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Abstract
State-of-the-art wind power forecasts beyond a few hours ahead rely on global numerical weather prediction
models to forecast the future large-scale atmospheric state. Often they provide initial and boundary conditions
for nested high resolution simulations. In this paper, both upper and lower bounds on forecast range are
identified within which global ensemble forecasts provide skilful information for system-wide wind power
applications. An upper bound on forecast range is associated with the limit of predictability, beyond which
forecasts have no more skill than predictions based on climatological statistics. A lower bound is defined
at the lead time beyond which the resolved uncertainty associated with estimating the future large-scale
atmospheric state is larger than the unresolved uncertainty associated with estimating the system-wide wind
power response to a given large-scale state.

The bounds of skilful ensemble forecast range are quantified for three leading global forecast systems.
The power system of Great Britain (GB) is used as an example because independent verifying data is available
from National Grid. The upper bound defined by forecasts of GB-total wind power generation at a specific
point in time is found to be 6–8 days. The lower bound is found to be 1.4–2.4 days. Both bounds depend on the
global forecast system and vary seasonally. In addition, forecasts of the probability of an extreme power ramp
event were found to possess a shorter limit of predictability (4.5–5.5 days). The upper bound on this forecast
range can only be extended by improving the global forecast system (outside the control of most users) or by
changing the metric used in the probability forecast. Improved downscaling and microscale modelling of the
wind farm response may act to decrease the lower bound. The potential gain from such improvements have
diminishing returns beyond the short-range (out to around 2 days).

Keywords: Wind Power Forecasting, Global NWP, Ensemble Forecasting, Predictability, Ramping, Skill
Scores

1 Introduction

Global wind power capacity has risen dramatically from
around 8 GW in 1997 to around 370 GW at the end of
2014 (GWEC, 2015). Consequently, wind power fore-
casts have become an essential tool for energy market
participants and system operators in many countries. Ac-
curate forecasts contribute to efficient strategies for mar-
ket trading and asset maintenance, as well as for effi-
cient unit commitment and system balancing, whereby
enough reserve power must be available to maintain se-
curity of supply (Giebel et al., 2011).

To operate the energy system efficiently, different
types of forecast are required at a range of different
lead times. For example, forecasts of power output at
a specific time point in the future are widely used at a
variety of lead times from minutes ahead to weeks ahead
(Morales et al., 2014). Forecasts for extreme events
such as large ramps in wind power generation are also

∗Corresponding author: Dirk Cannon, University of Reading, Whiteknights,
PO Box 217, Reading, Berkshire RG6 6AH, United Kingdom, e-mail:
d.j.cannon@reading.ac.uk

used by market participants and transmission system
operators (Cutler et al., 2007; Greaves et al., 2009;
Ferreira et al., 2010). In addition, weekly-mean wind
forecasts can also be used by energy market participants
at longer lead times (at 3–4 weeks ahead, Lynch et al.,
2014). For each user, optimal decisions must be made by
weighing the costs and potential losses associated with
taking decisions against the potential returns of acting
early, for example by applying cost-loss functions to a
probability forecast (Richardson, 2012).

Up to a few hours ahead of real time, statistical
methods are used to predict the future wind power out-
put1. Beyond this time horizon, forecasts rely heavily
on global numerical weather prediction (NWP) mod-
els (Giebel et al., 2011). NWP model forecasts are ini-
tialised from analyses, which represent the observed
state of the whole atmosphere represented on the three-
dimensional NWP model grid by blending observational
data with an earlier forecast using a data assimilation
method.

1In the meteorological community, forecasting up to a few hours ahead is
often termed nowcasting.
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A major source of uncertainty in NWP model fore-
casts is associated with the chaotic behaviour of the at-
mosphere, whereby the state at a future time is sensitive
to small changes at the start of the forecast (Lorenz,
1963). As the initial state is uncertain, this uncertainty
grows with increasing lead time, and it is this uncer-
tainty that global forecast centres attempt to capture us-
ing forecast ensembles. The ensemble members are con-
structed by adding perturbations to the analysis to rep-
resent the range of observational uncertainty in the ini-
tial atmospheric state. The forecast model is run forward
from each of these slightly different initial conditions
and the ensemble perturbations are calibrated so that the
ensemble spread matches the forecast error (averaged
over many start dates) at specific lead times of interest;
for example at 2 days ahead for the European Centre for
Medium Range Weather Forecasts (ECMWF) forecast
system. The spatial structure of the perturbations also
affects the rate of spread and the locations with the great-
est spread. The techniques used to construct the pertur-
bations differ between global forecasting centres, and so
the characteristics of their spatial structure differs along
with their evolution and the average rate of increase in
spread. In addition, parameters describing physical pro-
cesses in the NWP model can be perturbed stochasti-
cally during the forecast calculations, which acts to in-
crease further the differences between ensemble mem-
bers and the rate of increase in the ensemble spread.

For a global ensemble forecast at lead time l, ini-
tialised at time ti and valid at time tv = ti + l, the spread
of the ensemble relative to the analysis at the same valid
time (tv) is herein referred to as the resolved uncertainty.
As analyses are used to initialise the global forecasts, the
resolved uncertainty is small when l = 0 (reflecting the
ensemble perturbations only) and grows with increasing
lead time. Eventually the ensemble spread must become
so large that there is no advantage in using the fore-
cast over using climatological statistics. For example,
in Sections 3.1-3.2 the quantity being forecast (the pre-
dictand) is the system-aggregated capacity factor, c(tv),
which is defined here as the total wind power genera-
tion at valid time tv expressed as a percentage of the to-
tal installed wind capacity2. An ensemble forecast can
be used to generate a histogram where the range of c is
divided into bins and the number of forecast members
within each bin (c → c + δc) is counted. This is often
interpreted as a forecast of the PDF (probability den-
sity function) of the predictand. For example, the prob-
ability that c will lie between 25–30 % at valid time tv
can be inferred from the number of ensemble members
predicting c within that range. Typically the histogram
becomes broader and flatter with increasing lead time
as the uncertainty increases. At long lead times the en-
semble PDF usually approaches the climatological PDF
obtained from the long-term statistics of a free-running
model. If the model is sufficiently well calibrated this
will also match the climatological PDF obtained from

2The capacity factor is also commonly referred to as the load factor.

the long term statistics of the observed c. The character-
istic lead time at which the skill of ensemble forecasts is
on average no better than a climatological prediction is
referred to as the limit to predictability of the first kind
(Lorenz, 1975). Here, we refer to this limit as the upper
bound, tU , of the useful forecast range.

Wind estimates based on global NWP analyses can
differ substantially from observed values (Pinson and
Hagedorn, 2012). Here, the difference between the
analysis estimate of GB-total wind power generation
and the observed power output will be referred to as the
unresolved uncertainty since it relates to processes and
phenomena that are not explicitly resolved by the global
NWP model. Contributions to the unresolved uncer-
tainty include (i) the uncertainty in local wind speed fea-
tures that are not resolved by the global model, (ii) the
uncertainty in the response of the wind farm to those
winds, and (iii) the uncertainty stemming from the oper-
ational management of the power system, including in-
structions to curtail power generation, unreported main-
tenance and metering errors.

To analyse a large number of forecasts without in-
curring excessive computational costs, here we adopt a
relatively simple method to produce wind power gen-
eration estimates from the global NWP model winds
(described in Section 2). However, in operational fore-
casting systems a number of methods are employed
to further reduce the unresolved uncertainty as defined
above. One approach is to dynamically downscale the
global NWP data using a regional NWP model to pro-
vide weather information at higher spatial and temporal
resolution. Dynamical downscaling is particularly use-
ful in regions of complex terrain where the topogra-
phy is poorly resolved by global NWP models (Reid
and Turner, 2001; Mass et al., 2002; Jiménez et al.,
2010). Information from NWP models is also often used
as input to physical-statistical microscale models that
estimate the power output for individual wind farms.
Such models vary in complexity, however a common
approach (which is adopted in this paper) is to utilise
a power curve, which is a simple transformation relating
the power generated to the ambient wind speed. Power
curves can be derived from knowledge of the turbine
design (Carrillo et al., 2013) or by empirically deriv-
ing statistical relationships using measured data (Giebel
et al., 2011). Local forecasts can also be re-calibrated
and improved using statistical techniques such as model
output statistics (Glahn and Lowry, 1972). For some
forecast users, such as transmission system operators,
the local wind farm forecasts are spatially aggregated
over a region of interest. This region can be system-wide
(as in this paper), or defined within a zone subjected to
constrained transmission at its boundaries.

The total uncertainty in wind power forecasts is thus
made up of both resolved and unresolved contributions.
The resolved uncertainty must increase with lead time,
as a result of chaos, and at some lead time (tL), come to
dominate the total uncertainty. In order to estimate tL it
is essential to consider a problem where the predictand
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Table 1: A summary of the data sources used in this project, where N is one quarter of the number of grid points around the equator, and
abbreviations are defined in the text. Note that the forecast systems in TIGGE are upgraded periodically, and only the latest (maximum)
horizontal grid resolution is shown here. For more detailed information, see Bougeault et al. (2010) and Table 1 of Gray et al. (2014).
All TIGGE data is interpolated onto a common 0.5 ° by 0.5 ° horizontal grid prior to archiving. For more detailed information about the
ERA-Interim data, see Dee et al. (2011).

Name or Abbrev. Data Type Horizontal Discretisation Source

GB Wind Power Measured National National Grid
ECMWF Global Forecasts and Analyses Max. N320 (≈ 16 km) TIGGE
UKMO Global Forecasts and Analyses Max. N216 (≈ 60 km) TIGGE
NCEP Global Forecasts and Analyses Max. N128 (≈ 80 km) TIGGE
ERA-Interim Reanalyses N128 (≈ 80 km) ECMWF

is well observed by measurements that are completely
independent of atmospheric observations or models. In
this case, the measurement is the wind power generation
coming onto the Great Britain (GB) electricity transmis-
sion system. Improved understanding and forecasting of
the wind resource is particularly important in GB due
to the large and increasing market penetration of wind
power and its relative isolation from other European sys-
tems (transnational electricity flows are small compared
to overall GB demand). It is shown that tL varies for fore-
casts from different global NWP models and we use it
to define the lower bound of useful ensemble forecast
range.

Understanding the relative contribution of resolved
and unresolved sources of uncertainty provides forecast
users and developers with guidance as to the maximum
potential value of improvements to their forecast sys-
tems for sytem-wide wind power applications. For ex-
ample, improvements to the global NWP forecast sys-
tem may extend the upper bound tU . However, such im-
provements may also reduce the resolved uncertainty at
shorter lead times, increasing the lower bound tL if the
unresolved uncertainty remained unchanged. The use-
ful forecast window may be increased by reducing tL
through improvements to the downscaling and physical-
statistical modelling of the wind farm response, thereby
reducing the unresolved uncertainty.

In Section 2, the process of converting NWP model
wind speeds to wind power generation estimates is de-
scribed, after which results are presented in Section 3
and conclusions in Section 4. The results in Section 3 are
presented in three parts. In Section 3.1, the upper bound
of useful forecast range, tU , is characterised using en-
semble forecasts of GB wind power derived from output
of three leading global forecast centres. In Section 3.2,
the lower bound, tL, is quantified, below which the un-
resolved uncertainty in the predictand (GB wind power
generation) is larger than the resolved uncertainty. In
Section 3.3, global ensembles are used to forecast the
probability that wind power swings (ramps) exceeding
a certain threshold will occur within a pre-determined
time-window. The limit to predictive skill in the forecast
of this probability, tP, is compared with the tU and tL es-
timated for GB wind power to assess the range of lead

times for which such probability forecasts can be useful
for risk-based decision making.

2 Method

In this paper, the national wind power generation de-
rived from global meteorological forecasts and analyses
are compared to system-aggregated wind power obser-
vations from the Great Britain (GB) power system, pro-
vided by National Grid. The analyses and forecasts are
obtained through the data portal of the THORPEX Inter-
active Grand Global Ensemble (TIGGE)3. The TIGGE
dataset was created as an activity of the World Meteoro-
logical Organisation’s THORPEX Programme. Ensem-
ble forecast output from 10 global operational weather
forecasting centres has been archived in one place to en-
able utilisation of forecast data in atmospheric research.
See Bougeault et al. (2010) for a description of the
purpose and initial use of TIGGE data since its start in
December 2006, and Swinbank et al. (2016) for some
highlights of research using TIGGE over its first decade.

For the global NWP forecasts and analyses, wind
speeds are archived in the TIGGE database at 10 m
above the surface and at various vertical levels corre-
sponding to constant pressure surfaces. Wind speeds
at 10 m above the surface and at the two lowest pres-
sure levels (925 and 850 hPa) from three internationally
recognised global forecast providers are used: (i) the
European Centre for Medium Range Weather Fore-
casts (ECMWF), (ii) the UK Met Office (UKMO), and
(iii) the National Centers for Earth Prediction (NCEP),
from the USA. Whilst the forecasts and analyses were
originally produced at different resolutions (Table 1),
they were pre-interpolated (during archival) onto a reg-
ular 0.5 ° by 0.5 ° horizontal grid in order to more easily
facilitate multi-model comparisons (e.g., Johnson and
Swinbank, 2009; Hagedorn et al., 2012).

The forecast and analysis wind speeds were con-
verted to GB-aggregated wind power generation follow-
ing the general approach of Cannon et al. (2015). The
steps are: (i) bi-linearly interpolate the wind speeds hor-
izontally from the global NWP model grid to the loca-
tion of each wind farm (Figure 1), (ii) assume a logarith-
mic change in wind speed with height to interpolate the

3http://apps.ecmwf.int/datasets, accessed 28 October 2015).

http://apps.ecmwf.int/datasets
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Figure 1: (a) The distribution and capacity of wind farms for the Great Britain (GB) power system in circa September 2012 (as in Cannon
et al., 2015). This is the fixed distribution assumed in Section 3.1, and includes many wind farms that are embedded within local electricity
distribution networks (including all onshore wind farms in England and Wales). In Section 3.2, a time-varying distribution is used to provide
a more robust comparison with measured wind power data from National Grid. Here, the distribution evolves from (b) 01 January 2009
to (c) 31 December 2012, and wind farms embedded within local distribution networks are not included. The GB-total capacity for each
distribution is shown in the top right.

Figure 2: The assumed dependence of wind farm power output on
hub-height wind speed (Cannon et al., 2015). High wind speed cut-
out occurs above 25 ms−1 after which wind farms come back online
at 21 ms−1 (dashed).

winds from the available vertical model levels to a rep-
resentative turbine hub height, (iii) infer the wind farm
power output from the hub-height wind speed assum-
ing a simple deterministic relationship, or power curve
(Figure 2), and (iv) aggregate over all the wind farms in
the distribution. Here, the wind speeds at 10 m above the
surface and (for almost all cases) at the 925 hPa pressure
level were used to vertically interpolate to hub height.
On the few occasions when the 925 hPa level dropped
below 20 m above the surface the 850 hPa level winds
were used instead of the 925 hPa level winds (this occurs
for less than 0.1 % of all forecasts). The power curve was
fitted so as to remove the mean bias with respect to mea-
sured wind power generation from 2012.

The ability of global meteorological analysis data
to estimate GB-aggregated wind power amount and its
variability was investigated in detail by Cannon et al.
(2015) using the MERRA dataset (Rienecker et al.,

2011)4. The GB-aggregated wind power estimates were
highly correlated to the observed GB wind power gen-
eration in 2012, producing a correlation coefficient of
0.96. The variability was well reproduced on time scales
of around 6 hours or more (correlation coefficients of
0.77, 0.86 and 0.93 for time scales of 3, 6 and 12 hours
respectively).

The global NWP analyses are available every
12 hours, when the forecasts were initialised at 00 and
12 UTC each day. However, the data from each fore-
cast is available at 6 hour time intervals up to 10 days
lead time, at 00, 06, 12 and 18 UTC each day. There-
fore, for the assessment of ramp forecasts (Section 3.3),
the unperturbed (control) forecasts at 6 hours ahead are
used as a proxy for the analysis at 06 and 18 UTC (ini-
tialised from the analyses at 00 and 12 UTC respec-
tively). This approach allows for the assessment of each
forecast relative to its own verifying analysis. The alter-
native approach of using different analysis datasets that
contain higher frequency data such as MERRA (Rie-
necker et al., 2011) or ERA-Interim (Dee et al., 2011),
was found to introduce additional biases which favoured
some forecast systems more than others.

The distribution of GB wind farms has changed
somewhat over the period studied (Figure 1), with a
greater proportion of wind capacity now located in the
south and offshore, in particular in the Thames Estu-
ary (at approximately 1.5 ° E, 51.5 ° N). In Sections 3.1
and 3.3, only the resolved uncertainty (forecasts vs.
analyses) is considered, and so the fixed wind farm dis-
tribution of Cannon et al. (2015), from circa Septem-
ber 2012, is used (Figure 1(a)). This distribution in-

4A GB-aggregated wind power time series based on this MERRA
data, along with the underlying Matlab model is freely available at
http://www.met.reading.ac.uk/~energymet/data/Cannon2015/.

http://www.met.reading.ac.uk/~energymet/data/Cannon2015/
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cludes many wind farms that are embedded within the
local distribution networks (including all onshore wind
farms in England and Wales) and so closely represents
the true distribution of the GB wind fleet at that time. In
Section 3.2 however, the GB power generation derived
from global NWP model data is compared directly to
the measured GB wind power data and so the embedded
wind farms are excluded as they do not contribute to the
wind power measured through the national transmission
system (Figure 1(b,c)). The addition of new wind farms,
particularly offshore, can significantly alter the charac-
teristics of the wind resource (Drew et al., 2015). There-
fore, to further aid the comparison in Section 3.2 the dis-
tribution of wind farms is allowed to evolve, with the
start date of new wind farms estimated by National Grid
from the measured data itself, and cross-checked against
publicly available information from company websites.

3 Results

In Sections 3.1 and 3.2, the upper and lower bounds on
the useful forecast range for ensemble forecasts of Great
Britain (GB) capacity factor, c (tU and tL, respectively),
are quantified based on global weather forecasts from
three leading global forecast centres (ECMWF, UKMO
and NCEP). The metrics used focus on the closeness of
the ensemble of forecast c values to the observed c as
a function of forecast lead time. In Section 3.3, fore-
casts for the probability of extreme wind power ramp
events are investigated. The limit of predictability asso-
ciated with these probability forecasts, tP, is compared
with the upper bound on forecast range associated with
predicting c values.

3.1 Upper bound of useful forecast range (tU)

The lead time beyond which wind power forecasts per-
form no better, on average, than climatological predic-
tions is known to be sensitive to the quantity being fore-
cast. For example, Frame et al. (2011) showed that fore-
casts of wind speed averaged over the north Atlantic re-
gion can retain skill out to beyond 10–15 days relative to
climatology, whilst Lynch et al. (2014) found that fore-
casts of weekly-mean wind speed over the UK retain
skill to at least 3 weeks ahead.

Here, the GB wind power predicted by global NWP
forecast systems is compared with that based on the
global NWP analyses. This quantifies only the resolved
uncertainty, as defined in Section 1. A long history of
forecasts from the TIGGE archive (7 years, from 2007
to 2013 inclusive) are used, over which time the GB
wind farm distribution has changed dramatically. As dis-
cussed in Section 2, a fixed wind farm distribution from
September 2012 is used for this calculation which in-
cludes many wind farms embedded within local distri-
bution networks, since this better reflects the contempo-
rary distribution of wind farms across the country. This

approach allows for the influence of atmospheric vari-
ability and predictability on power generation to be par-
titioned from the influence of the changing power net-
work.

The accuracy of an ensemble forecast of a single
metric (GB capacity factor, c) relative to the analyses
can be assessed for a single point in time using the
continuous ranked probability score (Hersbach, 2000),

CRPSforecast(l) =
1
N

∑

i

∫ c=100 %

c=0 %
(Fi(l) − Ai)

2 dc,

(3.1)
where Fi(l) and Ai refer to the cumulative density func-
tions (CDFs) for values of c obtained from the forecast
ensemble and analysis (for valid time point i and lead
time l). As the analysis only has one c value on each
time point, ai, its CDF consists of a step function with
the transition from zero to one at the point c = ai. The
CRPS is a commonly used scoring rule that quantifies
the proximity of the ensemble forecast members to the
analysis value. It is strictly proper in that it produces a
minimum score (zero) only when all ensemble forecast
members agree exactly with the analysis value. Forecast
members far from the analysis are penalised according
to the square of their distance.

To assess the added value of the forecast ensembles
relative to a climatology-based statistical prediction, we
use the cumulative ranked probability skill score,

CRPSS = 1 − CRPSforecast

CRPSclimatology
, (3.2)

where CRPSclimatology is defined as in (3.1) but with the
substitution of a CDF derived from a climatology of
statistics from the analyses in place of the CDF from
the forecast ensemble Fi. The climatological CDFs were
constructed using the analysis-derived capacity factor
values within a moving 7-day window centred on the
time point in question. Only the values from the same
time of day (00 or 12 UTC) were used to compile the
CDFs, thus allowing for diurnal variation in the climato-
logical statistics. For each time point there are thus 7 val-
ues of c (one per day in the 7-day window) for each of
the 7 years in the TIGGE record, giving at most 49 val-
ues contributing to the climatology CDF for each date
and time5. For example, the climatological ensemble at
12 UTC on 31 August of each year is made up of the
12 UTC values from 28 August to 03 September in each
of the years from 2007–2013. A climatological distribu-
tion using a moving 30 day window was investigated but
found to produce less accurate predictions than the 7 day
window used here. A perfect ensemble forecast results
in CRPSS = 1, whereas CRPSS = 0 indicates a fore-
cast that offers no more information, on average, than a
climatological prediction. A negative score implies that

5This is comparable to the number of ensemble members in the ECMWF
forecast system (51), and considerably more than the UKMO (24) or
NCEP (21) forecast systems.
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Figure 3: The continuous ranked probability skill score (CRPSS), for (a) ECMWF, (b) UKMO and (c) NCEP forecasts of GB-aggregated
wind power generation at a future point in time. The skill during summer months (June, July and August; red) and winter months (December,
January and February; blue) are shown as well as the all-year mean skill (green).

the ensemble forecast is less accurate on average than
the climatological prediction based on the analyses.

Figure 3(a) shows CRPSS as a function of forecast
lead time for the ECMWF forecast system. At short lead
times the skill is slightly less than perfect (CRPS S = 1)
due to the perturbations added to each ensemble forecast
member at initialisation. As the lead time increases, the
skill reduces and eventually asymptotes towards zero,
indicating that at long lead times the forecast system
is no better than a prediction based on climatological
statistics. Even though the CRPS values for the ensem-
ble forecasts are greatest in summer, the skill relative to
the climatology is considerably lower in summer than in
winter. This is due to the lower variability in summer,
resulting in much improved accuracy for the climato-

logical predictions which more than offsets the improve-
ment in the forecast. As a result, the forecast horizon be-
yond which the forecasts provide negligible skill relative
to the climatological prediction is seasonally dependent.
To account for the skill falling asymptotically towards
zero, we use a threshold of CRPSS = 0.1 to define the
upper limit of predictability. This is preferable to assum-
ing skill in the forecasts at long lead times when values
can remain marginally above zero for a wide range of
lead times. Whilst on average the forecast skill drops
below CRPSS = 0.1 beyond around 8 days ahead, in
summer this limit is only around 7 days ahead whilst in
winter it is around 9 days ahead.

Figures 3(b,c) show equivalent plots for the UKMO
and NCEP forecast systems, where the reference cli-
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Figure 4: The mean absolute error for ensemble mean forecasts of GB-aggregated capacity factor (c), relative to National Grid observations
(as defined in Eq. 3.3). Dashed lines indicate the 95 % confidence intervals, calculated using a bootstrapping technique.

matological forecast is calculated in the same way as
before, but using the UKMO and NCEP analyses re-
spectively. Both forecast systems indicate upper lim-
its of predictability that are shorter than that of the
ECMWF system (around 7 days for the UKMO sys-
tem and around 6 days for the NCEP system). For all
three forecast systems, the upper limit of predictability
for GB wind power generation shown here is signifi-
cantly shorter than found in the aforementioned stud-
ies into weekly-mean wind speed (3–4 weeks) or mean
wind speed over a larger geographical area (at least
10–15 days). The negative skill evident for the NCEP
forecast system at long lead times is indicative of a sys-
tematic model error relative to its analyses (Figure 3(c)).

3.2 Lower bound of useful forecast range (tL)

In this section the total mean absolute error,

MAE =
1
N

∑

i

∣∣∣∣ fi(l) − oi

∣∣∣∣ , (3.3)

is used as an average measure of the uncertainty be-
tween the forecasts and observations. In (3.3), oi rep-
resents the observed GB-aggregated capacity factor at
occasion i, fi(l) represents the ensemble mean forecast
capacity factor for the same occasion (at lead time l into
the forecast), and N is the number of occasions. Using
the ensemble mean forecast tends to yield more accu-
rate forecasts on average than using an individual mem-
ber (such as the control forecast) and is often used at
short lead times when the ensemble spread is relatively
small. Note that the CRPS converges to the MAE as the
ensemble spread tends to zero. The MAE can also be
decomposed into resolved and unresolved components,
a property that will be utilised later.

Figure 4 shows the total mean absolute error obtained
using three state-of-the-art forecast systems (ECMWF,
UKMO and NCEP). At all lead times, the ECMWF and
UKMO forecast systems outperform NCEP. Note that
the verifying observations are calculated from GB elec-
tricity transmission system measurements and are com-
pletely independent of the atmospheric measurements

upon which the forecasts and analyses are based. The
ECMWF and UKMO forecast systems show similar to-
tal errors, with the UKMO system performing slightly
better at short lead times (up to around 1 day ahead)
and at long lead times (beyond around 6 days), whereas
the ECMWF forecast system performs slightly better
between around 1–6 days ahead. For the ECMWF and
UKMO forecast systems, the MAE is around 6 % of to-
tal GB capacity at short lead times, increasing gradually
to around 9 % after 3 days, 12 % after 5 days and around
16.5 % after 10 days.

The dashed lines in Figure 4 show confidence inter-
vals for each MAE value. They are calculated using a
bootstrapping technique to create a distribution of pos-
sible values for each lead time. The lower and upper
dashed lines represent the 2.5th and 97.5th percentiles of
these distributions, meaning that there is a 95 % chance
of a random sample (with replacement) of 1000 fore-
cast and observation pairs with an MAE falling within
that range. Given the analysis includes 2 forecasts per
day for 4 years (over 2900 occasions per lead time), the
MAE and the component values are tightly constrained.
Sampling variability is due primarily to seasonal varia-
tions in the MAE, with the lower threshold correspond-
ing to typical summer values and the upper threshold to
winter values.

To investigate the contribution of resolved errors to
the total MAE, the resolved (MAER) and unresolved
(MAEU) mean absolute errors are defined as

MAER =
1
N

∑

i

∣∣∣∣ fi(l) − ai

∣∣∣∣ , (3.4)

MAEU =
1
N

∑

i

|ai − oi| . (3.5)

Figure 5 compares MAER, MAEU, and the total
MAE, for each forecast system. As the unresolved MAE
depends only on the analysis-derived GB power gener-
ation and the observed generation, it remains constant
with increasing lead time. The resolved MAE is almost
zero at lead time l = 0, and increases with lead time, be-
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Figure 5: The mean absolute error for an ensemble mean forecast of GB-aggregated wind power generation, using the (a) ECMWF,
(b) UKMO and (c) NCEP forecast system. The total mean absolute error (MAE in black) is shown alongside the resolved (MAER in red)
and unresolved (MAEU in blue) mean absolute errors. Dashed lines indicate the 95 % confidence intervals, calculated using a bootstrapping
technique.

coming larger than the unresolved MAE beyond around
1.4–2.4 days ahead depending on the forecast system,
and larger than the total MAE beyond around 5 days
ahead. Note that the analyses produced by each global
centre are used to calculate these statistics, so the magni-
tude of the resolved MAE at the start of forecasts (l = 0)
reflects only the size of perturbations added to create
the varying initial states for each ensemble member. The
magnitude of unresolved MAE from each centre is very
similar, implying that the analyses from all centres pro-
duce similar wind speeds over Great Britain, and share
common errors relative to the structure of winds incident
on wind farm sites.

The fact that MAER exceeds the total MAE at long
lead times (Figure 5) implies that the distribution of en-
semble mean forecasts is closer to that of the observed
generation than that of the analyses. This arises because
the PDF of capacity factor (from observations, analy-
ses and individual forecasts) is highly skewed due to the
positive definite nature of the predictand and the non-
linear conversion of wind speed to capacity factor (Fig-
ure 2). Typically in a forecast the ensemble mean CF will
exceed the mode, due to the positive skewness, and the
PDF of ensemble mean values will be shifted towards
higher capacity factor values than the PDF of analy-
ses (a systematic contribution to MAER). In contrast,
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the differences between ensemble mean and observation
in each forecast are less systematic. Furthermore, it is
found that the PDF of observed CF has slightly higher
frequency in the mid-range CF values than analyses (not
shown). This leads to smaller differences, on average,
between the ensemble mean forecasts and the observa-
tions than between the ensemble mean forecasts and the
analyses. Note that if the control forecast is used in place
of the ensemble mean ( fi(l) in equations 3.3 and 3.4)
then MAE and MAER agree to within the confidence in-
tervals for 5–10 day lead times, even though both error
estimates are greater because for any day’s forecast the
control could be an outlier while the ensemble mean is
likely to be closer to the outcome.

The operation of taking the modulus in the defini-
tion of MAE, MAER and MAEU means that MAE �
MAER + MAEU. We can alternatively decompose the
total MAE into two terms that depend only on either the
resolved error, Ri(l) = fi(l) − ai, or the unresolved er-
ror, Ui = ai − oi. In this manner, the total error can be
expressed as the sum of two components:

MAE = φR(Ri) + φU(Ui), (3.6)

where the resolved component, φR, depends only on the
resolved error, Ri(l), and the unresolved component, φU,
depends only on the unresolved error, Ui. This decom-
position is achieved by rewriting (3.3) as

MAE =
1
N

∑

i

|Ri(l) + Ui| =
1
N

∑

i

AEi, (3.7)

where AEi = |Ri(l) + Ui| represents the absolute (total)
error for each occasion i (using the forecast at lead
time l). The relative impact of Ri(l) and Ui on AEi
varies depending on one of three possible situations,
for which the occasions are divided into the following
corresponding sets:

• Set 1 (i ∈ S1) occurs when Ri(l) and Ui are the same
sign, and the errors simply reinforce each other to
produce a larger absolute error: AEi = |Ri(l)| + |Ui|.

• Set 2 (i ∈ S2) occurs when Ri(l) and Ui are different
signs and |Ri(l)| ≥ |Ui|. In this case, the unresolved
error (Ui) acts to partially or totally compensate for
the larger resolved error (Ri(l)), and so the absolute
error is given by the positive difference between
them: AEi = |Ri(l)| − |Ui|.

• Set 3 (i ∈ S3) is similar to set 2, and occurs when
Ri(l) and Ui are different signs but when |Ri(l)| <
|Ui|. In this case, the resolved error (Ri(l)) acts to
partially compensate for the larger unresolved error
(Ui), and the absolute error is again given by the
positive difference between them: AEi = |Ui|−|Ri(l)|.

Summing over these sets independently, the total
mean absolute error (MAE) can be rewritten in terms of

the resolved and unresolved components in (3.6), where

φR =
1
N

⎡⎢⎢⎢⎢⎢⎢⎣
∑

i∈S 1

|Ri(l)| +
∑

i∈S 2

|Ri(l)| −
∑

i∈S 3

|Ri(l)|
⎤⎥⎥⎥⎥⎥⎥⎦ , (3.8)

depends only on |Ri(l)|, and

φU =
1
N

⎡⎢⎢⎢⎢⎢⎢⎣
∑

i∈S 1

|Ui| −
∑

i∈S 2

|Ui| +
∑

i∈S 3

|Ui|
⎤⎥⎥⎥⎥⎥⎥⎦ , (3.9)

depends only on |Ui|. φR thus represents the net contri-
bution of all of the resolved errors to the overall MAE,
and φU represents the net contribution of all of the un-
resolved errors. In general, the only mathematical con-
straint on these components is that they sum to MAE
(which is positive definite), and so in general if one of
them is larger than MAE the other must be negative.
However, for a perfectly calibrated (reliable) forecast
system, both components should be greater than or equal
to zero as set 1 (i ∈ S 1) must account for at least half
the total MAE. Note that whilst the unresolved errors
themselves are independent of the forecast lead time, the
number of occurrences in each set (S 1, S 2 and S 3), and
therefore φU, does vary with the lead time.

Figure 6(a) shows the proportion of the total MAE
attributable to the resolved and unresolved components
(φR/MAE and φU/MAE respectively), as a function of
increasing lead time for the ECMWF forecast system.
As in Figure 5, at short lead times the resolved errors
are small and so the resolved error contributes almost
nothing to the total MAE. As the lead time increases, the
resolved component becomes relatively more important
as the uncertainty in the large-scale state of the atmo-
sphere increases. In contrast, the contribution of unre-
solved errors decreases with increasing lead time, even-
tually tending to zero at long lead times. This occurs
because, at long lead times, the resolved errors are gen-
erally larger than the unresolved errors and so set 3 oc-
curs increasingly rarely. Therefore, from (3.8–3.9) we
see that whilst the resolved component (φR) is unequiv-
ocally positive, the unresolved component (φU) depends
on the balance between positive terms (set 1) and nega-
tive terms (set 2). At long lead times (when the forecast
skill drops to zero) the forecasts become almost random
and uncorrelated with the analyses, and so the resolved
and unresolved components are equally likely to act to
reinforce each other (set 1) as counteract each other
(set 2). Consequently, the positive and negative terms
cancel each other out on average and the net impact of
small unresolved errors is close to zero. This means that
small unresolved errors added to random large resolved
errors are as likely to improve the forecast as they are to
diminish it.

Figures 6(b,c) show equivalent plots for the UKMO
and NCEP forecast systems. Whilst the qualitative be-
haviour is similar to that in Figure 6(a), the threshold
at which the resolved uncertainty begins to dominate is
markedly different from that of the ECMWF forecast
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Figure 6: The fraction of the total mean absolute error that is attributable to resolved (φR in red) and unresolved (φU in blue) sources,
for the (a) ECMWF, (b) UKMO and (c) NCEP forecast systems. Dashed lines indicate the 95 % confidence intervals, calculated using a
bootstrapping technique.

system (around 2.4 days ahead); around 1.9 days ahead
for the UKMO forecast system and just 1.4 days ahead
for the NCEP forecast system. For UKMO, this differ-
ence is due to both a slightly more accurate analysis rela-
tive to ECMWF, and a slightly poorer global forecast, re-
sulting in a slightly higher resolved MAE and a slightly
lower unresolved MAE. For NCEP, the short threshold
is due mostly to the less accurate global forecast, which
leads to a higher resolved MAE.

The lower threshold below which the global NWP
forecast uncertainty is not the largest contributor to
the total uncertainty therefore ranges from around
1.4–2.4 days depending on the forecast system. This
suggests that forecast improvements targeted at reduc-
ing unresolved errors (associated with downscaling and

modelling the wind farm response) can significantly im-
prove GB wind power forecasts only at relatively short
lead times.

3.3 Upper Bound for Probability Forecasts:
Extreme Ramps (tP)

At long lead times (days to weeks ahead), transmission
system operators are concerned with the likelihood of
extreme events such as ramps in wind power genera-
tion. Such events occur over short time scales up to a
few hours, for example due to local weather phenom-
ena such as convective storms and turbulence. On longer
time scales, beyond a few hours, ramp events occur due
to the changing synoptic weather patterns, and global
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Figure 7: An example ramp event. A ramp is said to have occurred if the maximum capacity factor minus the minimum capacity factor within
the time window is larger than a defined threshold. The lead time of the ramp is approximated as the time between forecast initialisation and
the centre of the time window.

ensemble forecasts enable users to forecast their prob-
ability. In this section we assess the skill of ramp fore-
casts derived from the three global forecast systems and
compare the upper limit of predictability to the upper
bound on the useful forecast range for the GB capacity
factor. As in Section 3.1, only the resolved uncertainty
is considered here, and so the influence of atmospheric
variability is assessed without influence from changes to
the power system (by holding the power system fixed).
This allows for a longer period of forecasts and analyses
to be used which is particularly useful when calculating
the probability of infrequent events.

In this paper, a ramp event is said to occur if the max-
imum absolute change in wind power generation within
a given time window exceeds a predefined threshold.
The lead time of the ramp is approximated as the time
between forecast initialisation and the centre of the time
window. An illustrative example is shown in Figure 7,
where an increase in capacity factor of around 70 % oc-
curs within a time window of 2 days, at a lead time of
2.5 days. Choosing a ramp threshold of 50 %, a ramp
would be said to have occurred here. If however an ex-
tremely severe ramp threshold of 80 % were chosen, no
ramp event would be said to have occurred in this exam-
ple. Using this ramp definition, the accuracy with which
a forecast system predicts extreme ramp events can be
assessed using the Brier Score (Brier, 1950),

BSforecast =
1
N

∑

i

(pi(l) − qi)
2 , (3.10)

where 0 ≤ pi(l) ≤ 1 is the probability of the event
occurring in forecast i (at lead time l) and qi is either 0 or
1 (event does or does not occur in the analysis for time-
point i). As for CRPSS, we define a Brier Skill Score as

BSS = 1 − BSforecast

BSclimatology
, (3.11)

where the climatological probabilities were constructed

using analysis-derived ramp magnitude values within a
moving 6-day window. For each time point there are 25
ramp magnitude values for each of the 7 years in the
TIGGE record (four per day in the 6 days surrounding
the time point, plus one for the time point itself). This
gives at most 175 values from which to calculate the
probability of the ramp occurring at each time point. As
the ramps defined here may occur at any point within
a multi-hour or multi-day time window, unlike for the
capacity factor climatology in Section 3.1, no diurnal
variability is explicitly included in the construction of
the climatological probabilities for ramps.

Here, ramps of at least 50 % of GB capacity within
a time window of 24 hours are investigated. This corre-
sponds to a swing of 3.5 GW in the (fixed) wind farm
distribution (Figure 1(a)). A ramp of this magnitude is
large enough to cause significant challenges for trans-
mission system balancing if poorly forecast, and accu-
rate early warnings of such events are extremely helpful
in preparing efficient strategies. These ramps occur only
infrequently in the reanalysis (7.7 % of the time), and are
especially rare in summer, where they occur just 1.0 %
of the time6.

As discussed in Section 2, to address the fact that the
analysis data is only available at 00 and 12 UTC whereas
the forecasts are available at 00, 06, 12 and 18 UTC, the
unperturbed (control) forecasts at 6 hours ahead are used
to compute values at 06 and 18 UTC (from forecasts ini-
tialised at 00 and 12 UTC respectively). Alongside the
main results (which will be discussed next), the skill of a
33 year ERA-Interim based climatology relative to this
climatology is shown in Figure 8(a–c) for each of the
forecast systems. That the ERA-Interim based climatol-
ogy is only marginally less skilful than the reference
climatology used here indicates that the results are not
sensitive to the choice of analysis used in the reference
climatology.

6This means that ramps occur within the subsequent 24 hours of 7.7 % of all
time points, and 1.0 % of summer time points.



12 D. Cannon et al.: The bounds of skilful forecast range Meteorol. Z., PrePub Article, 2016

Figure 8: The Brier skill score (BSS) for extreme ramp forecasts constructed using the (a) ECMWF, (b) UKMO and (c) NCEP forecast
systems. A ramp event is said to occur here if there is a GB wind power swing of at least 50 % of GB wind capacity within a 24 hour time
window. Dashed lines indicate the 95 % confidence intervals, calculated using a bootstrapping technique. The BSS is calculated relative to
a climatological prediction based on the analysis and 6 hour ahead control forecasts (as described in the text). For comparison, the relative
skill of an equivalent climatological prediction based on ERA-Interim data from 1980–2013 is also shown (black, dashed).

The dependence of BSS on lead time for ramp fore-
casts produced by the ECMWF forecast system is shown
in Figure 8(a). As for the upper bound calculated in
Section 3.1, we use a threshold BSS = 0.1 to define
the upper limit of predictability for probability fore-
casts (tP), in order to avoid the issue of the skill remain-
ing marginally positive as it asymptotes to zero. The
skill drops below BSS = 0.1 on average after around
5.5 days, a considerably shorter limit of predictability
than was found for the GB capacity factor forecasts
(8 days). The 95 % confidence intervals for these statis-
tics are relatively broad, reflecting the small number of
extreme ramps contributing to the statistics. No robust
seasonal variations in the BSS for ramps was found (not

shown), though this may be due to the small sample size.
For completeness, Figs. 8(b,c) show equivalent plots for
the UKMO and NCEP forecast systems. Here, the limit
of predictability for ramp forecasts is even shorter, at
around 5 days ahead and 4.5 days ahead respectively.

4 Conclusions

This paper investigates the range of forecast lead times
for which system-aggregated wind power predictions
based on global numerical weather prediction (NWP)
forecasts provide skilful information, using the Great
Britain (GB) power system as an example. It is shown



Meteorol. Z., PrePub Article, 2016 D. Cannon et al.: The bounds of skilful forecast range 13

Table 2: A summary of the values obtained for upper and lower
bounds to the useful forecast range identified in this paper for dif-
ferent global ensemble forecast systems for the specific predictand
of GB capacity factor (tU and tL respectively). The bottom row gives
the limit to predictability associated with forecasting the probability
of extreme power ramp events (tP), defined by a change in GB ca-
pacity factor by more than 50 % within a 24 hour window centred on
the lead time.

Approximate Lead Time (Days)
Bound ECMWF UKMO NCEP

Upper (tU) 8 ± 1 7 ± 1 6 ± 1
Lower (tL) 2.4 ± 0.2 1.9 ± 0.2 1.4 ± 0.2
Ramp (tP) 5.5 (4.5–8) 5 (4–7) 4.5 (3.5–6.5)

that they provide useful information within a window
bounded at long lead times by a limit to predictability,
beyond which the forecasts are no more skilful than a
climatology-based statistical prediction. At short lead
times, the total uncertainty is dominated by what we
term the unresolved uncertainty, which is that associated
with estimating the system-wide wind power response
to the large-scale atmospheric state. The lead time be-
yond which the resolved uncertainty associated with at-
mospheric chaos (as represented by the global forecasts)
is larger than the unresolved uncertainty determines the
lower bound.

The upper and lower bounds on this range of lead
times are summarised in Table 2. At long lead times, the
upper limit of predictability for wind power forecasts
at a specific point in time is found to vary seasonally.
These forecasts retain skill relative to a climatology-
based prediction out to around 7 days in summer but
up to around 9 days in winter in the ECMWF forecast
system. This upper bound was slightly lower for the
UKMO and NCEP forecast systems.

The lower threshold, below which the unresolved
uncertainty is found to be, on average, larger than the
resolved uncertainty is around 1.4–2.4 days, depend-
ing on the forecast system. As the forecast lead time
increases, improvements such as dynamical downscal-
ing and microscale modelling (which act to reduce the
unresolved uncertainty) will therefore be of diminish-
ing value. State-of-the-art operational wind power fore-
cast systems already employ more advanced downscal-
ing and microscale modelling than is assumed here, and
so the magnitude of the unresolved uncertainty reported
in this paper is likely to be higher here than in opera-
tional forecast systems. This implies that, in practice, the
resolved uncertainty could dominate at lead times below
even 1.4–2.4 days.

The extreme ramp events considered here occur only
rarely, and so the limit of predictability associated with
extreme ramps are subject to much larger uncertainty,
as measured using 95 % confidence intervals from boot-
strap sampling. In this case, there are too few events to
attribute this uncertainty to seasonal variability. These
results suggest however that the limit of predictability
associated with probability forecasts of extreme ramp

events is significantly shorter than that associated with
forecasts of wind power generation at a specific future
point in time.

These results add to the understanding of system-
aggregated wind power forecasts and the capabilities
and limitations imposed on them by the underlying
global NWP forecast systems. Wind power forecast de-
velopers and users should carefully consider the rela-
tive importance of the resolved and unresolved uncer-
tainties when planning and resourcing new forecast de-
velopments, and be aware of the varying limits of pre-
dictability associated with different forecast metrics.

Furthermore, forecasting the probability of a wind
power event is shown to be potentially more challeng-
ing than using an ensemble to forecast the system-wide
wind power generation at a future time. For the extreme
ramp example used here, the limit to predictive skill in
the forecast of probability, tP, is shorter than the tU esti-
mated for GB wind power, but nevertheless considerably
greater than the lower bound, tL, showing that there is a
wide window for which forecasts of probabilities can be
useful for risk-based decision making.
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