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Abstract

A parallel hardware random wunber generator for nse with a VLSI genetic alporithon processing devies is
proposed. The design uses an systolic array of mixed congruential random number generators. The generators
are constantly reseeded with the outputs of the proceeding generators to avoid significant blasing of the
randomness of the array which would result in longer times for the algorithm to converge to a solution.

1 Introduction

In recent years there has been a growing interest in developing hardware genetic algorithm devices [1, 2, 3]. A
genetic algorithm (GA) is a stochastic search and optimization technique which attempts te capiure the power of
natural selection by evolving a population of candidate solutions by a process of selection and veproduction [4f.
In keeping with the evolutionary analogy, the solutions are called chromosomes with each chromosome containing
a number of genes. Chromosomes are commonly simple binary strings (the bits being the genes) and it is these
kinds of chromosomes we shall be considering althongh many other encoding schemes are nsed (for examples see
[5]). Reproduction is performed by two operators, crossover and mmtation. Crossover combines random sections
of two sclected chromosomes to produce a new, hopefully better, chiromosome with mutation randomly changing
genes to diversify the search. Both crossover and mutation make heavy use of random numbers which, in the case
ol a hardware genetic algorithm, need Lo be generated hy Lthe device ilsell,

We have developed a hardware genetic algorithm using a systolic array approach {Fig 1} [6]. The design uses
a number of custom systolic arrays Lo achieve the selection and reproduction of a population of clwomosomes,
The details are beyond the scope of this letter but the approach exploits massive parallesism and data re-use as
well as having uni-directional data flow between cells.

An essential part of the design is a systolic Psendo-Random Number CGenerator {PRNG)Y. This generater
is capable of prodncing many streams of random mimbers in parallel. To avoid biasing the operators these
streams must be sufficiently random and independent from each other. With all algorithmic PRNGs the stream
of munbers generated is dependent on the nitial seed value, When attempting to construct paralle! generabors
which use the same recurrence relation there Is a chance that two genorators will be unfrtanately seoded and
g0 generate sequences in different eells which have a significant proportion of thetr munbers in commeon. In the
case a genetic algorithm this would compromise the independence of lndividusal chromosomes and result in longer
solution convergence times. Our systolic design overcomes this problem by eflectively unrolling the recurrence
into the array. Any dependencies introduced as a result of unfortunate seeding are distributed across the array



Tigure 1: Block diagram of the systolic array genetic algorithm

in a dircetion which does not affeet the randommness of the generator with respeet to itself or with respeet to the
other random number generators within the array.

2 The Mixed Congruential PRNG

The mixed congruential PRNG is a recurrence relation which takes the form @ X, 11 = A X, + i (modF)
and produces a fixed stream of psendo-random mmmhers as the equation is iterated. The guality of the random
nimbers produced depends npon the choice of valnes for A, 13 and P. A maximmm period of 28 ¢an be obtained
when A = {modd) pq = 1{mod2) aud 2 = 27 [7]. An obvious advantage of using this recurrence relation is
that it can be constructed in hardware by nsing only a few registers and adders. The moed P operator can he
implicitly applicd by using registers of size 8 (where 2 = 25). This results in an architeeture that is simpie and
makes ellicient use of silicon space.

3 Comparison between other PRNG

Two alternative methods of generating psendo-random nmmbers are Linear Feedback Shift Registers (LFSR)
and Cellular Automata (CA) based generators . LFSRs generate statistically poor random mumbers and rely
on communication between non adjacent cells [8. CA based generators however compare favourahly with the
mixed congruential PRNG in terms of quality of randomness and use less silicon space in their implementation.
To achieve long sequences of pseudo random numbers however, CA generators vequire a cyclic structure which
introdnces long commmnication Iines between end cells. This is especially » problem when the PRNT is embedded
into the larger design as in onr genetic algorithm. CA based methods also reqnuire earcinl sceding to obtain maximal
length eyeles [8]. Our use of a mixed congruential PRNG requires sceding once and this can be achieved,in the
casc of a VLSI deviee, by using the random state the register is in when it is fivst powered np.



Figure 2: Cell definitions for the generator. (a) Top Cell. (b) Body Cell. (¢) Complete systolic PRNG.

4 Implementation

The PRNG is constructed as follows. TFirst we implement a recurrence relation as a systolie array ecll, the
definition of which is given in Fig2a. This coll gencrates a constant stream of psendorandom munbers and passes
them ont to its neighbouring cell below. We implement a sccond array ccll, which is given in Fig 2b, using
different values for A and p. This cell uses the value passed to it from above as its sced value and passes the
result of one iteration Lo its neighbour below.

The systolic array PRNG is constructed using only these two types of cells as shown in Fig Z¢. Chromogomes
enter the array staggered, which is consistent with the other genetic operators in Fig §. The cells possess a
simple internal structure consisting of a few registers and adders and can easily be replicated across the design
to facilitate scaling of the whole device. Tn the finished design these cells would be fully incorporated into larger
cells which wonld be responsible for applying the genetic operators to the chromosomes.

5 Usage

To illustrate how the systolic PRNG operates we consider the mutation operator. Assuming the chromosomes
are passing through the design in a bit-serial fashion the mutation operator needs to generate N random number
per clock eyele (where N is the size of the population). We shall illustrate how independence is preserved inside
the array by nsing an example. Assnming the first reenrrence relation prodnees random mmber stream A and
the sceond relation prodnees random munboer stream B.

Stream A
5,13, 8 18,2 4, 12 19 10, 6, 17, 3, 11, 15, 20, 7, 1, 14, 186, 9.
Stream B
14, 8,20, 1,6, 12, 11, 4,9, 16, 19, 2, 15, 3, 7, 13, 5, 17, 10, 1R
The two streams are chosen so that they will sced the two reeurrence relations in such a way as to introduce

the maximum dependency between them.  Fig 3a gives the contents of the mmiation cells as time progresses.
Remember the chromosomes are staggered as they enter the array. In the example the (wo dependent streams



Figure 3: Snapshots of the generator. (a) Numerical values. (b) Mutation decisions

can be seen and have been highlighted., These repealing streams descend through the array as time progresses. As
the repeating streams are spread across the array it can be see that the independence of number appearing in the
columns {which represent the independence between chromosomes) and the independence of numbers appearing
in the rows (which represent the independence of the genes within a single chromosome] is maintained. The
random mmbers can now be nsed as a basis for deciding npon mutation. Suppose we choose mutation to occurs
if the random mmmber generated by the eell is less than 3. Mutation wonld ocenr (indieated by a o’} as the
chromosomes pass through the array as shown in Fig 3h. The mmtation probability can also be passed down the
array allowing for varving mutation rates. The rate can be altered cither on a run by run basis or dynamically
as the population begins to convergo.

6 Conclusions

By using a pipelined mixed congruential random number generator we have been able to construct a statistically
good parallel PRNG using simple computational structures which are locally conmected. The design preserves the
independence of the random sequences generated by re-seeding each element with the outpul of the proceeding
element after each nwmber has been produced. Dependencies which do occur are therefore distribuled across
all elements of the generator and therelore do not allect the randomness of any element or the independence of
the elements as a whole. We have demonstrated the use of the generator as part of a mutation operator for a
hardware genetic algorithm,
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