow p=2^{n} \pm 1$ or $2^{n} \pm 3^{\prime \prime}[C 5 ; C 7]$

FALSE: Correct for $p=2,3,5,7,1 \overline{3}, 17,19,-31,61,127$, all known to Cunningham
Incorrect for $p=89,107$ and the known 19 prime M_{p} after M_{127} Retracted by Cunningham [C12] when Powers announced the primality of M89
11) GERARDIN [G6]:
"a) If $p=43 \bmod 60$, the first factor of $M_{p}, f_{1}=47 \bmod 96$
b) If $p=33 \bmod 40$, the first factor of $M_{p}, f_{1}=7 \bmod 24$
c) If $p=1 \bmod 30$, the first factor of $M_{p}, f_{1}=1 \bmod 24$

- with the exception (Euler) cases where $p=4 n+3$ and $2 p+1$ is prime"

FALSE: a) Correct for $p=43,163,223$ [B3], three cases known to Gerardin Incorrect for 291 of 319 known cases with $p<10^{5}$, for example $p=103\left(f_{1}=2550,183799[B 3]\right)$ and $p=283\left(f_{1}=9623\right.$ [B2])
b) Correct for $p=73,113,233$ [B3], three cases known to Gerardin Incorrect for 230 of 348 known cases with $p<10^{5}$, for example $p=193\left(f_{1}=13,821503\right.$ [B2]), $p=313\left(f_{1}=10,960009\right.$ [B2])
c) Correct for $p=151,181,211$ [B3], three cases known to Gerardin Incorrect for 573 of 672 known cases with $p<10^{5}$, for example $p=31 \& 61$ for which M_{p} is prime,
$p=241\left(f_{1}=22,000409\right.$ [B2]) and $p=571\left(f_{1}=5711\right.$ [B2])
Analysis [H22] based on merge of results [C34; H19]
12) GERARDIN: "q divides M_{p} and $q \neq 2^{r}-1 \Rightarrow==>M_{q}$ is composite" [c D1 p30 n188b]
FALSE: $M_{11}=23 * 89: M_{89}$ is prime [C12; P3; c D1 p30 n185] $M_{967}=23209 * 549257 *$ c281 [B2; B17]: M23209 is prime [S13; S1] Presumably this was posed just before Powers found M_{89} prime ' $q \neq 2^{r}-1$ ' excludes the (Catalan) cases $q=3,7,31,127$
13) TARRY: "If q is the least factor of a composite M_{p}, M_{q} is composite" [c D1 p30 n188b $]$
FALSE: $M_{967}=23209 * 549257 *$ cofactor [B2]: M_{23209} is prime [S13; S1]
14) KNUTH: [K26 p394]
"One day, the largest explicitly-known prime will not be a Mersenne prime"
TRUE: $\quad \mathrm{p} 65050=M_{216091}<391581.2^{216193}-1=p 65087$, found 6/8/89 [D7]
15) NAUR: Meta-conjecture on reading previous version of this section: "All Mersenne-number conjectures are false".
FALSE: See resolution of conjecture 14 above.

1) MERSENNE: " M_{p} is composite for $1,050,000<p<2,090,000$ " [M3; c D1 p13 n60] This statement is apparently based on the belief that M_{p} is prime only when p is near 2^{k}, the relevant 2^{k} here being $1,048576 \& 2,097152$. Based on Pomerance's conjecture on the distribution of prime M_{p} and current knowledge, the 'likelihood' of this conjecture being true is 0.15649 .
2) MERSENNE: "No interval of powers can be assigned so great but that it can be given without perfect numbers" [M3; c D1 p13 n60]
This is interpreted as $" \forall N, \exists n(N)$ s.t. $p \in[n, n+N]==\Rightarrow M_{p}$ composite" This statement is perhaps based on a belief that ' M_{p} prime $\Rightarrow=\Rightarrow p$ near 2^{k}. This conjecture is wrongly motivated but probably correct - see 8 below.
3) CATALAN: $" p_{1}=3$ and $p_{n+1}=2^{p_{n}}-1 \Rightarrow p_{n+1}$ is prime for all $n "$

True for $p_{1}, p_{2}, p_{3} ; M_{p}=3,7,127 \& M_{127}$ are prime The generalisation, replacing ' $p_{1}=M_{2}$ ' by ' $p_{1}=M_{q}$ ' is false:

For $p_{1}=M_{5}=31, p_{1}$ and p_{2} are prime but M_{q} is composite for $q=M_{31}$
For $p_{1}=M_{q}=r=M_{13}, M_{17}$ or M_{19}, M_{r} is composite
See Section 9, Conjecture 9 for the first M_{p}-factors.
For $p_{1}=M_{q}=r=M_{61}, M_{89}$ or M_{127}, the status of M_{r} is unknown.
4) SCHINZEL: "There are an infinite number of Mersenne composites" [S2 p29] This is likely to be correct; for stronger versions - see $6,8-10$ below.
5) "There are an infinite number of Mersenne primes" [s2 p29] For a stronger version of this conjecture, see 8 and 9 below. Golubev [G11] alone says "There are serious reasons for believing that the number of prime M_{p} is finite."
6) "There are an infinite number of prime $p=4 k+3$ such that $2 p+1$ is prime" [$\$ 2 p 29]$ For such primes p, M_{p} has the factor $2 p+1$ by a theorem of Euler. This conjecture therefore implies Conjecture 4 above.
7) JAKOBEZYK: "There is no prime q such that q^{2} is a factor of some M_{p} " [S10 p92] Karst's alleged proof [K2 p80] is incorrect [K8].
Brillhart [B4; B16] has checked this conjecture for

$$
q<2^{35}, 102<p<258 \& q<2^{34}, 258<p<20,000
$$

$q^{2} \mid M_{p}==\Rightarrow 2^{q-1}=1\left(\bmod q^{2}\right)$ [W11]
There are no such M_{p}-factors $q<6.10^{9}$ [L46]
More generally, this is incorrect for $M_{n}=2^{n-1}$ with n composite [B17; R6]:
first examples: $3^{2}\left|M_{6}, 5^{2}\right| M_{20}, 7^{2}\left|M_{21}, 11^{2}\right| M_{110}, 13^{2}\left|M_{156}, 17^{2}\right| M_{136}$ $31^{2} \mid M_{155}$
later examples: $3^{5}\left|M_{162}, 5^{3}\right| M_{100}, 7^{3} \mid M_{147}$
8) GILLIES: [G7; G1]
"a) The probability that M_{p} is prime $\sim\left(2 \log _{e} 2 p\right) /\left(p \log _{e} 2\right)$,
b) The expected number of prime M_{p} s.t. $x<M_{p}<2 x$ is
$2+2 \log _{e}\left(\log _{e} 2 x / \log _{e} x\right)$,
c) The number of prime $M_{p}<x \sim 2 *\left(\log _{e} \log _{e} x\right) / \log _{e} 2^{\prime \prime}$
ie the number of prime $M_{p}, p<y \sim 2 \log _{e} y / \log _{e} 2 \sim 2.8853901 \log _{e} y$
9) POMERANCE \& LENSTRA: [P24]
"The number of prime M_{p} with $p<y \sim e^{\gamma} \log _{e} y / \log _{e} 2 \sim 2.5695442 \log _{e} y$ " As seen in the Section 3 graph, this is a much better fit to the data than Gillies' conjecture above. Euler's constant, $\boldsymbol{\gamma}=0.577215665$
10) SHANKS \& KRAVITZ: [S6]

Let $f_{k}(x)$ be the number of $M_{p}(p<x)$ such that $d=2 k p+1$ is a prime
divisor of M_{p}
Let $Z^{\prime}(x)$ be the conjectured estimate for the number of twin-prime pairs < x Then:

$$
\begin{aligned}
f_{k}(x)=Z^{\prime}(x) & {\left[\cos ^{2}(k \pi / 4) / k\right] \prod[(q-1) /(q-2)] * } \\
& {\left[1-[\log (2 k) / \log x\}+0\left(\log ^{2} x\right)^{-1}\right] }
\end{aligned}
$$

This conjecture accords with the known result " $k=4 m+2===>f_{k}(x)=0$ " This conjecture implies $f_{1}(x)=Z^{\prime}(x) / 2$ and $f_{3}(x)=Z^{\prime}(x) / 3$ see Conjectures 4 and 6 above.
11) SELFRIDGE: [N10]
"If two of the following statements are true, the third is also true"
a) $p=2^{m} \pm 1$ or $p=2^{2 m} \pm 3$
b) M_{p} is prime
c) $\left(2^{p}+1\right) / 3$ is prime

If ' p ' is not prime, then statements b and c are false [B35]
Each statement defines a set of primes ' p ' to test the conjecture.
Bateman et al [B35] find the conjecture true for 56 ' p ' in these ranges:
'a' primes p < 1,000000
'b' primes p < 132050
'c' primes p < 4000
Prior to [N10], it was known that $a^{\wedge} b^{\wedge} c$ was true 9 times; what was the probability of this being true 'at random'. It is unlikely to be true [B35] again on a random basis.
Statements a, b \& c are separately true 12,21 \& 14 times respectively.

This condition is proposed [B35] as a neat way to discriminate between the Mersenne conjecture 'hits' $(31,61,127)$ and 'misses' $(67,89,107,257)$. There is no evidence that Mersenne considered numbers of form $\left(2^{\mathrm{p}}+1\right) / 3$. Knowing that M_{11} is composite, he may have chosen not to speculate that M_{29} and M_{131} were prime.

k	0	1	2	3	4	5	6	7	8	Key:	
$2-1$	0	1	$\underline{3}$	7	15	31	63	127	255		composite M_{p}
$2^{k}+1$	2	$\underline{3}$	$\underline{5}$	9	17	33	65	129	257 \dagger	p	prime Mp
$2^{k}-3$	-2	-1	1	(5)	13	29	61+	125	253	,	M conjecture
$2^{\text {k }}+3$	4	(5)	7	11	$\underline{19}$	35	$67+$	131	259		boundary

12) SLOWINSKI - Meta-conjecture: [S1]
"There will always be more conjectures concerning Mersenne primes than there are known Mersenne primes".
This is trivially true if we allow the class of untested statements ' M_{p} is prime'. Therefore, slowinski must be assuming some process for admitting statements as 'worthy' conjectures. Shanks [S2, 3rd Edition] proposes such a process but it has not been used here.
A formal definition of 'conjecture' must precede formal decidability.
Let us delete 'always' and substitute:
'Mersenne numbers' for the first 'Mersenne primes', 'unresolved conjecture' for 'conjecture'.
Slowinski has done more than most to make this meta-conjecture false. Interpreting 'conjecture' in its widest reasonable sense above, the resulting list of unresolved conjectures makes the score $31: 12$ in favour of the primes. Further submissions are invited.
If the word 'always' is heeded, this meta-conjecture is false.

These are classified below and some sections are expanded.
11.1 EARLY RESULTS ON PERFECT AND MERSENNE NUMBERS
11.1.1 Euclid's Proposition 36: $2^{n}-1$ prime $\Rightarrow 2^{n-1}\left(2^{n}-1\right)$ perfect
11.1.2 $\quad 2^{n}-1$ prime $\Rightarrow \Rightarrow$ n prime
11.1.3 Even Perfect numbers are of Euclid's form
11.2 FACTORISATION TECHNIQUES
11.2.1 Pre-1970 factorisation methods
11.2.1.1 $q \mid M_{p} \Rightarrow=\Rightarrow q=2 k p+1$
11.2.1.2 $q \mid M_{p} \Rightarrow=\Rightarrow q=8 r \pm 1$
11.2.1.3 $p=4 k+3 \& q=2 p+1: q$ prime $\Leftrightarrow=\Rightarrow q \mid M_{p}[K 27]$
11.2.1.4 $p=4 k+1 \& q=6 p+1=u^{2}+27 v^{2}$ prime, $u=12 m+2, v$ odd $\Rightarrow==q \mid M_{p}[K 27]$
11.2.1.5 $q=8 p+1=u^{2}+64 v^{2}$ prime, v odd, $3 \nmid u, 3 \nmid v \Rightarrow q \mid M_{p}[K 27]$
11.2.1.6 $p=30 k+11, q=8 p+1=u^{4}+8 v^{4}, v$ odd $\Rightarrow q \mid M_{p}[S 21]$
11.2.1.7 $p=4 k+3 \& q=10 p+1$ prime $\Rightarrow=\Rightarrow q \mid M_{p}$ or $q \mid 2^{5 p-1}$ [K27]
11.2.1.8 $p=4 k+1 \& q=14 p+1$ prime $\Rightarrow q \mid M_{p}$ or $q \mid 2^{7 p-1}$ [K27]
11.2.1.9 $q=16 p+1=u^{2}+256 v^{2}=w^{2}+32 x^{2}$ prime, $v+x$ even, $3|w \Rightarrow q| M_{p}[K 27]$
11.2.1.10 $p=4 k+3 \& q=18 p+1$ prime $\Rightarrow q \mid M_{p}$ or $q \mid 2^{3 p-1}$ or $q \mid 2^{9 p}-1$ [K27]
11.2.1.11 $q=24 p+1=u^{2}+27 v^{2}=w^{2}+64 x^{2}$ prime, x odd $\Rightarrow=\Rightarrow q \mid M_{p}[G 11]$
11.2.1.12 $q=48 p+1=u^{2}+27 v^{2}=w^{2}+256 x^{2}=y^{2}+32 z^{2}, x+z$ even $\Rightarrow==q \quad q \mid M_{p}$ [G11]
11.2.2 Pollard's Monte-Carlo method [B18; P22]
11.2.3 Pollard's P-1 method [P21]
11.2.4 The Continued Fraction method [B15; W10]
11.3 PRIMALITY TESTING
11.3.1 The Lucas-Lehmer test on $M_{p}[L 8 ; L 24]$
11.3 .2
11.3 .
11.3 .
11.3 .5

On the Converse of Fermat's theorem [B6; L11; L33; L36; L43; P17; R11]
The general ' $N+1$ ' Lucas test [B6]
Combined ' $\mathrm{N}-1, \mathrm{~N}+1$ ' methods [B6]
Adleman-Pomerance-Rumely's 'ARPCL' method [A4; C31]
11.4
11.4 .1

MISCELLANEOUS RESULTS
The sum of the reciprocals of the divisors of a perfect number is 2
Composite M_{p}-factors are pseudoprime base 2
11.4.3 $q^{2} \mid M_{p} \Rightarrow \Rightarrow 2 q^{-1}=1 \bmod q^{2}$ [L46; W11]
11.4.4 q pseudoprime base $2 \Rightarrow M_{q}$ pseudoprime base 2
11.4.5 All E_{n} are both triangular and hexagonal numbers
11.4.6 For n odd, $E_{n}=1 \bmod 9$
11.4.7 For $n \geq 3$ and odd, $E_{n}=8 / 6 \bmod 10$ alternately
11.4.8 For n odd, E_{n} is a partial sum of $(2 i-1)^{3}$
11.4.9 Mersenne numbers M_{p} are coprime
11.4.10 $\left(2^{n}+1\right) / 3$ prime, n odd $\Rightarrow=\Rightarrow$ n prime
11.1.1 Euclid's Proposition 36: $2^{n}-1$ prime $===>2^{n-1}\left(2^{n}-1\right)$ perfect

Let $q=2^{n}-1$ be prime and let $E_{n}=2^{n-1}\left(2^{n}-1\right)=2^{n-1} q$.
The set of factors of E_{n} is precisely $\left\{2^{i} q^{j} \mid i=0, \ldots, n-1 \& j=0\right.$ or 1$\}$
Let $s(N)=$ the sum of the factors of N.
$s\left(E_{n}\right)=\left(1+2+\ldots+2^{n-1}\right) *(1+q)=\left(2^{n}-1\right) * 2^{n}=2 * E_{n} \# \#$
Euclid did not prove the converse, E_{n} perfect $\Rightarrow=\Rightarrow 2^{n}-1$ prime:
Let $E_{n}=2^{n-1} a b=2^{n-1}\left(2^{n-1}\right)$.
Then $s\left(E_{n}\right) \geq\left(2^{n}-1\right) *(1+a+a b)=\left(2^{n}-1\right) *\left(1+a+2^{n}-1\right)=\left(2^{n}-1\right) *\left(2^{n}+a\right)>2 * E_{n}$
Therefore, $2^{n}-1$ composite $===>E_{n}$ not perfect
Therefore E_{n} perfect $===>2^{n}-1$ prime \#\#

11.1.2 $\quad 2^{n}-1$ prime $==\Rightarrow$ n prime

We will prove by induction on 'a' that $2^{b}-1\left(2^{a b}-1\right.$. This is clearly true for $a=1$. $2^{a b-1}=2^{b} *\left(2^{(a-1) b-1)}+\left(2^{b}-1\right)\right.$
Therefore $2^{b-1}\left|2^{(a-1) b-1} \Rightarrow=\Rightarrow 2^{b-1}\right| 2^{a b-1}$.
Therefore, $\mathrm{n}=\mathrm{ab}$ composite, $\mathrm{a} \& \mathrm{~b}>1 \Rightarrow=\Rightarrow 2^{\mathrm{a}}-1 \mid 2^{\mathrm{n}}-1$ and $2^{\mathrm{b}}-1 \mid 2^{\mathrm{n}}-1$.
Therefore $2^{n}-1$ prime $==\Rightarrow n$ prime \#\#

11.1.3 Even Perfect Numbers are of Euclid's form

Let $\mathrm{E}=2^{\mathrm{n}-1} \mathrm{q}$ (q odd) be a perfect number.
Let $s(x)=$ the sum of the divisors of x
Then $s(E)=s\left(2^{n-1}\right) s(q)=\left(2^{n}-1\right) s(q)$ and $s(E)=2 E=2^{n} q$.
$\left(2^{n}-1\right) s(q)=2^{n} q$. Letting $M_{n}=2^{n}-1$, we have $M_{n} Q=\left(2^{n}-1\right) Q=q$
$s(q)=2^{n} Q>q+Q=2^{n} Q$
$\mathrm{Q}=1$ and $\mathrm{q}=2^{\mathrm{n}-1}$ is prime \#\#

2.1.1 $q \mid M_{p}==\Rightarrow q=2 k p+1$

First, let q be a prime.
$q \mid M_{p}==\Rightarrow 2^{p-1}=0 \bmod q \quad==\Rightarrow \quad 2^{p}=1 \bmod q$.
Let s be the smallest integer i such that $2^{i}=1 \bmod q$.
$2^{t}=1 \bmod q==\Rightarrow t=r s$.
Therefore $2^{p}=1 \bmod q$ with p prime $==\Rightarrow p$ is that smallest integer 's'.
But by Fermat's 'little' theorem, q prime $==\Rightarrow 2^{q-1}=1 \bmod q$
Therefore $(q-1)=r p=2 k p$ and $q=2 k p+1$.
If $Q \mid M_{p}$, then $Q=q_{1}^{\alpha_{1}} * \ldots * q_{n}^{\alpha_{n}}=\prod_{i} q_{i}^{\alpha_{i}}=\prod_{i}\left(2 k_{j} p+1\right)^{\alpha_{i}}=2 K p+1 \# \#$
11.4.1 The sum of the reciprocals of the divisors of a perfect number is 2

Let $D=\left\{\begin{array}{ll}d \mid & d \mid M\end{array}\right\}$
E_{p} perfect $\Rightarrow \Rightarrow 2 E_{p}=\sum_{D} d \Rightarrow 2=\sum_{D} d / E_{p} \Rightarrow=\Rightarrow 2=\sum_{D} 1 / d \quad \# \#$

11.4.2 Composite M_{p}-factors are psp(2)

The term 'pseudoprime' is reserved here for composite numbers N satisfying Fermat's equation $a^{N-1}=1 \bmod N$ for some base a. Therefore, let q be a composite factor.
$q \mid M_{p}=\Rightarrow 2^{p-1}=0 \bmod q$ and $q=2 k p+1 \Rightarrow=\Rightarrow 2^{p}=1 \bmod q$ $\Rightarrow=2^{k p}=1^{2 k}=1 \bmod q==\Rightarrow 2^{q-1}=1 \bmod q$ ===> q pseudoprime base 2 \#\#
$11.4 .3 \quad q^{2} \mid M_{p}==\Rightarrow 2 q^{-1}=1 \bmod q^{2}$
$q \mid M_{p}==\Rightarrow q=2 k p+1$, see 11.2.1.1.
Therefore $2^{(q-1) / 2}-1=2^{k p-1}=\left(2^{p}-1\right) * a$, see 11.1 .2 .
Therefore $q^{2}\left|M_{p} \Rightarrow \Rightarrow q^{2}\right| 2^{p-1} \Rightarrow \Rightarrow q^{2}\left|2^{(q-1) / 2}-1 \Rightarrow q^{2}\right| 2^{q-1}-1$
Therefore $q^{2} \mid M_{p}==\Rightarrow 2^{q-1}=1 \bmod q^{2}$
This provides a test that $q^{2}+M_{p}$ independent of p and of any factorisation. This
test also relates to Fermat's last theorem [W11]. However, for small q it is quicker
to factorise $(q-1) / 2$ and test-divide candidate M_{p}.
11.4.4 q pseudoprime base $2==\Rightarrow M_{q}$ is $p s p(2)$
q pseudoprime $==>$ q composite $===>M_{q}$ composite
q pseudoprime base $2 \Rightarrow 2^{q-1}=1 \bmod q \Rightarrow 2 q=2 \bmod q$
$==\Rightarrow 2 \mathrm{q}-2=0 \bmod \mathrm{q}==\Rightarrow 2 \mathrm{q}-2=\mathrm{kq}$
$M_{q}=2^{q}-1 \Rightarrow=\Rightarrow 2^{q}=1 \bmod M_{q}==\Rightarrow 2^{k q}=1^{k}=1 \bmod M_{q}$
$\Rightarrow \quad \Rightarrow 2^{2^{q}-2}=1 \bmod M_{q} \Rightarrow 2^{M_{q}-1}=1 \bmod M_{q}$
$\Rightarrow=\Rightarrow M_{q}$ pseudoprime base 2 \#\#
11.4.5 All E_{n} are both triangular and hexagonal numbers

The mth triangular number is $S_{1, m}=\sum_{i}=m(m+1) / 2$
The sequence starts $1,3,6,10, \ldots$.
If $m=2^{n}-1, s_{1, m}=2^{n-1}\left(2^{n}-1\right)=E_{n} \quad \# \#$
The mth hexagonal number is $H_{m}=m(2 m-1)$
The sequence starts $1,6,15,28,45, \ldots$ [K29 p67]
If $m=2^{n-1}, H_{m}=2^{n-1}\left(2^{n}-1\right)=E_{n}^{\# \#}$

11.4.6 For n odd, $\mathrm{E}_{\mathrm{n}}=1 \bmod 9$

$E_{n}=2^{n-1}\left(2^{n}-1\right): E_{1}=1, E_{3}=28$ and $E_{5}=496$. Therefore $E_{1}, E_{3} \& E_{5}=1 \bmod 9$.
Compare E_{n} and $E_{n+6}: 2^{6}=64 \Rightarrow=\Rightarrow 2^{6}=1 \bmod 9$
Therefore $2^{n-1}=2^{n+5} \bmod 9,2^{n}=2^{n+6} \bmod 9$ and $2^{n-1}=2^{n+6}-1 \bmod 9$.
Therefore $E_{n}=E_{n+6} \bmod 9$ and $E_{n}=1 \bmod 9$ for all odd n.

11.4.7 For $n \geq 3$ odd, $E_{n}=8 / 6 \bmod 10$ alternately

$E_{n}=2^{n-1}\left(2^{n}-1\right): E_{3}=28=8 \bmod 10$ and $E_{5}=496=6 \bmod 10$.
By induction, we show that $E_{n}=E_{n+4} \bmod 10$.
$2^{n+4}=2^{n} \bmod 10 \Rightarrow=\Rightarrow 2^{n+3}=2^{n-1} \bmod 10$ and $2^{n+4}-1=2^{n-1} \bmod 10$.
Therefore $E_{n+4}=2^{n+3}\left(2^{n+4}-1\right)=2^{n-1}\left(2^{n}-1\right)=E_{n} \bmod 10$
Therefore $E_{4 k+3}=E_{3}=8 \bmod 10$ and $E_{4 k+5}=E_{5}=6 \bmod 10$

11.4.8 For n odd, E_{n} is a partial sum of $(2 i-1)^{3}$

$S_{2, m}=\sum i^{2}=m(m+1)(2 m+1) / 6$ may be proved by induction
$s_{3, m}=\sum i^{3}=m^{2}(m+1)^{2} / 4=s_{1, m}^{2}$ may be proved by induction
$S_{m}=\sum(2 i-1)^{3}=\sum\left(8 i^{3}-12 i^{2}+6 i-1\right)=m^{2}\left(2 m^{2}-1\right)$
If $n=2 k+1$ and $m=2^{k}$ then $S_{m}=2^{2 k}\left(2^{2 k+1}-1\right)=2^{n-1}\left(2^{n}-1\right)=E_{n} \# \#$
First proved by Heath [c K29 p72]

11.4.9 Mersenne numbers M_{p} are coprime

Let $b=k_{0} a+r_{1}$ with $0 \leq r_{1}<a$. We first prove that $q\left|M_{a}, q\right| M_{b} \Rightarrow=\Rightarrow q \mid M_{r_{1}}$
$M_{b}=M_{r}+M_{a} \quad 2^{a i+r} \Rightarrow q \mid M_{r}$
Let $(a, b)=c$ be the GCD of $a \& b$. We prove that $q\left|M_{a}, q\right| M_{b} \Rightarrow=\Rightarrow q \mid M_{c}$.
$b=k_{0} a+r_{1}$ and $0<r_{1}<a$
$a=k_{1} r_{1}+r_{2}$ and $0<r_{2}<r_{1}$
$r_{i}=k_{i} r_{i+1} \quad$ and $(a, b)=c \Rightarrow \quad=\Rightarrow \quad r_{i+1}=c$
But from the first proof: $q\left|M_{a}, q\right| M_{b} \Rightarrow q \mid M_{r}$ for $j=1, \ldots, i+1$

$$
==\Rightarrow q \mid M_{C} \# \#
$$

Now we prove that $M_{p_{1}}$ and $M_{p_{2}}$ are coprime if p_{1} and p_{2} are distinct prime indexes.
$\left(p_{1}, p_{2}\right)=1$. Thus: $q\left|M_{p_{1}}, q\right| M_{p_{2}}==\Rightarrow q \mid M_{1} \Rightarrow=\Rightarrow q=1 \quad \# \#$

11.4.10 (2 $\left.2^{n}+1\right) / 3$ prime, n odd $===>n$ prime

This is relevant in the context of unresolved conjecture 11 [B35, N10].
We will prove by induction on 'a' that $2^{b}+1 \mid 2^{a b}+1$. This is clearly true for $a=1$.
$2^{a b}+1=\left(2^{b}+1\right) *\left(2^{(a-1) b-2(a-2) b}\right)+\left(2^{(a-2) b+1)}\right.$
Therefore $2^{b+1}\left|2^{(a-2) b}+1 \Rightarrow=\Rightarrow 2^{b}+1\right| 2^{a b}+1$.
Therefore, odd $n=a b$ composite, $a \& b>1==\Rightarrow 2^{a}+1 \mid 2^{n}+1$ and $2^{b}+1 \mid 2^{n}+1$.
Note that this proof applies for $b=1$. Therefore, $2^{1}+1=3 \mid 2^{n}+1$ for all odd n.
Therefore $\left(2^{n}+1\right) / 3$ prime $===>n$ prime \#\#

12.1 LLT Modulus-checks

This section concerns modulus checks in Lucas-Lehmer-Test computations. These show the efforts made to ensure the correctness of NZLRs which are not self-evidently correct and the extent to which these efforts succeeded.

12.1.1 Modulus-check(s) included: residues confirmed correct

1926	Lehmer	M_{139}	Mod $10^{3}+1 \quad[\mathrm{~L} 1 ; \mathrm{R} 2 ; \mathrm{R} 10 ; \mathrm{T} 12]$
1927	Lehmer	M_{149}	Mod $10^{8}+1,10^{9}+1 \quad$ [L2; R2; R10]
1927	Lehmer	M_{257}	Mod $10^{8+1}, 10^{9}+1$ [L2; R2; R10]
1934	Powers	M241	Mod 9, $10^{3}+1,10^{4}+1,10^{7}+1 \quad[\mathrm{P} 3]$
1944	Unler	M 157	Mod $10^{3}+1,10^{4}+1,10^{7}+1 \quad[\mathrm{U} 1 ; \mathrm{R} 2]$
1946	Uhler	M199	Mod $10^{5}+1,10^{8+1} \quad[\mathrm{U6}$; R2; T11]
1947	Unler	M 227	Mod $10^{5}+1,10^{6}+1,10^{8+1}$ [U7; R2]
1947	Unler	M193	Mod $10^{7}+1 \quad$ [U5; R2; R10; G7; T11]
1953	Wheeler	M8191	Mod 2^{39-1} [H2; W7]
1961	Selfridge/Hurwitz	$5000<p<6000$	Mod 2^{35-1} [G7; H8; S3]
1963	Gillies	$2<p<4734$	Mod 2^{44-1} [G7; H2; N2; N3; N11]
		$4734<p<7000$	[G7; H2; H8; K1; N11; S3]
		$7000<p<12142$	[G7; G1; H2; H8; T1]
1971	Tuckerman	$12142<p<21000$	" $2^{24}-1,2^{24}-3$ [H8; T1]
1979	Nelson/Slowinski	$4<p<32830$	Mod 2^{24-1} [N1; N2; N12]
1982	ICL DAP	$18<p<50024$	Mod $2^{3}-1$ [H14]

12.1.2 Modulus-check included: residues presumed correct

```
1982 ICL DAP 50024<p<62982 Mod 2 3-1 [H14]
1984 ICL DAP 62982< p< 100000 Mod 2'16-1 [H18]
```

12.1.3 Modulus-check(s) included: residue found incorrect

1945	Barker	$\mathrm{p}=167$	$\operatorname{Mod} 10^{5}+1,10^{7}+1 \quad[\mathrm{B1} ; \mathrm{U4}]$
1963	Gillies	$p=12143$	Mod 2^{44-1} [G1; G7; T2]
1979	Nelson/Slowinski	16 values of p	Mod 23-1 [H10; N11; N12; N14]
			Corrected, 1982 [N14]

12.1.4 Modulus-check not included: residues found correct
1979 Nickel \& Noll $21000<\mathrm{p}<24500$ [H8; N7]
12.1.5 Modulus-check not included: residues found incorrect

1876	Lucas	M_{89}	[L13 p376; c D1 p22 n115]
1914	Fauquembergue	$M_{101} M_{103} M_{109} M_{137}$	[F1; F10; F12]
1952	Robinson	M_{1889}	[S3]
1957	Riesel	4 (?) values of p	[R13; S3]
1961	Hurwitz	8 values of p	4 published [G1; G7; H2; S3]
1963	Kravitz/Berg	10 values of p	Corrected before publication [K1]
		Wrong value of $\mathrm{S}_{1} ;$ card-punch error	

A comparison of one computer code with another cannot necessarily be made given the timings for primality-testing just one M_{p}. For example, the practice of comparing codes on the number M8191 is now out of date. Different codes for the same algorithm have different break-points at which new efficiencies or inefficiencies are introduced. Different algorithms have very different computational characteristics.

All Lucas-Lehmer primality-testing was carried out until 1981 using 'schoolboy' multiplication which gives an $O\left(p^{3}\right)$ algorithm for the LLT. The parallel lines on the following graph have a slope of about 3 and suggest this. Since 1981, new codes have been run using more efficient multiplication algorithms. Slowinski on the CRAY/1 used the 'divide-and-conquer' idea. Holmes et al on the ICL DAP used the Fast-Fermat transform idea which made the LLT linear over finite ranges and asymptotically $0\left(p^{2} \log _{e} p\right)$.

Some miscellaneous details on computation times:

1)	Lehmer:	60° on M_{139} [L1], 70° on M_{149} [L2] and 700° on M_{257} [R7]
2)	ILLIAC-1:	100° on M ${ }_{8191}$ [W7]
3)	SWAC:	$13^{\prime} 25^{\prime \prime}$ on M_{1279} [L4], 59' on M_{2203} and 66^{\prime} on M_{2281} [L5; U10] The profile of $0.25 p^{3}+125 p^{2}$ [R2] μ secs for M_{p} underestimates the actual times but with a least-squares-fit multiplier of 1.0882 gives model times of $1^{\prime} 15^{\prime \prime}$ on $\mathrm{M}_{521}, 1^{\prime} 51^{\prime \prime}$ on M_{607}, $13^{\prime} 12^{\prime \prime}$ on M_{1279}, $59^{\prime} 29^{\prime \prime}$ on M_{2203} and $65^{\prime} 36^{\prime \prime}$ on M_{2281} Store-1imited SWAC was actually faster than BESK or ILLIAC I.
4)	BESK :	$5^{\circ} 30^{\prime}$ on M3217 [R1]
5)	IBM7090:	50^{\prime} on M_{4423} [H2] and 5.2° on M_{8191} [G1]
6)	ILLIAC II:	49^{\prime} on M8191, $1^{\circ} 23^{\prime}$ on M9689, $1^{\circ} 30^{\prime}$ on M9941 and $2^{\circ} 15^{\prime}$ on M_{11213} [G1]
7)	IBM 360/91:	$3^{\prime} 06^{\prime \prime}$ on M_{8191}, $7^{\prime} 044^{\prime \prime}$ on M_{11213} and $35^{\prime} 01^{\prime \prime}$ on M_{19937} [T1]
8)	CYBER-174:	$7^{\circ} 40^{\prime} 20^{\prime \prime}$ on M21701 and $8^{\circ} 39^{\prime} 37^{\prime \prime}$ on M23209 [N7]
9)	CRAY-1 '79:	$0.179^{\prime \prime} \text { on } M_{1279}, 1.054^{\prime \prime} \text { on } M_{3217}, 23^{\prime \prime} \text { on } M_{11213} \text {, }$ $1^{\prime} 53^{\prime \prime}$ on $M_{19937}, 2^{\prime} 52.766^{\prime \prime}$ on $M_{23209}, 18^{\prime} 39.579^{\prime \prime}$ on M_{44497}, $2^{\circ} 9^{\prime} 36^{\prime \prime}$ on M $_{86243}$ and by extrapolation $7^{\circ} 37^{\prime} 43^{\prime \prime}$ on $\mathrm{M}_{132049 .}$ A model of this computation which fits closely on large p is: $T=a_{1} c w^{2}+a_{2} c w v+a_{4} c w+a_{6} c+a_{7} \text { seconds }$ M_{p} is stored in ' v ' vectors of 128 words or ' w ' words holding 24 bits each. $c=p-2$ cycles. Possible $\mathrm{a}_{3} \mathrm{cv}^{2}$ and $\mathrm{a}_{5} \mathrm{cv}$ terms were set to zero by the model: $\begin{array}{ll} a_{1}=0.661889 * 10^{-8}, & a_{2}=0.113741 * 10^{-7}, \\ a_{4}=0.101383 * 10^{-5}, & a_{6}=0.166363 * 10^{-3}, \\ a_{7}=0.210205 \end{array}$
10)	ICL DAP:	```Code A - 2'22' on M31487; Code B - 9'22' on M62929; Code C - 38'38' on M86243 [H14; H15]```
11)	CRAY-1 '82:	$1^{\circ} 36^{\prime} 22^{\prime \prime}$ on M86243 [N23] and $2^{\circ} 32^{\prime} 18^{\prime \prime}$ on M89137 [N21]
12)	CYBER-205:	1° on M86243 [N24]
13)	CRAY-XMP '83:	```32'30' on M132049 [D4; N25] (M132049 confirmed prime in 3}\mp@subsup{3}{}{\circ}\mp@subsup{5}{}{\prime}10'0' by CRAY-XMP '79 code [N26]```
14)	CRAY-XMP '85:	3° on M216091 [D6]
15)	NEC SX-2 '88:	7.5091" on $M_{11213}, 3^{\prime} 13.61^{\prime \prime}$ on $M_{73709}, 9^{\prime} 7^{\prime \prime}$ on M_{100069} and $11^{\prime} 26^{\prime \prime}$ on M_{110503} [C32; C33]

Times for ICL DAP and CRAY-XMP are not elapsed times but represent the effective throughput on those processors. The ICL DAP was testing 16 or $32 \mathrm{Mp}_{\mathrm{p}}$ in parallel and therefore elapsed times were 16 or 32 times longer. The CRAY-XMP ' 83 code was testing $2 M_{p}$ in parallel.

This section defines the current state of the art in primality-testing and factorising the M_{p}. It also lists some questions raised but not answered by this collection of notes.

13.1 The Status-Quo

1) $M_{449}=p 7 . p 13 . p 22 . c 95=$ smallest unfactorised M_{p} [B17 Edition 2]
2) $M_{523}=c 158=$ smallest M_{p} with no known factor [B17]
3) $M_{1063}=$ largest fully-factorised composite M_{p} [B17]
4) $M_{7673}=$ largest 'probably' fully-factorised M_{p} [Keller?]
5) $M_{50069}=$ smallest M_{p} without twin-sourced LR [H15]
6) $M_{139273}=$ first M_{p} of unknown prime/composite status [C34]
7) $M_{216091}=$ largest known Mersenne prime.[D6]
8) $391581.2^{216193}-1=p 65087=$ the largest known non-Mersenne prime [07]
9) 391581. $2^{216193-1=}$ largest known prime [D7]
p65087 found by Brown, Noll, Parady, Smith, Smith and Zarantonello on 6/8/89 in 33^{\prime} using an Amdahl 1200E. Confirmed by Cray Research
1) M_{p} with $p=4 k+3=39051.2^{6001}-1$ is the largest known composite M_{p} [Y 1] $q=2 p+1=39051.2^{6002}-1$ prime $==\Rightarrow q \mid M_{p}$ by Euler's theorem (Germain, 1987)
2) $M_{277}-f_{2}=p 38=$ largest non-algebraic/cofactor M_{p}-factor found [B17]
3) $M_{1063}-\mathrm{f}_{2}=p 311=$ largest proper M_{p}-factor proved prime [B17, Ed 2, Morain]
4) $p=\operatorname{prp2298} \mid M_{7673}: p=$ largest known 'prp' M_{p}-factor, found by Keller
5) $p=p 26 \mid M_{241}-f_{2}-1: p=$ largest prime, other than algebraic factors and cofactors, used to create an Mp PPL-pf certificate (Brent, ecm, 1986)
6) $M_{349}=$ smallest M_{p} lacking a PPL-pf certificate
7) $M_{607}=$ largest prime featuring in an M_{p} PPL-pf certificate [B23]

13.2 General Primality-testing Progress

A 'probably-prime' test demonstrates that a number is probably prime and is ideally one which no composite number is known to have passed. The "Cunningham Project" [B17, IIIB3a.1] uses one such, the Baillie-PSW test, suggested by Baillie [P27] and published by Pomerance [P26, p1024]. It follows a 'Fermat' sprp(a) test with a 'Lucas' lprp(p, q) test.

A primality test proves that a number is prime; the latest tests are more efficient, rely less on factorisation results and are almost polynomial in complexity. None the less, new algorithms have been needed to test the largest [B17] numbers.

In 1981, some proofs on 70 -digit numbers took several hours [B17, Update 1]. In 1984, the advent of codes based on the radically better 'ARPCL' test [A4; B17 Ed 2] enabled 100 -digit numbers to be tested in less than a minute and 200-digit numbers to be tested in a reasonable time. In 1988, Morain's implementation of Atkin's elliptic curve primality-test [B17 IVA3c] cleared the last "Cunningham" prp, a prp343.

The "Cunningham Project" [B17] illustrates the impact of new algorithms in converting its Appendix A residue of prpn into pn. Against the dates below and B17 updates, in brackets, are tabulated the smallest prpn and the number of prpn remaining.

$8 / 81$	prp73	322	(1.0)	$8 / 84$	prp228	24	(1.2)	$6 / 87$	$\operatorname{prp222}$	35	(1.5)
$10 / 82$	prp54	355	(1.0)	$6 / 85$	prp213	31	(1.3)	$1 / 88$	$\operatorname{prp228}$	36	(2.1)
$7 / 83$	prp51	405	(1.1)	$7 / 86$	$\operatorname{prp213}$	36	(1.4)	$6 / 88$	$\cdots--$	0	(2.2)

13.3 General Factorisation Progress

Brillhart et al [B6] saw c50s as the largest composite it was feasible to approach in 1975. No computation longer than twenty hours was thought worthwhile.

Around the dates below, the smallest 'cn' relevant to the Cunningham Project [B17] in Wagstaff's files increased to the size shown. This is a measure of progress in general factorisation methods (eg cf-ea \& mp-qs) but is to some extent influenced by the priority given to factorising record-breaking rather than 'smallest' cn.

| $c 47$ | $31 / 8 / 81$ | $c 54$ | $8 / 8 / 83$ | $c 72$ | $4 / 8 / 86$ | $c 81$ | $29 / 9 / 87$ | $c 88$ | $27 / 5 / 89$ |
| :--- | ---: | :--- | ---: | ---: | :--- | :--- | :--- | :--- | :--- | :--- |
| $c 48$ | $27 / 3 / 82$ | $c 55$ | $25 / 10 / 85$ | $c 75$ | $21 / 11 / 86$ | $c 82$ | $19 / 11 / 87$ | $c 90$ | $13 / 6 / 89$ |
| $c 49$ | $26 / 6 / 82$ | $c 60$ | $16 / 11 / 85$ | $c 76$ | $10 / 2 / 87$ | $c 83$ | $27 / 1 / 88$ | $c 91$ | |
| $c 50$ | $8 / 8 / 82$ | $c 61$ | $29 / 11 / 85$ | $c 77$ | $22 / 4 / 87$ | $c 84$ | $27 / 11 / 88$ | $c 92$ | |
| $c 51$ | $10 / 9 / 82$ | $c 64$ | $28 / 1 / 86$ | $c 78$ | $29 / 4 / 87$ | $c 85$ | $25 / 1 / 89$ | $c 93$ | |
| $c 52$ | $14 / 6 / 83$ | $c 70$ | $14 / 5 / 86$ | $c 79$ | $2 / 6 / 87$ | $c 86$ | $17 / 2 / 89$ | $c 94$ | |
| $c 53$ | $1 / 8 / 83$ | $c 71$ | $13 / 6 / 86$ | $c 80$ | $10 / 6 / 87$ | $c 87$ | $23 / 4 / 89$ | $c 95$ | |

If computers double in speed every three years, then the length of numbers which it is feasible to factorise would increase by one decimal digit each year. The 43 digit advance in 8 years indicates greater progress in algorithms and technology.

13.4 Outstanding Questions

Pre-history:
a) Where does the 'prime number' concept surface in Greece, Egypt, China, Pythagoras and Euclid?
b) Can we infer that Euclid knew " M_{p} not prime $==\Rightarrow E_{p}$ not perfect"?
c) M_{11} : did the authors of Codex lat. Monac 14908 record the factors of M_{11} ? Curtze [C26] reasonably infers that they knew M_{11} to be composite.
d) Did Euler enumerate $M_{251}-f_{1}=503$ or check it as a factor?
e) Are there sources for the ' $*$ ' entries, especially for Sphinx-0edipe?

Pre-computer:
a) M_{31} : what did Seelhoff actually achieve; cf his incomplete effort on M_{61} ? [S14; S15; c D1 p25 n142]
b) M_{61} : what did Seelhoff prove and where did he go wrong? [S12]
c) M_{71} : How did Ramesam factorise this number?
d) M_{73} : How did Poulet factorise this number?
e) M_{113} : how did D H Lehmer check primality of f_{5} [L6]?
f) How did Gillies [G6] get his interpretation of Shanks' argument [S2 p192]?

Are the, currently presumed lost, print-outs available for the following NZLRs:
a) M_{67} : Lucas' [L13; L15] and Fauquembergue's [F8; F9]
b) M_{89} : Tarry's result [T4; T5]
c) M_{103} and M_{109} : Powers' NZLRs
d) M_{257} : Kraitchik's NZLR
e) The Lehmer/Robinson SWAC NZLRs
f) The Riesel BESK NZLRs

When were the following results achieved?
a) Wunderlich's M_{173} factorisation
b) Penk's discovery of $M_{257^{-f}}$ and Baillie's discovery of $M_{257^{-f}}$ and $M_{257^{-f}}$ a

Other:
a) Do the incorrect residues of Hurwitz, Gillies, Noll correspond to interim (or subsequent) residues or to the wrong starting value for S_{1} ?

Adleman, L M	Gillies, D B	McDonnell, J	Schinzel, A
Archibald, R C	Golubev, V A	McGrogan, S K	Schonfelder, J L
Ball, WWR	Good, I J	McWhirter, N D	Schroepepel, R C
Barker, C B	Hall, J A	Mersenne, M	Seelhoff, P
Bateman, P T	Hardy, G H	Metropolis, N	Selfridge, J L
Beeler, M	Haworth, G M ${ }^{\text {C }} \mathrm{C}$	Miller, GL	Servais, C
Beiler, A H	Heath, T L	Miller, J C P	Shanks, D C
Berg, M	Holdridge, D	Morrison, M A	Sierpinski, W
Bickmore, C E	Holmes, S M	Naur, T	Simmons, G J
Bray, H G	Holte, R	Nelson, HL	Slowinski, D A
Brent, R P	Hudelot, J	Newman, M H A	Smith, H V
Brillhart, J D	Hurwitz, A	Nickel, L A	Solovay, R M
Carmichael, R D	Isemonger, K R	Niewiadomski, R	Storchi, E
Cataldi, P A	Johnson, G D	Noll, C L	Strassen, V
Christie, R W D	Jones, J P	Ondrejka, R	Suyama, H
Cohen, E L	Judd, J S	Ore, 0	Tarry, H
Cohen, H	Karst, E	Pauli, J W	Thomason, J T
Cole, F N	Keller, W	Pepin, P	Touchard, J
Colquitt, W N	Knuth, D E	Pervouchine, I M	Travers, J
Cunningham, A J C	Kraft, G W	Plana, J	Tuckerman, B
Curtze, M	Kraitchik, M B	Pocklington, H C	Turing, A M
Davis, J	Kravitz, S	Pollard, J M	Uhler, H S
Devlin, K	Kronsjo, L I	Pomerance, C	Valentin, G
Dickson, L E	Lake, T W	Poulet, P	Wagstaff, S S, Jr.
Drake, S	Lal, M	Powers, R E	Warren, Le Roy J
Ehrman, J R	Landry, F	Pratt, V R	Western, A E
Euler, L	Le Lasseur	Proth, M E	Wheeler, D J
Ewing, J	Legendre, A M	Ramesam, V	Wilcox, T
Fauquembergue, E	Lehmer, D H	Reid, C	Williams, HC
Fermat, P de	Lehmer, D N	Reuschle, K G	Winsheim, de
Ferrier, A	Lenstra H W, Jr.	Riesel, H	Woodall, H J
Gabard, E	Lucas, F E A	Robinson, R M	Wright, EM
Gardner, M	Macdivitt, A R G	Rumely, R S	Wunderlich, M C
Gerardin, R A P	Mason, T E	Scheffler, D	Yates, S

V		ITEM	REF	NOTES
6	p	57	[U1]	Uhler's NZLR for M157
6	p	255	[B1]	Barker's incorrect NZLR for M167
7	p	273	[U4]	Uhler's note on M_{157} and M_{167}
7	p	413	[U8]	Uhler's NZLR for M229
8	p	368	[U6]	Uhler's NZLR for M199
8	p	441	[L6]	Lehmer's factors of $2^{\mathrm{n}} \pm 1$
9	p	410	[U5]	Review of Uhler's work on six Mpwith p < 258 including $\mathrm{M}_{1} 93$
9	p	410	[U7]	Uhler's NZLR for M227
10	p	100	[01]	Ore's book on "Number Theory and its History"
10	p	681	[L43]	Lehmer on the converse of Fermat's 'little' theorem, II
11	p	11	[F2]	Ferrier's note on factors of 2^{n+1} and the prime ($\left.2^{92}-1\right) / 17$
13	p	436	[M5]	Miller \& Wheeler's large primes including $180\left(2^{127}-1\right)^{2}+1$
14	p	121	[K17]	Kraitchik's review of factorisations of $2^{\mathrm{n}} \pm 1$
14	p	343	[U9]	Uhler's history on the M_{p} and latest primes
14	P	535	[K7]	Kraitchik's "Introduction a la Theorie des Nombres"
14	p	1063	[T7]	Touchard on prime and perfect numbers
14	p	1063	[W9]	Wright's theorem on the primality of $\mathrm{kp}^{3}+1$
15	p	199	[U10]	Uhler on the values of the 16th and 17th perfect numbers
15	p	933	[G12]	Gabard's two factorisations including M_{109}
16	p	335	[R2]	Robinson's SWAC computations on M_{p} and F_{n}
16	p	447	[U11]	Uhler on the values of the first 17 perfect numbers
16	p	673	[H6]	Hardy \& Wright's "Introduction to the Theory of Numbers"
17	p	127	[G4]	Good's conjectures on Mp
17	p	127	[S21]	Storchi's theorems and criteria for M_{p} factorisation
20	\#	832	[R3]	Robinson: some factorisations of $2^{n} \pm 1$
20	\#	4520	[R11]	Robinson: the converse of Fermat's theorem
21	\#	28	[G11]	Golubev's review of factorisation theorems with enumeration
21	\#	657	[R1]	Riesel's M_{p}-factors and the prime M_{321}
22	\#	22	[I1]	Isemonger's complete factorisation of $2^{132}+1$
22	\#	3093	[S8]	Scheffler \& Ondrejka's evaluation of E3217
22	\#	7268	[K2]	Karst's Mp-factors for $3000<p<3500$
22	\#	10949	[K2]	Karst's review of M_{p}-factors including the range $10^{5}<p<10^{8}$
23	\#	A 832	[B2]	Brillhart and Johnson's Mp-factors: $p<1200$
23	\#	A 833	[K5]	Kravitz' M_{p}-factors for $10,000<p<15,000$
23	\#	A1577	[12]	Isemonger's complete factorisation of $2^{159}-1$
26	\#	3684	[H2]	Hurwitz' LRs for $3000<p<5000$ and two prime M_{p}
26	\#	6139	[B9]	Bateman and Horn's heuristic formula for prime distribution
27	\#	2462	[R4]	Riesel's M_{p}-factors: $p<10^{4}, q<10^{8}$
27	\#	3609	[S9]	Schinzel's remark on the paper of Bateman and Horn
28	\#	1152	[K1]	Kravitz' LRs for $6000<p<7000$
28	\#	2990	[G1]	Gillies's LRs for $7000<p<12124$, three prime M_{p} and factors
28	\#	2991	[S3]	Selfridge and Hurwitz' LRs for $5000<p<6000$ and F_{n}-factors
28	\#	2992	[B4]	Brillhart's M_{p}-factors: $p<20,000$ and $q<234$
28	\#	3952	[S2]	Shanks' "Solved and Unsolved Problems in Number Theory"
29	\#	1169	[K6]	Karst's Mp-factors
29	\#	3422	[K24]	Karst's review of search-limits on M_{p}-divisors
30	\#	1106	[K27]	Karst's list of M_{p}-factors $q=2 K p+1(K<10)$ for $p<15000$

V	ITEM	REF	NOTES
36 \#	3717	[S6]	Shanks' analysis of M_{p}-factor distribution
36 \#	6368	[E5]	Ehrman's analysis of M_{p}-factor distibution
37 \#	131	[B5]	Brillart and Selfridge's factors of some M_{n}
40 \#	84	[L9]	Lehmer's review of computers as applied to number theory
41 \#	1675	[K28]	Kravitz' study of Lucas-Lehmer-test cycles
42 \#	4507	[R6]	Riesel's "En Bok om Primtal"
44 \#	3531	[K26]	Knuth's "The Art of Computer Programming, Volume 2"
45 \#	166	[T1]	Tuckerman's announcement of the prime $\mathrm{M}_{1} 9937$
45 \#	3314	[P20]	Pollard's algorithm for primality-testing any integer
47 \#	3285	[L23]	"Computers in Number Theory " including D H Lehmer article
47 \#	4932	[S19]	Shanks' "Class Number, Theory of Factorisation and Genera"
47 \#	8407	[S7]	Selfridge \& Guy's "Primality testing on small machines"
50 \#	4229	[B11]	Rouse Ball's "Mathematical Recreations and Essays", 12th Ed.
50 \#	6992	[P22]	Pollard's Monte-Carlo factorisation technique
51 \#	8017	[B15]	Brillhart and Morrison's factorisation technique and F_{7}
52 \#	5546	[B6]	Brillhart etc's primality criteria and factorisations of $2^{n} \pm 1$
53 \#	4461	[L44]	Lehmer's corrigenda to MR10\#681 [L36; L43]
55 \#	2732	[S20]	Solovay and Strassen's fast Monte-Carlo Primality test
56 \#	233	[T2]	Tuckerman's corrigendum to MR28\#2990 [G1]
57 \#	5885	[S22]	Solovay \& Strassen's correction to MR55\#2732 [S20]
58 \#	470a	[M10]	Miller's primality test assuming the Riemann Hypothesis
58 \#	10681	[R12]	Riesel's supplement to "En Bok Om Primtal"
58 \#	26870	[D2]	Drake's analysis of Mersenne's "rule"
58 \#	27706	[L31]	Lehmer on the exploitation of parallelism in number theory
80e:	10003	[S2]	Shanks' "Solved \& Unsolved Problems in Number Theory" 2nd Edition
80 g :	10013	[S1]	Slowinski's announcement of the prime M_{44497}
80m:	68004	[K15]	Kronsjo's "Algorithms - their complexity and efficiency"
81a:	10020	[J1]	Jones' Diophantine representation of M_{p} and E_{p}
81f:	10011	[W10]	Wunderlich's performance analysis of Brillhart's CF-factorisation
81i:	10002	[H6]	Hardy \& Wright's "Introduction to the Theory of Numbers" 5th Ed.
81k:	10010	[N7]	Nickel \& Noll on the 25 th and 26th Mersenne primes
82a:	10007	[B18]	Brent's improved Monte-Carlo factorisation algorithm
82e:	10004	[L46]	Lehmer on Fermat's quotient, base two
83h:	10015	[P24]	Pomerance's review of recent developments in primality-testing
84e:	10006	[A4]	Adleman et al's almost-polynomial primality test
85b :	11117	[K33]	Keller's table of Fermat factors and large k. $2^{n}+1$ primes
86 g :	11078	[C31]	Cohen and Lenstra's practical primality test

The author has not seen those references marked with a ' $*$ '.
'Pr Comm' denotes a private communication.
L. M. ADLEMAN
(C Pomerance \& R S Rumely): "On distinguishing prime numbers from composite numbers", Annals of Maths. v117 (1983) pp173-206. MR84e: 10006 .
R. C. ARCHIBALD
"Mersenne's Numbers", Scripta Mathematica v3 (1935) pp112-9
RMT 434[F] - Review of [L6]: MTAC v2 (1946-7) p341
Review Note 98 - "Mersenne's Numbers", MTAC v3 (1948-9) p398
W. W. R. BALL
"A Short Account of the History of Mathematics" 3rd Ed. (1901) Macmillan
"Mathematical Recreations and Essays" 5th Ed. (1911) p336. (18th Ed. MR50\#4229.)
"Mersenne's Numbers", Nature v89 (1912) p86
C. B. BARKER
"Proof that the Mersenne Number M_{167} is Composite", BAMS v51 (1945) p389. MR6p255. In error, see [R2; T11].
P. T. BATEMAN \& R. A. HORN
(\& R A Horn): "A Heuristic Asymptotic Formula concerning the Distribution of Prime Numbers", MC v16 (1962) pp363-7. MR26\#6139.
(J L Selfridge \& S S Wagstaff Jr): "The Editor's Corner: The New Mersenne Conjecture", Amer. Math. Monthly 96 (1989) pp125-8
M. BEELER, R. W. GOSPER \& R. SCHROEPEPEL
"HAKMEM", MIT Artificial Intelligence Lab. Memo. 239 (1972), p13
A. H. BEILER
"Recreations in the Theory of Numbers - the Queen of Mathematics Entertains", Dover (1964)
M. BERG

Pr Comm: (20/10/1980)
C. E. BICKMORE
"On the Numerical Factors of $a^{n}-1$ ", Messenger of Mathematics v25 (1895-6) pp1-44, esp. p19
"On the Numerical Factors of $\mathrm{a}^{\mathrm{n}}-1$ ", Messenger of Mathematics v 26 (1896-7) pp1-38

G. BOWGEN

Pr Comm (21/7/83): $352 \mathrm{M}_{\mathrm{p}}$-NZLRs for $90534<\mathrm{p}<100184$
Pr Comm (20/10/83): $397 \mathrm{M}_{\mathrm{p}}$-NZLRs for $63376<\mathrm{p}<73180$
Pr Comm (16/11/83): $13 \mathrm{M}_{\mathrm{p}}$-NZLRs for $62982<\mathrm{p}<63376$
R. P. BRENT
"An Improved Monte Carlo Factorization Algorithm", BIT v20 (1980) pp176-84. MR82a:10007
Pr Comm (9/7/1981): M_{p}-factors for $p<1000$ (updated 1986)
Pr Comm (26/8/1981): M_{p}-factors including those of M_{229}
"New Factors of Mersenne Numbers", Abstracts of the AMS v2 no3 (1981) p367, 81T-10-246
Pr Comm (22/9/1981): M229's factorisation
"New Factors of Mersenne Numbers, II", Abstracts of the AMS v3 nol (1982) p132, 82T-10-34

Pr Comm (11/5/1982): various factorisations
Pr Comm (23/8/1982): full M227 factorisation
"New Factors of Mersenne Numbers, III", Abstracts of the AMS v4 no2 (1983) p197, 83T-10-138

J. D. BRILLHART

(\& G D Johnson): "On the Factors of Certain Mersenne Numbers", MC v14 (1960) pp365-9. (Corrected in) MR23\#A832.
"Some Miscellaneous Factorizations", MC v17 (1963) pp447-50
Table Errata for [R4], MC v17 (1963) p486
"On the Factors of Certain Mersenne Numbers, II", MC v18 (1964) pp87-92. MR28\#2992.
(\& J Selfridge): "Some Factorizations of $2^{n} \pm 1$ and Related Results", MC v21 (1967) pp87-96. MR37\#131. Corrected [B25].
Corrigenda to [B5], MC v21 (1967) p751
(D H Lehmer \& J Selfridge): "New Primality Criteria and Factorizations of $2^{m} \pm 1^{\prime \prime}$, MC v29 (1975) pp620-47. MR52\#5546.
(\& M A Morrison) "A Method of Factoring and the Factorization of F_{7} ", MC v29 (1975) pp183-205. MR51\#8017. Corrected MCv35 (1980) p1444, MR82b: 10009
Pr Comm (16/12/1980): factorisations
Pr Comm (29/1/1981): factorisations
Pr Comm (17/2/1981): M223's factorisation
(D H Lehmer, J L Selfridge, B Tuckerman \& S S Wagstaff): "Factorizations of $b^{n} \pm 1 ; b=2,3,5,6,7,10,11,12$ up to high powers", Contemporary Mathematics v22, American Mathematical Society, (1st Edition 1983, 2nd Edition 1988), ISBN 0-8218-5078-4. Updates: $1.1(20 / 07 / 1983), 1.2(27 / 08 / 1984), 1.3(30 / 06 / 1985)$,
$1.4(3 / 07 / 1986), 1.5(21 / 06 / 1987), 2.1(13 / 01 / 1988)$
$2.2(23 / 06 / 1988), 2.3(14 / 07 / 1989)$
R. D. CARMICHAEL
"Multiply Perfect Numbers of Four Different Primes", Annals of Mathematics, s2 v8 (1906-7) pp149-
P. A. CATALDI
"Trattato de Numeri Perfetti", Bologna (1603) esp pp12-22
R. W. D. CHRISTIE

Maths. Questions Educational Times v48 (1888) pp.xxxvi, 183
Maths. Questions Educational Times v49 (1889) p85
E. L. COHEN \& D. W. DOWD

Corrigendum to [K8], MC v27 (1973) p453

H. COHEN

(\& H W Lenstra Jr): "Primality testing and Jacobi Sums", MC v42 (1984) pp297-330. MR86g:11078.

F. N. COLE

 "On the Factoring of Large Numbers", BAMS v10 (1903) pp134-7
 W. N. COLQUITT

Pr Comm (12/10/88): complete NEC SX-2/400 results for p < 112000
Pr Comm (16/11/88): complete NEC SX-2/400 results for $10^{5}<p \leq 132049$
Pr Comm (21/08/89): complete NEC SX-2/400 results for $10^{5}<p \leq 139267$

A. J. C. CUNNINGHAM

"On Mersenne's Numbers", Report of the BAAS (1894) pp563-4
"Proceedings of $14 / 3 / 1895$ ", Proc. London Math. Soc. v26 (1894-5) p261
"On Mersenne's Numbers", Nature v51 (1895) p533
"On Mersenne's Numbers", Report of the BAAS (1895) p614
"On 2 as a 16-ic Residue", Proc. London Math. Soc. v27 (1895) pp85-122
"On Hyper-Even Numbers and on Fermat's Numbers", Proc. London Math. Soc. s2 v5 (1907) pp 237-74 esp p250 \& p259
"Note of 30/4/1908 Meeting", Proc. London Math. Soc. s2 v6 (1908-9) p.xxii Nature v78 (1908) p23
L'Intermediaire d. Math. v16 (1909) p252
"Notes", Nature v81 (1909) p194
Sphinx-Oedipe v4 (1909) pp36-7
"Note of 8/6/1911 Meeting", Proc. London Math. Soc. s2 v9 (1910-1) p.xvi
"On Mersenne's Numbers", Report of the BAAS (1911) p321
Nature v87 (1911) p499
"On Mersenne's Numbers", Proc. London Math. Soc. s2 v10 (1911-2) p.ii
Sphinx-Oedipe v7 (1912) p38
"Mersenne's Numbers", Proc. London Math. Soc. s2 v11 (1912-3) p.xxiv
"On Mersenne's Numbers", Report of the BAAS (1912) pp406-7
Nature v90 (1912) p425
"On Mersenne's Numbers", Proc. London Math. Soc. s2 v12 (1913) p.xxxvi
Proc. 5th International Congress of Mathematicians, Cambridge (1913), Edited by E W Hobson \& A E H Love, v1 pp384-6
(Creak \& H J Woodall): "Haupt-Exponents, Residue-Indices, Primitive-Roots \& Standard Congruences", London (1922) esp pp1-30, 101-131
(\& H J Woodall): "Factorisation of $\left(y^{n} \mp 1\right) . y=2,3,5,6,7,10,11$, 12 up to high powers (n)", Hodgson, London (1925) 24pp.
Authors' copy with addenda \& corrigenda in Mathematical Association Library, Leicester University, UK
M. CURTZE
"Mathematisch-historische Miscellen", Bibliotheca Mathematica s2 v9 (1895) pp33-42, esp pp39-42

L. DEMBART

"Scientists Find New High in Prime Numbers Game", Los Angeles Times (23/9/1983) pp $1 \& 21$.
"Number Feat Aids Security of Computers", Los Angeles Times (16/12/1983) pp 3 \& 23.
"Supercomputer comes up with whopping prime number", Los Angeles Times (17/9/1985) pp $3 \& 19$.
K. DEVLIN
"Playing it by numbers", The (UK) Guardian (12/10/89)
L. E. DICKSON
"History of the Theory of Numbers" (1919) v1, especially ch1

DISCOVER

 "Biggest Prime, Largest Pi", Discover (1983) pp92-3

S. DRAKE

"The rule behind Mersenne's Numbers", Physis-Rivista Internazionale Storia Scienza v13 (1971) pp421-4. MR58\#26870.
J. R. EHRMAN
"Prime divisors of Mersenne numbers", TN-66-40 (1966), Stanford Linear Accelerator Center, Stanford, California
"The Number of Prime Divisors of Certain Mersenne Numbers", MC v21 (1967) pp700-4. MR36\#6368.
L. EULER

Comm. Acad. Sci. Petropol. v6 (17.38) ad annos 1732-3, pp103-7
Opuscula Varii Argumenti v2 Berlin (1750) esp pp25-32
Nouv. Mem. d. 1'Acad. d. Sc. de Berlin 1772, 1774; Histoire pp35-6 Corresp. Math. Phys. (ed., Fuss) v1 (1843) pp590-1 \& 597-8
Commentationes Arithmeticae Collectae, I, Petropoli (1849) esp ppl-3, 102-9, 584
Opera Omnia s1 v2 (1915) pp1-5, 86-95
Opera Omnia s1 v3 (1917) pp336-7
J. EWING
"286243-1 is prime", Mathematical Intelligencer v5 nol (1983) p60

E. FAUQUEMBERGUE

Note 266, L'Intermediaire des Math. v1 (1894) p148
Sphinx-0edipe v7 (1912) pp20-2
Sphinx-0edipe v8 (1913) p176. In error, see [R2]
Sphinx-0edipe v9 (1914) pp85 \& 103-5. In error, see [R2]
"Au sujet du nombre $2^{67}-1$ ", L'Intermediaire des Math. v22 (1915) p105
L'Intermediaire des Math. v24 (1917) p33
Sphinx-0edipe v15 (1920) pp17-8. In error, see [R2]
P. de FERMAT

Oeuvres de Fermat v2 (1894) pp176, 185, 194, 198-9, 210-1
0euvres de Fermat v4 (1912) pp67, 250
A. FERRIER
"Note on the Factors of $2^{n}+1^{\prime \prime}$, MTAC v3 (1948-9) pp496-7. MR11p11, 870.
"New Factorizations of $2^{n} \pm 1$ ", MTAC v4 (1950) pp55-6 note 110
"Table of Factors of $2^{n}-1$ " reviewed as UMT $137[F]$, MTAC v6 (1952) p39

E. GABARD

"Sur deux factorisations", Mathesis v63 (1954) pp117-9. MR15p933.
"Trois factorisations inedites", Mathesis v63 (1954) p285
"Factorization d'un nouveau nombre de Mersenne", Mathesis v68 (1959) p61

M. GARDNER

"A Short Treatise on the Useless Elegance of Perfect Numbers and Amicable Pairs", Scientific American v218 No3 (March 1968) pp121-4 and v218 No4 (April 1968) p120

GENAILLE

G10* Comptes Rendus (1891) ? part 1 p159

R. A. P. GERARDIN

"Erreurs de Mathematiciens", L'Intermediaire des Math. v15 (1908) pp230-1
"Sur une nouvelle machine algebrique", Report of the BAAS (1912) pp405-6
Sphinx-Oedipe v7 (1912) pp15-6
"Methode Inedite de Recherche des Facteurs des Grands Nombres", Compte Rendu du Congres des Societes Savants (1920) pp53-5
Sphinx-0edipe v17 (1922) p64
Sphinx-0edipe v18 (1923) pp17-8
D. B. GILLIES

Science News Letter v83 (11/5/1963) p291
"Three New Mersenne Primes and a Conjecture", Report No. 138 Digital Computer Laboratory, University of Illinois, Urbana, Illinois (1963)
"Three New Mersenne Primes and a Statistical Theory", MC v18 (1964) pp93-7. MR28\#2990. Corrected [T2]

V. A. GOLUBEV

"Nombres de Mersenne et caracteres du nombre 2 ", Mathesis v67 (1958) pp257-62. MR21\#28.
I. J. GOOD
"Conjectures Concerning the Mersenne Numbers", MTAC v9 (1955) pp120-1. MR17p127.
J. A. HALL
Pr Comm (12/12/89): computer analysis of $M_{p}-f{ }_{1} /$ LR data from [C34; H19]
G. H. HARDY \& E. M. WRIGHT
"Introduction to the Theory of Numbers". 3rd Edition, MR16p673: 5th Edition, MR81i:10002
G. $M^{C} C$. HAWORTH

Pr Comm to R M Robinson (15/9/1980)
Pr Comm to C L Noll ($21 / 10 / 1980$)
Pr Comm to D Shanks (3/8/1981): ICL DAP "Code A" provisional results
Pr Comm to D Shanks (26/1/1982): ICL DAP "Code B" provisional results including some for $50024<p<62982$
Pr Comm to D Shanks (31/1/1983): deposition in MC UMT file of ICL DAP results. Twin-sourced for $18<p<50024$ and original for $50024<p<62982$
Confirmation of Thomason's $S_{1}=3 M_{p}$-NZLRs for $p=67 \& 103(20 / 10 / 1984)$
"Primality-testing Mersenne Numbers, II", Abstracts of the AMS, v7 no2 (March 1986) pp224-5, 86T-11-57
"Mersenne Numbers; Consolidated Results": all LRs etc ex DAP (1986)
"Mp prime-factorisation certificates": PPL-pf certificates (1986)
T. L. HEATH
"The Thirteen Books of Euclid's Elements" 2nd Ed. (1926) v2 pp421-6

A. HODGES

"The Enigma of Intelligence", Hutchinson (1983) ISBN 0-04-510060-8

S. M. HOLMES

$\operatorname{Pr} \operatorname{Comm}$ (27/7/1981): ICL DAP "Code A" provisional results
Pr Comm (24/1/1982): ICL DAP "Code B" provisional results
Pr Comm (24/2/1982): ICL DAP "Code A" production results, $\mathrm{p}<31488$
Pr Comm (20/10/1982): ICL DAP "Code B" production results for 31488 < p < 62982
(D J Hunt, T W Lake, P J Marron, S F Reddaway, N Westbury \& G M ${ }^{C}$ C Haworth): "Primality-testing Mersenne Numbers", Abstracts of the AMS, v4 no2 (Feb 1983) p196, 83T-10-82
"Variable Precision Arithmetic on DAP", Section 3.6 of "DAP in Action" edited by J Howlett, D Parkinson \& J Sylwestrowicz, ICL Technical Journal v3 no3 (1983) pp330-44
J. HUDELOT

Sphinx-Oedipe v4 (1909) p16
A. HURWITZ
"Fermat Numbers and Perfect Numbers", Notices of the American Math. Soc. v8 (1961) p601
"New Mersenne Primes", MC v16 (1962) pp249-51. MR26\#3684. Corrected [G1]
K. R. ISEMONGER
"The Complete Factorization of $2^{132}+1$ ", MC v14 (1960) pp73-4. MR22\#22.
"Complete Factorization of $2^{159}-1$ ", MC v15 (1961) pp295-6. MR23\#A1577.

J. P. JONES

"Diophantine representation of Mersenne and Fermat Primes", Acta Arithmetica v35 (1979) pp209-21. MR81a:10020.

E. KARST

BYU - Applied Number Theory Newsletter (1960) pp3-6
"Faktorenzerlegung Mersennescher Zahlen mittels programmgesteuerter Rechengerate", Numerische Math. v3 (1961) pp79-86. MR22\#10949.
"New Factors of Mersenne Numbers", MC v15 (1961) p51. MR22\#7268.
"Some New Divisors of Mersenne Numbers", BIT v2 (1962) p90
"Search Limits on Divisors of Mersenne Numbers", BIT v2 (1962) pp224-7. MR29\#3422.
"List of all prime divisors $q=2 K p+1$ of $2^{p-1}, K<10, p<15000^{\prime}$, BIT v3 (1963) pp222-8. MR30\#1106.
"Some New Divisors of Mersenne Numbers", BIT v4 (1964) pp28-9. MR29\#1169.
W. KELLER
"Primteiler von Mersenne-Zahlen" (1977). Factors $q<\max \left(2^{36}, 10^{7} \mathrm{p}\right)$ of $M_{p}, p<10^{5}$.
Pr Comm (27/11/1981): "New Factors of Mersenne Numbers and Some Related Primes", intended for publication but not published
"Factors of Fermat Numbers and Large Primes of the form $k .2^{n}+1^{\prime \prime}$, MC v41 (1983) pp661-673. MR85b:11117.
D. E. KNUTH
"The Art of Computer Programming", Volume 2 "Seminumerical Algorithms", 2nd Edition, Addison-Wesley (1981 Printing). MR44\#3531.
G. W. KRAFT

Novi Comm. Ac. Petrop., v3 (1753), ad annos 1750-1

```
M. B. KRAITCHIK
"Table de la plus grande solution de la Congruence 2(p-1)/x=1
        mod p pour tous les nombres premiers p inferieurs a 300,000 excepte
        les cas de x = 1 ou 2", Nancy (1921)
    "Théorie des Nombres", Paris (1922) v1, esp pp34-44, 146, 218
    "Recherches sur la Theorie des Nombres", Paris (1924) v1,
        esp pp 20-1, 24, 165, 170, 175
    "Théorie des Nombres", Paris (1926) v2, esp p135 & p142
    "Nombres Parfaits", L'Echiquier v3 (1927) pp755-6
    "Decomposition de 2n + 1", L'Echiquier v3 (1927) pp756-7
    "Recherches sur la Théorie des Nombres", Paris (1929) Tome 2
    "Les Grands Nombres Premiers", Mathematica v7 (1933) pp92-4
    "Factorizations de 2n }\pm\mp@subsup{1}{}{n}\mathrm{ ", Sphinx v8 (1938) pp148-150
    "On the Factorization of 2n }\pm\mp@subsup{1}{}{n}\mathrm{ ", Scripta Mathematica v18 (1952)
        pp39-52. MR14p121.
    "Introduction à la Theorie des Nombres": Paris 1952, esp pp39-40.
        MR14p535.
    "Mathematical Recreations", Allen & Unwin, London (1955)
```


S. KRAVITZ

"Divisors of Mersenne Numbers $10,000<p<15,000$ ", MC v15 (1961) pp292-3. MR23\#A833.
(\& M Berg): "Lucas' Test for Mersenne Numbers, 6000 < p < 7000", MC v18 (1964) pp148-9. MR28\#1152.
(\& J S Madachy): Review of UMT-113[F] "Divisors of Mersenne Numbers, $20,000<p<100,000$ ", MC v19 (1965) p686 (Corr. MC v27 (1973) p453)
"Distribution of Mersenne Divisors", MC v20 (1966) pp448-9
"The Lucas-Lehmer test for Mersenne Numbers", Fibonacci Quarterly v8 (1970) pp1-3. MR41\#1675.
$\operatorname{Pr} \operatorname{Comm}(4 / 9 / 1980)$
Pr Comm (7/10/1980): the Kravitz/Berg Code
L. I. KRONSJO
"Algorithms - their complexity and efficiency" Wiley (1979)
esp Ch. 5 \& 6 . MR80m:68004.
T. W. LAKE
(\& S M Holmes) Pr Comm (25/8/81): first factors $<2^{40 ;} 5 * 10^{4}<p<10^{5}$
M. LAL

UMT 20[9] - "Decimal Expansions of Mersenne Primes", MC v22 (1968) p232
F. LANDRY
"Aux Mathematicians de toutes les parties du monde; communications sur la decomposition des nombres en leurs facteurs simples", Paris (1867) p8
"Decomposition des Nombres $2^{n} \pm 1$ en leurs Facteurs Premiers", Paris (1869) pp6-7

Le LASSEUR De SANZY
Bullettino di Bibliografia e di Storia delle Scienze Matematiche e Fisiche (Boncompagni) v11 (1878) pp788-9
A. M. LEGENDRE
"Essai sur la Théorie des Nombres" 3rd Ed. Paris (1830) v1 pp228-9
D. H. LEHMER
"A Cross-Division Process and its Application to the Extraction of Roots", American Mathematical Monthly v33 (1926) pp198-206
"Note on the Mersenne Number $2^{139}-1$ ", BAMS v32 (1926) p522
"Tests for primality by the converse of Fermat's theorem", BAMS v33 (1927) pp327-40
"A Further Note on the Converse of Fermat's Theorem", BAMS v34 (1928) pp54-6
"The Mechanical Combination of Linear Forms", Amer. Math. Monthly v35 (1928) pp114-121
"An Extended Theory of Lucas' Functions", Ann. Maths. v31 (1930) pp419-48
"On the Factorization of Lucas' Functions", Tohoku Mathematical Journal v34 (1931) pp1-7
"Sur Le Nombre $2^{257}-1$ ", Sphinx v1 (1931) pp31-2
"Sur Le Nombre $2^{149}-1$ ", Sphinx v1 (1931) pp163-5
"Note on Mersenne Numbers", BAMS v38 (1932) pp383-4
"A number theoretic machine", BAMS v38 (1932) p635
"Some New Factorizations of $2^{n} \pm 1^{\prime \prime}$, BAMS v39 (1933) pp105-8
"A photo-electric number sieve", Amer. Math. Monthly v40 (1933) pp401-6
"A machine for combining sets of linear congruences", Mathematische Annalen v109 (1934) pp661-7
"On Lucas' Test for the Primality of Mersenne's Numbers", J. London Math. Soc. v10 (1935) pp162-5
"On the Converse of Fermat's Theorem", Amer. Math. Monthly v43 (1936) pp347-54
"On the Factors of $2^{n} \pm 1^{\prime \prime}$, BAMS v53 (1947) pp164-7. MR8p441.
"On the Converse of Fermat's Theorem, II", Amer. Math. Monthly v56 (1949) pp300-9. MR10p681
"Recent Discoveries of Large Primes", MTAC v6 (1952) p61 N131
"A New Mersenne Prime", MTAC v6 (1952) p205
"Two New Mersenne Primes", MTAC v7 (1953) p72
"Computer Technology applied to the Theory of Numbers": MAA Studies in Mathematics v6 (1969) pp117-151, Prentice Hall. MR40\#84.
"The economics of Number Theoretic Computation", from "Computers in Number Theory" by A 0 L Atkin \& B J Birch, Academic Press (1971) pp1-9. MR47\#3285.
Corrigendum to [L36] \& [L43], MC v25 (1971) pp943-4. MR53\#4461.
"Exploitation of Parallelism in Number Theoretic and Combinatorial Computation", Proc. 6th Manitoba Conference on Numerical Math. (1976) pp95-111. MR58\#27706.
"On Fermat's Quotient, Base Two", MC v36 (1981) pp289-90
D. N. LEHMER
"On the Multiplication of Large Numbers", American Mathematical Monthly v30 (1923) pp67-70
"Hunting big-game in the theory of numbers", Scripta Mathematica v1 (1933) pp229-235

```
    F. E. A. LUCAS
    Comptes Rendus v82 (1875) ? p1305
    Comptes Rendus v83 (1876) ? p68
    "Note sur l'application des series recurrentes a la recherche de la loi
        de distribution des nombres premiers", Comptes Rendus v82 (1876)
        pp165-7
    "Sur la theorie des nombres premiers", Turin (1876) esp p11
    Comptes Rendus de l'Association de Francaise pour 1'avancement des
        sciences, v6 (1877) pp159-67
    Bulletino d. Bibliografia e d. Storia (Boncompagni) v10 (1877) pp129-193
    "Théorie des Fonctions Numériques Simplement Periodiques", American J.
        Math. v1 (1878) pp184-240, 289-231
    "Theoremes D'Arithmetique", Atti. R. Ac. Sc. Torino v13 (1877-8)
        pp271-84
    Recreations Mathematiques v2 (1883) pp230-5
    "Sur Le Neuvieme Nombre Parfait", Mathesis v7 (1887) pp45-6
    "Sur Les Nombres Parfaits", Mathesis v10 (1890) pp74-6
    "Théorie des Nombres" Paris (1891) v1 p376 & pp424-5
    A. R. G. MACDIVITT
    "The most recently discovered prime number", Maths. Gaz. v63 (1979)
        pp268-70
    T. E. MASON
    BAMS v21 (1914) p68
    "Mechanical Device for Testing Mersenne Numbers for Primes",
        Proc. Indiana Acad. Sci. (1914) p429-31
    J. MCDONNELL
    "On Mersenne's Primes", Proc. London Math. Soc. s2 v12 (1913) p.xvii
S. K. McGROGAN
    (& C L Noll): Letter confirming M86243 prime, Scientific American
        v248 no3 (March 1983) p11
N. D. MCWHIRTER
    The Guinness Book of Records, Editions 12 - 16 (1965 - 1969)
    M. MERSENNE
    "Cogitata Physico Mathematica", Parisiis (1644) Praefatio Generalis No. }1
    "Novarum Observationum Physico-Mathematicarum", Tomus III, Parisiis
        (1647) Cap. }21\mathrm{ p182
    N. METROPOLIS
    (J Howlett & G-C Rota): "A History of Computing in the Twentieth
        Century", Academic Press (1980)
    G. L. MILLER
    "Riemann's Hypothesis and Tests for Primality", J. of Computer and System
        Sciences v13 (1976) pp300-17. MR58#470a.
    J. C. P. MILLER
    (& D J Wheeler): "Large Prime Numbers", Nature v168 (1951) p838
    "Large Primes", Eureka No.14 (1951) pp10-11. MR13p436.
```

T. NAUR
"Integer Factorization", DAIMI PB-144, ISSN 0105-8517 (May 1982)
Pr Comm (14/10/1982): review and M_{193} primality-proofs
Pr Comm (27/10/1982): M_{173} and M_{223} proofs
H. L. NELSON
Pr Comm to D C Shanks (7/6/1979): the deposition in the MC UMT file of
CRAY/1 results for $p<50024$
"Multi-Precise Arithmetic on a Vector Processor, or how we found the 27 th
Mersenne Prime", IEEE COMPCON Proceedings (San Francisco) (1980)
pp265-9
Pr Comm (3/9/1980): residues for $p<4424$
Pr Comm (18/9/1980): 10 residues, $4450<p<6908$
Pr Comm (10/1/1981): Noll's confirmation of M44497
Pr Comm (24/6/1981): residues for $42018<p<42350$
$\operatorname{Pr} \operatorname{Comm}(24 / 12 / 1981):$ some residues, $24048<p<30678$
Pr Comm (6/4/1982): M_{p}-NZLRS for $p=65537,65539,131071$
Pr Comm (19/4/1982): additions/corrections to [N12]
Pr Comm (4/5/1982): discussion of errors in [N12]
Pr Comm (28/10/1982): Slowinski finds M86243 prime
Pr Comm (2/12/1982): CRAY/1 M86243 computation details
Pr Comm (21/12/1982): Noll's CYBER-205 confirms M86243
Pr Comm (7/12/1983): Slowinski's M132049 computation
Pr Comm (28/3/1984): Nelson's 11/3/1984 'M132049 prime' confirmation

M. H. A. NEWMAN

"Some routines involving large integers", Proc. of Cambridge conference on automatic calculating machines (June 22-25, 1949), pp69-70
R. NIEWIADOMSKI
Note 4202, L'Intermediaire des Math. v20 (1913) p78
C. L. NOLL
"Discovering the 26th Mersenne Prime", Dr. Dobb's Journal v4 Iss6 (1979) pp4-5
(\& L A Nickel) "The 25th Mersenne Prime", Dr. Dobb's Journal v4 Iss6 (1979) p6
$\operatorname{Pr} \operatorname{Comm}$ (6/10/1980): residues for $21000<p<24500$
(\& L A Nickel) "The 25th \& 26th Mersenne Primes", MC v35 (1980) pp1387-90. MR81k:10010
$\operatorname{Pr} \operatorname{Comm}$ (10/4/1981): details of his computation
Pr Comm (9/2/1983): details of new FFNT CYBER-205 code

```
R. ONDREJKA
UMT 37[9] Review - "Mersenne Primes and Perfect Numbers", MC v26 (1972) p807
```

0. ORE
"Number Theory and its History", McGraw-Hill (1948). MR10p100.
J. W. PAULI
"De numero perfecto", Magister-disputation, Leipzig (1678)

P. PEPIN

I. M. PERVOUCHINE

Melanges Math. et Astron. tires du Bull. de l'Acad. d. Sci. de St. Petersbourg v6 (1881-8) p553
"Sur un nouveau nombre premier", Bull. Acad. d. Sc. St. Petersbourg s4 v31 (1887) cols 532-3
"Memoires Russes de L'Academie" (Zapiski Imperatorskoi Akademii) v48

J. PLANA

Memoria della Reale Accadem. della Scienze, Torino s2 v20 (1863) p130
H. C. POCKLINGTON
"The Determination of the Prime or Composite Nature of Large Numbers by Fermat's Theorem", Proc. Cambridge Phil. Soc. v18 (1914-6) pp29-30
J. M. POLLARD
"An Algorithm for Testing the Primality of any Integer", Bull. London Math. Soc. v3 (1971) pp337-40. MR45\#3314.
"Theorems on factorization and primality testing", Proc. Camb. Phil. Soc. v76 (1974) pp521-8
"A Monte Carlo Method for Factorization", BIT v15 (1975) pp331-4. MR50\#6992.

C. POMERANCE

"Recent Developments in Primality Testing", Mathematical Intelligencer v3 no3 (1981) pp97-105. MR83h:10015.
"The Search for Prime Numbers", Scientific American v247 no6 (Dec. 1982) pp122-130
(Selfridge \& Wagstaff) "The Pseudoprimes to $25.10^{9 "}$ MC v35 (1980) pp1003-1026
"Are there any counterexamples to the Baillie-PSW primality test?", 'Dopo Le Parole' (16/5/1984), edited and available from J K Lenstra, Amsterdam
P. POULET

Sphinx-Oedipe v18 (1923) p64
R. E. POWERS

Note 6, BAMS v18 (1911-2) p162
American Math. Monthly v18 (1911) pp195-7
Sphinx-Oedipe v8 (1913) pp49-50
"A Mersenne Prime", BAMS v20 (1914) p531
"On Mersenne's Numbers", Proc. London Math. Soc. s2 v13 (1914) p.xxxix
Sphinx-0edipe v9 (1914) pp105-8
"Certain Composite Mersenne's Numbers", Proc. London Math. Soc. s2 v15 (1916) p.xxii
"Note on a Mersenne Number", BAMS v40 (1934) p883
"Sur les Nombres de Mersenne", Sphinx (Bruxelles) v5 (1935) pp57-8

V. R. PRATT

"Every Prime has a succinct certificate": SIAM J. of Computing v4 (1975) pp214-220
M. E. PROTH
"Théorèmes sur les nombres premiers", Comptes Rendus Acad. Sci. Paris v87 (1878) p926

V. RAMESAM

 "Note on Mersenne's Number \(2^{71}-1^{\prime \prime}\), Journal of the Indian Math. Soc. v4
 (1912) p56
 C. REID
"Perfect Numbers", Scientific American v188 No3 (March 1953) pp84-6
K. G. REUSCHLE
"Mathematische Abhandlungen, enthaltend neue zahlen-theoretische Tabellen sammt einer dieselben betreffenden Correspondenz mit dem verewigten C. G. J. Jacobi", Stuttgart (1856) 61pp, esp. pp21-2, 42-53
H. RIESEL
"A New Mersenne Prime", MTAC v12 (1958) p60
"Mersenne Numbers", MTAC v12 (1958) pp207-13. MR21\#657.
"All Factors $q<10^{8}$ in all Mersenne Numbers $2^{p}-1$, p Prime < 10^{4} ", MC v16 (1962) pp478-482. MR27\#2462. Corrected MC v17 (1963) p486.
"En Bok om Primtal" Studentlitteratur (1968) esp. pp44-65. MR42\#4507.
"En Bok om Primtal, Uppdateringar och Korrektioner" (Oct. 1979). MR58\#10681.
$\operatorname{Pr} \operatorname{Comm}$ (30/10/1980): details of his computation
$\operatorname{Pr} \operatorname{Comm}(6 / 12 / 1980):$ largest-known composite M_{p}
R. M. ROBINSON
"Mersenne \& Fermat Numbers", PAMS v5 (1954) pp842-6. MR16p335.
"Some Factorizations of Numbers of the Form $2^{n} \pm 1^{\prime \prime}$, MTAC v11 (1957) pp265-8. MR20\#832.
"The Converse of Fermat's Theorem", Amer. Math. Monthly v64 (1957) pp703-10. MR20\#4520.
Pr Comm (26/8/1980)
D. SCHEFFLER \& R. ONDREJKA
"The Numerical Evaluation of the Eighteenth Perfect Number", MC v14 (1960) pp199-200. MR22\#3093.
A. SCHINZEL
"A Remark on a paper of Bateman and Horn", MC v17 (1963) pp 445-7. MR27\#3609.
R. C. SCHROEPEPEL
$\operatorname{Pr} \operatorname{Comm}(6 / 01 / 90):$ earlier date for Brillhart's M139 factorisation
J. L. SCHONFELDER \& J. T. THOMASON
"Arbitrary Precision Arithmetic in Algol 68", Software - Practice and Experience v9 (1979) pp173-82

SCIENTIFIC AMERICAN

"219,937 is Prime", Science \& the Citizen Column, v224 no6 (June 1971) p56
"Onward and Upward", Science \& the Citizen Column, v240 nol
(January 1979) p67
Announcement of Primes M_{23209} \& M_{44497}, Martin Gardner, v241 no2 (Sept. 1979) p26

P. SEELHOFF

"Ueber die vollkommenen Zahlen, insbesondere uber die bis jetzt zweifelhaften Falle $2^{40}\left(2^{41}-1\right), 2^{46}\left(2^{47}-1\right)$ und $2^{52}\left(2^{53}-1\right)^{\prime \prime}$, Archiv fur Math. und Phys. s2 v2 (1885) pp327-9
"Die neunte vollkommene Zahl", Zeitschrift fur Math. und Phys. v31 (1886) pp174-8
"Untersuchung der Zah1 $2^{37}-1$ ", Archiv fur Math. und Phys. s2 v5 (1887) pp221-3

J. L. SELFRIDGE

Errata to [R1] MC v13 (1959) p142
(\& A Hurwitz): "Fermat Numbers and Mersenne Numbers", MC v18 (1964) pp146-8. MR28\#2991.
(\& R K Guy): "Primality Testing on Small Machines" - Research Paper No 121 (1971) - Dept. of Mathematics, University of Calgary, Canada. MR47\#8407.
C. SERVAIS
"Sur les Nombres Parfaits", Mathesis v7 (1887) pp228-30
D. C. SHANKS
"Solved \& Unsolved Problems in Number Theory" Volume 1 - Spartan Books (1962); MR28\#3952. 2nd Edition, Chelsea (1978); MR80e:10003. 3rd Edition (1985).
(\& S Kravitz): "On the Distribution of Mersenne Divisors", MC v21 (1967) pp97-101. MR36\#3717.
"Class number, a theory of factorization, and genera", Amer. Maths. Soc. Proc. Sympos. Pure Maths v20 pp415-40, Number Theory Institute (1969). MR47\#4932.
$\operatorname{Pr} \operatorname{Comm}(28 / 10 / 1981):$ Nelson's results $24000<p<31000$
W. SIERPINSKI
"A Selection of Problems in the Theory of Numbers", Pergamon (1964)
"Elementary Theory of Numbers", Hafner (1964)
D. A. SLOWINSKI
"Searching For the 27 th Mersenne Prime", J. Recreational Math. v11 (1978-9) pp258-61. MR80g:10013.
H. V. SMITH
"The 25th (known) perfect number", Mathematical Gazette v63 (1979) p271
R. M. SOLOVAY \& V. STRASSEN
"A Fast Monte-Carlo Test for Primality", SIAM J. Computing, v6 (1977) pp84-5. MR55\#2732.
Corrigendum to [S20], SIAM J. Computing, v7 (1978) p118. MR57\#5885.
E. STORCHI
"Alcuni criteri di divisibilita per i numeri di Mersenne e il carattere $6^{\mathrm{Co}}, 12^{\mathrm{mo}}, 24^{\mathrm{mo}}, 48^{\mathrm{mo}}$, dell'intero $2^{\prime \prime}$, Bolletino della Unione Matematica Italiana, v10 (1955) pp363-75. MR17p127
H. SUYAMA
"Some new factors for numbers of the form $2^{n} \pm 1^{1}$ ", Abstracts of the AMS v3 no3 (1982) p257, $\overline{82 T}-10-230$
"Some new factors for numbers of the form $2^{n} \pm 1$, II", Abstracts of the AMS v4 no2 (1983) p195, $\overline{8} 3 \mathrm{~T}-10-57$
"Some new factors for numbers of the form $2^{n} \pm 1$, III", Abstracts of the AMS v4 no3 (1983) p294, $\overline{83 T}-10-207$

H. TARRY

Sphinx-Oedipe v6 (1911) p192
Sphinx-Oedipe v7 (1912) p15 (or 17?)

J. T. THOMASON

Pr Comm (1/2/1981): 5 original- M_{p} factorisations confirmed
$\operatorname{Pr} C o m m(4 / 2 / 1981): E_{p}$ and decimal/octal residues
Pr Comm (22/6/1981): M239's factors and Lucas-residues

TIME Magazine

"Cracking a Record Number" v123 no7 (13/2/1984) p54

The TIMES (London)
"Prime Number Record Broken", The TIMES (17/11/78) p9 column 4
"Prime Number", The TIMES (23/11/78) p19 column 4

J. TOUCHARD

"On Prime Numbers \& Perfect Numbers", Scripta Mathematica v19 (1953) pp35-9. MR14p1063.

J. TRAVERS

"Perfect Numbers", Mathematical Gazette v23 (1939) p302

B. TUCKERMAN

"The 24th Mersenne Prime", Proc. Nat. Acad. Sci. USA v68 (1971) pp2319-20. MR45\#166.
Corrigendum to [G1], MC v31 (1977) p1051. MR56\#233.
Pr Comm (28/8/1980): residues for $12142<p<21000$
A. M. TURING
"Checking a large routine", Proc. of Cambridge conference on automatic calculating machines (June 22-25, 1949), pp67-8
H. S. UHLER
"A New Result Concerning a Mersenne Number", MTAC v1 (1943-5) p333
"A New Result Concerning a Mersenne Number", MTAC v1 (1943-5) p404
"First Proof that the Mersenne Number M_{157} is Composite", Proc. Nat. Acad. Sci. v30 (1944) pp314-6. MR6p57.
"Note on the Mersenne Numbers M_{157} and M_{167} ", BAMS v52 (1946) p178. MR7p273.
"A New Result Concerning a Mersenne Number", MTAC v2 (1946-7) p94. MR7p413.
"On Mersenne's Number M199 and Lucas's Sequences", BAMS v53 (1947) pp163-4. MR8p368.
"On Mersenne's Number M227 and Cognate Data", BAMS v54 (1948) pp378-80. MR9p410.
"On all of Mersenne's Numbers Particularly M193", Proc. Nat. Acad. Sci. v34 (1948) p102-3. MR9p410.
"A Brief History of the Investigations on Mersenne Numbers and the latest immense primes", Scripta Mathematica v18 (1952) pp122-31. MR14p343.
"On the 16th and 17th Perfect Numbers", Scripta Mathematica v19 (1953) pp128-131. MR15p199.
"Full Values of the First Seventeen Perfect Numbers", Scripta Mathematica v20 (1954) p240. MR16p447.

G. VALENTIN

"Einige Bemerkungen uber vollkommene Zahlen", Archiv. Math. Phys. s2 v4 (1886) pp100-3
S. S. WAGSTAFF, Jr.
$\operatorname{Pr} \operatorname{Comm}(21 / 1 / 1981)$: table of M_{p}-factors $<2^{35}$ for $17,000<p<50,000$
Pr Comm (2/2/1982): "Divisors of Mersenne Numbers";
$2^{31}<M_{p}-f_{1}<2^{35}$ for $20,000<p<10^{5}$
Pr Comm (27/7/1982): M193 factorised by two prps
"Divisors of Mersenne Numbers", MC v40 (1983) pp385-97

Le Roy J. WARREN
(\& H G Bray): "On the Square-Freeness of Fermat and Mersenne Numbers", Pacific J. of Maths. v22 (1967) pp563-4
A. E. WESTERN
"Some criteria for the residues of 8 th \& other powers" - Proc. London Math. Soc. s2 (1911) pp244-272
"On Lucas's and Pepin's Tests for the Primeness of Mersenne's Numbers", J. London Math. Soc. v7 (1932) pp130-7
D. J. WHEELER

Pr Comm (6/10/1980): ILLIAC I and M8191 Lucas-test
T. WILCOX

Corrigendum to [L3], MC v19 (1965) p175

De WINSHEIM
Novi Comm. Ac. Petrop. v2 (1751) ad annum 1749, mem., 68-99
H. J. WOODALL
"Note on a Mersenne Number", BAMS v17 (1910-1) p540
"Mersenne's Numbers", Memoirs \& Proceedings of the Manchester Literary and Philosophical Society, $v 56$ (1911-12) No 1 pp5-8
E. M. WRIGHT
"The Calculation of Large Primes", The Mathematical Gazette v37 (1953) pp104-6. MR14p1063.
M. C. WUNDERLICH
"A running time analysis of Brillhart's continued fraction factoring method", Lecture Notes in Mathematics, 751, Springer (1979), pp328-42. Proc. of Southern Illinois Conference at Carbondale. MR81f:10011
S. YATES
$\operatorname{Pr} \operatorname{Comm}(19 / 12 / 88): 876$ titanic primes $>10^{999}$.

```
Adleman, Leonard M
AMS, American Mathematical Society
Archibald, Raymond Clare
Atkin, Oliver L
BAAS, British Association for the
    Advancement of Science
Baillie, Robert: M M 257-f
Ball, Walter William Rouse
BAMS, "Bulletin of the American
    Mathematical Society"
Barker, Charles B
Bateman, Paul Trevier
Beeler, M
Beiler, Albert H
Berg, Murray
Bickmore, C E
BIT, "Nordisk tidskrift for
    Informationsbehandling"
Bowgen, Grant: ICL DAP
Bray, H G
Brent, Richard Peirce
Brillhart, John David
Carmichael, Robert Daniel
Cataldi, Pietro Antonio
    (1550?-1626)
Christie, R W D
Cohen, Edward L
Cohen, H
Cole, Frank Nelson
    (1861-1927)
Colquitt, Walter N
Computer
    AMDAHL 470/V7: qv Williams
    BESK: M3217 [R5]
    CDC 6500:
    CDC 7600: M M 257 - fr
    CDC CYBER-174: M}\mp@subsup{M}{21701 & M23209}{
    CDC CYBER-205: M86243 confirmation
    CRAY/1: M44497, M86243
    CRAY/1S: M
    CRAY-XMP: M M132049, M216091
    DEC
    EDSAC:
    EPOC: Extended-Precision Operand Computer
    IBM 360/91: M19937 [T1]
    IBM 650
    IBM 701: M M109-f & & M M157-f
    IBM 704: M101
    IBM 709
    IBM 7090
    IBM 7094: M
    ICL 2900 DAP: LR confirmations
    ILLIAC-I: M8191
    ILLIAC-II: M9689, M9941 & M11213
```

```
Computer (continued):
    MATHILDA
    MU1: [N16]
    MZ-80C: 8-bit micro (Suyama) [B17]
    NEC SX-2/400: M110503
    power: #12
    SWAC: 5 prime Mp
Continued Fraction factorisation method (cf):
    early-abort technique (cf-ea)
    results: M M 137, M M M9, M M M9, M191, M193, M223
Cunningham, Allan Joseph Champneys
    (1842-1928)
    Cunningham Project [B17]
Curtze, Maximilian
Davis, James A: M M11, M251
Dickson, Leonard Eugene
    (1874-1954)
Drake, Stillman
ecm: elliptic curve (factorisation) method
EDSAC:
Ehrman, John R
Elliptic Curve factorisation method (ecm)
ENIAC: Electronic Numerical Integrator and Computer
    qv Computer
EPOC: Extended-Precision Operand Computer
Euclid
Euler, Leonhard
    (1707-1783)
    f
            M131, M179, M191, M239, M
Factorisation techniques
    cf: continued fractions
    ecm: elliptic curve
    mp-qs: multiple-polynomial qs
    qs: quadratic sieve
    rho: monte-carlo
    td: trial division
Fast Fermat-Number Transform
Fauquembergue, E
Fermat, Pierre de
    (1601?-1665)
    fermatian
    little theorem
    method of infinite descent
    number theory
Ferrier, A
FFNT, see Fast Fermat-Number Transform
Frenicle de Bessy, Bernhard
    (ca 1602-1675)
Gabard, Emilien
Gardner, Martin
Georgia Cracker, qv EPOC
Gerardin, Robert André Patrice
    (1879-19)
```

```
Gerardin, Robert André Patrice
    (1879-19)
Gillies, Donald B
Golubev, V A
Good, Irving John
Hall, Jeremy A
Hardy, Godfrey Harold
    (1877-1947)
Haworth, Guy M}\mp@subsup{M}{}{C}Crossa
Heath, Thomas Little
    (1861-1940)
Holdridge, Diane: M M M11, M251
Holmes, Stephen M
Holte, R
Hudelot, Jules
Hurwitz, Alexander
Isemonger, K R
Johnson, Gerald D
Jones, J P
Judd, J S
Karst, Edgar
Keller, W
Knuth, Donald Ervin
Kraft, George Wolfgang
Kraitchik, Maurice Borisovich
Kravitz, Sidney
Krieger, S I
Kronsjo, Lydia I
Lake, Tom W
Lal, Mohan
Landry, Fortune
Le Lasseur
Legendre, Adrien Marie
    (1752-1833)
Lehmer, Derrick Henry
Lehmer, Derrick Norman
    (1867-1938)
Lenstra, Hendrik W, Jr.
Lucas, Francois Edouard Anatole
    (1842-1891)
Macdivitt, A R G
Machines
    see computers
    sieves
Mason, Thomas E
MATHILDA, qv Computers
MC, "Mathematics of Computation"
MC UMT, MC Unpublished maths. table
McDonnel1, J
McGrogan, Stephen K
McWhirter, Norris D
```

```
Metropolis, N
Miller, Gary Lee
Miller, Jeffrey Charles Percy
    (1906-1981)
Monte-Carlo methods
    factorisation
    primality-testing
Morrison, Michael Allan
MR, "Mathematical Reviews"
MTAC, "Mathematical Tables and
    Aids to Computation", now
    "Mathematics of Computation"
Naur, Thorkil
Nelson, Harry L
Newman, M H A
Nickel, Laura Ann
Niewiadomski, R
Noll, Curt Landon
Numerology
Ondrejka, Rudolf
Ore, Oystein
PAMS, Proceedings of the
    American Mathematical Society
Pauli, J W
Penk, Michael: M257-f
Pepin, P
Pervouchine, Ivan Mikheevich
Plana, J
Pocklington, H C
Pollard, John M
    p-1 factorisation algorithm
            M173-f}3,\mp@subsup{M}{191}{}\mp@subsup{|}{4}{-f},\mp@subsup{M}{257-f}{2
        rho (Monte-Carlo) factorisation algorithm
```



```
Pomerance, Carl
Poulet, P
Powers, Ralph Ernest
        (1875-1952)
        biography
Pp: see Pollard's p-1 method
Pratt, Vaughan Ronald
Primality testing
    Fermat's theorem converse
    Monte-Carlo
Proth, M E
Quadratic Sieve method
    multiple-polynomial technique
    results: M M 11, M251
Ramesam, v
Reid, Constance
Reuschle, K G
rho: Pollard's Monte-Carlo method
    results: M}\mp@subsup{M}{19\mp@subsup{9}{}{-f}}{1},\mp@subsup{M}{227}{-f}1,\mp@subsup{M}{229-f}{*},\mp@subsup{M}{257-f}{\prime
Rickert, Neil W
```

```
Ramesam, V
Reid, Constance
Reuschle, K G
rho: Pollard's Monte-Carlo method
    results: M}\mp@subsup{M}{19\mp@subsup{9}{}{-f}}{1},\mp@subsup{M}{227}{-f}1,\mp@subsup{M}{229-f}{3},\mp@subsup{M}{257-f}{\prime
Rickert, Neil W
Riesel, Hans
Robinson, Raphael Mitchel
Rumely, Robert S
Scheffler, D
Schinzel, Andrzej
Schonfelder, J L
Schroepepel, Richard C: see Tuckerman & M19937
Seelhoff, P
Selfridge, John Lewis
Servais, C
Shanks, Daniel Charles
Sierpinski, Waclaw
Sieves
    Bicycle-Chain (1927):
    DLS127 (1965)
    DLS157
    Photoelectric (1932): M79
    'ROM'-based:
    Williams' Shift-register:
Simmons, Gustavus J
Slowinski, David Allen
Smith, H V
Solovay, Robert Martin
Speciner, Michael: see Tuckerman & M19937
Storchi, Edoardo
Strassen, Volker
Suyama, Hiromi
SWAC: Standards Western Automatic Computer
    M521, M607, M}\mp@subsup{M}{1279}{},\mp@subsup{M}{2203}{* & M2281 primes
Tarry, H
Thomason, John T
Touchard, Jacques
Travers, J
Tuckerman, Bryant
Uhler, Horace Scudder
UMT, Unpublished Mathematical Table,
    see MC
Valentin, G
```

