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Abstract7

An ability to quantify the reliability of probabilistic flood inundation8

predictions is a requirement not only for guiding model development but9

also for their successful application. Probabilistic flood inundation predic-10

tions are usually produced by choosing a method of weighting the model11

parameter space, but this choice leads to clear differences in the prediction12

and therefore requires evaluation. However, a lack of an adequate number13

of observations of flood inundation for a catchment limits the application14

of conventional methods of evaluating predictive reliability. Consequently,15

attempts have been made to assess the reliability of probabilistic predictions16

using multiple observations from a single flood event.17

Here, a LISFLOOD-FP hydraulic model of an extreme (>1 in 1000 year)18

flood event in Cockermouth, UK is constructed and calibrated using multi-19

ple performance measures from both peak flood wrack mark data and aerial20

photography captured post-peak. These measures are used in weighting the21

parameter space to produce multiple probabilistic predictions for the event.22

Two methods of assessing the reliability of these probabilistic predictions23

using limited observations are utilised; an existing method assessing the24
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binary pattern of flooding, and a method developed in this paper to as-25

sess predictions of water surface elevation. This study finds that the water26

surface elevation method has both a better diagnostic and discriminatory27

ability, but this result is likely to be sensitive to the unknown uncertainties28

in the upstream boundary condition.29

1 Introduction and Objectives30

Broadly speaking, there are two different philosophies to uncertainty estimation31

in flood inundation (hydraulic) modelling; these are Bayesian approaches that32

use formal likelihood measures, and the Generalized Likelihood Uncertainty Es-33

timation (GLUE) methodology, applied to hydrological predictions by Beven and34

Binley (1992) which uses pseudo-likelihood functions instead of formal likelihood35

functions.36

The majority of flood inundation studies have used GLUE-based approaches37

(e.g. Romanowicz et al., 1996; Romanowicz and Beven, 1998; Aronica et al., 1998,38

2002; Romanowicz and Beven, 2003; Bates et al., 2004; Werner et al., 2005; Horritt,39

2006; Pappenberger et al., 2007a,b; Schumann et al., 2008; Di Baldassarre et al.,40

2009b), although some studies have adopted Bayesian approaches, (see Romanow-41

icz et al., 1996; Hall et al., 2011). These studies have addressed one or more of the42

types of the uncertainty in the modelling; model structural choice (e.g. Apel et al.,43

2009), model friction and conveyance parameters (e.g. Aronica et al., 1998; Ro-44

manowicz and Beven, 2003; Bates et al., 2004; Werner et al., 2005; Pappenberger45

et al., 2007a), boundary conditions (e.g. Pappenberger et al., 2006, 2007a), and the46

geometry of the floodplain (Werner et al., 2005) and channel (e.g. Pappenberger47

et al., 2006, 2007a) (including the representation of natural and man-made flow48

control structures such as vegetation and buildings (Beven et al., 2012)), as well as49

the observed data used to condition the models (e.g. Pappenberger et al., 2007a;50

Di Baldassarre et al., 2009b).51

The dominance of GLUE-based approaches perhaps reflects an acceptance of52

the ‘effective’ nature of the parameter values used in most inundation models; sub53

grid scale processes as well as unrepresented boundary condition and structural54

uncertainties are lumped into the parameterisation. It is usual that conditioning of55

model parameters on observed inundation data is used to produce uncertain pre-56

dictions (e.g. Romanowicz and Beven, 2003; Pappenberger et al., 2007b,a; Mason57

et al., 2009, (among others)), with various pseudo-likelihood functions in use to58

weight the model parameters based on their agreement with these observed data.59

In Stephens et al. (2012) a LISFLOOD-FP hydraulic model of the River Dee,60

UK was calibrated and uncertain flood inundation maps were produced using61

different performance measures to weight each parameter set. It was shown that62
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the choice of performance measure for weighting the parameter space leads to63

differences in the final uncertain flood inundation map, with there being clear64

differences between a new uncertain measure (that implicitly takes into account the65

uncertainty in the observed water surface elevations), the RMSE and the Measure66

of Fit (Critical Success Index) used in studies such as that of Aronica et al. (2002).67

In this study the Measure of Fit will be referred to as the Critical Success Index68

as recommended by Stephens et al. (2014) to keep the terminology consistent with69

other disciplines.70

Given the clear differences between uncertain flood inundation maps depending71

on how they are produced, there is a clear requirement for improving the ability to72

assess and quantify their reliability. This paper therefore focusses on the evaluation73

of uncertain flood inundation maps. In particular, two different methods are used74

to evaluate their reliability; the first method is that of Horritt (2006), and the75

second method is developed to account for the reliability of water surface elevation76

predictions (rather than the probability of a grid cell being wet / dry). Using these77

two different methods the reliability of the uncertain flood inundation maps and78

water surface elevation predictions produced using different methods of weighting79

the parameter sets is evaluated.80

In this study the 2009 Cockermouth flood event on the River Derwent, UK is81

used as a case study. This allows for the method developed by Stephens et al.82

(2012), and the associated conclusions, to be tested on a different catchment,83

and is also a data-rich case study with a high spatial resolution (0.15m) aerial84

photography image that shows both the flood extent at the time of the photograph85

and enables identification of wrack marks to indicate water levels at peak flood.86

1.1 Current methods for probabilistic evaluation of prob-87

abilistic flood inundation models88

As Horritt (2006) notes, evaluation of a deterministic model prediction using data89

from a single event should be relatively straight forward (assuming any observed90

data of the flood to be perfect or the error distribution to be well constrained),91

but evaluation of uncertain model predictions is more problematic. Probabilistic92

evaluation of weather models is commonplace since ensemble forecasts have been93

used routinely since 1993 (NRC, 2006). This evaluation is largely enabled by a94

wealth of data as, for example, predictions of weather are made and realised on a95

daily basis. However, floods are rare events and consequently evaluating uncertain96

flood inundation model predictions using a (very) limited number of observations97

is problematic (Horritt, 2006).98

Despite this, it is important for the applicability of probabilistic predictions to99

be able to state their accuracy: does an 80% chance mean that the event occurs100
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80% of the time? Therefore, even if the requirements of the formal probabilistic101

evaluation methods used in fields such as meteorology cannot be met because of102

data limitations, attempts should be made to evaluate probabilistic predictions103

using the few data that are available. Accordingly, modellers of extreme events104

and climate change, who have similar data limitation issues, have proposed the105

use of spatial patterns of predictions and outcomes to build sufficient datasets for106

evaluation (Horritt, 2006; Annan and Hargreaves, 2010).107

Horritt (2006) proposed a method to validate inundation model predictions us-108

ing a single observation of flood extent (hereby referred to as the Horritt method),109

in effect, aggregating observations of the flooded state within each grid cell to110

produce a large enough sample size. A LISFLOOD-FP model (Bates and De Roo,111

2000) of a reach of the River Severn was set-up, and calibration / validation data112

were provided by two SAR images of flood events in October 1998 and Novem-113

ber 2000. The model was calibrated using one dataset, and validated using the114

other, therefore allowing for some independence between model calibration and115

evaluation.116

Horritt (2006) proposed that uncertain flood maps produced using multiple117

simulations that are weighted using different model parameter sets should be clas-118

sified into regions of similar probability. By counting the number of observed wet119

cells in each of these regions it is possible to calculate reliability and visualise it120

using a reliability diagram. A perfectly reliable prediction would be one where,121

for a region of cells of similar inundation probability, the percentage of wet cells in122

this region is equal (or similar) to that probability. For example, if 15% of cells in123

the region characterised by 10-20% inundation probability are observed as flooded124

then this prediction could be considered reliable. The reliability can therefore be125

calculated as an average of the differences between the average forecast / predicted126

probability and the observed probability, and would take a value of 0 for a perfectly127

reliable forecast.128

Although the Horritt (2006) paper maintains separation between the cali-129

bration and validation data, the Horritt method does not account for the co-130

dependence between the observations used in the analysis. For example, it is131

likely that if one cell on the floodplain has a predicted inundation probability of132

50% and it is observed as being flooded, that any adjacent cells will have similar133

probabilities and observations. While Horritt (2006) suggests that the issue of134

only having single observations has been ‘neatly sidestepped’, it could be argued135

that by using observations from the same event on the same model domain leads136

to issues of co-dependence that could potentially bias the analysis.137

To increase independence of observations it would be necessary to choose a138

subset of cells across the domain that are not related, and given a large enough139

number of cells this would be possible. However, a perhaps more sensitive and dis-140
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criminatory measure might be to evaluate the water surface elevation predictions141

themselves, looking at where the observations fall within the predicted distribu-142

tion of water depths. Unlike the Horritt method, a method that used observations143

of water surface elevations as the evaluation dataset would not require a contin-144

uous flood extent to be recorded, and therefore could be applied where there are145

discontinuous measurements such as wrack lines, or where the continuity of flood146

outlines derived from remote sensing is limited due to dense vegetation disguising147

the true flood edge in particular areas.148

As well as using more ‘independent’ observations and being applicable for a149

larger variety of data sources, it is hypothesised that a method that evaluates150

probabilistic water surface elevation predictions will be more sensitive and there-151

fore allow for better discrimination between the performance of different uncertain152

flood predictions. To judge this, different performance measures are used to weight153

water surface elevation predictions and produce predicted water elevation distri-154

butions for points across the domain. The objectives of this paper are therefore155

as follows:156

1. To evaluate, for the 2009 flood event in Cockermouth, what performance157

measure / weighting method produces the more reliable probabilistic flood158

inundation predictions159

2. To confirm the consistency of this conclusion by comparing results for cali-160

brating / evaluating at time of peak flood and for the time of aerial photog-161

raphy overpass during flood recession, again using the Cockermouth dataset.162

3. To compare the method for evaluating probabilistic predictions that is de-163

veloped in this paper with the Horritt method, determining whether they164

produce the same outcomes, and which is more sensitive and therefore bet-165

ter for discriminating between these different weighting methods166

4. To determine what can be learnt about the model from the two different167

methods for evaluating probabilistic predictions168

2 Methodology169

2.1 Study site and test data170

The study site for this paper is the River Derwent in Cumbria, in the north-west171

of England (see Figure 1). The River Derwent flows west from Bassenthwaite Lake172

towards Cockermouth, where it meets the River Cocker and then continues on its173

westerly path to join the Irish Sea at Workington (see Figure 2).174
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An extremely large flood event occurred in the catchment in November 2009175

after a prolonged period of rainfall over the mountains of the central Lake District.176

At the Seathwaite Farm raingauge in the upper reaches of the Derwent catchment a177

new UK record 24-hour rainfall record of 316.4mm was established for the 24-hour178

period up to 00:00 on the 20th November, and estimated to have a return period179

of 1862 years (Miller et al., 2013). Due to the prolonged period of rainfall (10mm180

/ hour average for 36 hours) (Miller et al., 2013), levels of major lakes within the181

region reached new recorded maxima and consequently their buffering effect on182

downstream flows was reduced (Miller et al., 2013). Using an improved Flood183

Estimation Handbook flood frequency analysis Miller et al. (2013) estimate that184

the discharge return period on the Derwent at Ouse Bridge was 1386 years, and185

769 years on the Cocker at Southwaite Bridge. The combined flow at Camerton,186

estimated by the Environment Agency (EA) as 700m3s−1 has a return period of187

2102 years, with 95% confidence limits of 507 and 17706 years (Miller et al., 2013).188

The re-evaluation of return periods following the flood has led to increases in189

the estimates of the 1 in 100 year (21% increase) and 1 in 1000 year (38% increase)190

flows used to produce deterministic flood inundation maps for the Environment191

Agency, and subsequently used for planning purposes.192

Gauged flow data (see Figure 3) are available for this flood event from Ouse193

Bridge on the Derwent (the outflow from Bassenthwaite lake), Southwaite Bridge194

on the Cocker (upstream of Cockermouth), and Camerton which is approximately195

6km downstream from the confluence of the Cocker and Derwent as the crow196

flies. The flood is modelled from 12:00 on 17th November 2009, before water197

levels begin to rise, to 23:45 on 23rd November 2011, where water levels are nearly198

back to normal levels. Flow data for the River Marron have been provided by199

Professor Sear of Southampton University, by rescaling the flows in the Cocker200

using the comparative size of the catchments. For the Ouse Bridge gauge, the EA201

has provided metadata to advise that the stage at the peak of the flood has been202

edited using estimates of the maximum flood level from a wrack survey, with the203

time of peak and the infilled data estimated using correlation techniques. Further,204

for the conversion to flow data using a rating curve the Quality flag is given as205

‘Estimated’ and ‘Extrapolated Upper Part’. For the Southwaite gauge, the stage206

data is assigned a quality of ‘Good’ throughout, with approximately 17 hours at207

the peak of the flood where the information has been edited to use the back up208

data from the gauge due to float and weight issues that caused slight differences in209

the hydrograph. Accordingly, the Quality flag of the flow data is given as ‘Good’210

throughout, and within the range of the rating curve for all but the 30 hours211

around the peak flood, where the data has been extrapolated.212

The Camerton gauge was severely damaged during the event, with ‘Good’213

readings only recorded up to 19th November 2009 at 20:30 (68.5 hours into the214
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modelled flood). After this, the only available data are through correlation with215

the Southwaite gauge. The EA metadata also suggests that the river channel216

became 18m wider at the site of the Camerton gauge, thereby rendering useless217

the rating curve that existed for the site. For this study we ignore the data from218

the Camerton gauge, but make use of the data from the other gauges. Although219

the metadata reports show that there are some quality issues with the flow record220

for this flood, these are typical for such a large event. Ideally the uncertainty in221

the gauged data should be accounted for, however, this was considered as outside222

the scope of this paper, which aims to develop methods for assessing reliability,223

addressing in particular the different methods of weighting the parameter space224

examined in Stephens et al. (2012). Significant further work is required to look225

at the data in more detail to examine how to place upper and lower limits on the226

uncertainty envelope for the rating curve for an event such as this with a flow of227

twice the size of the next largest flood event. The implications of this boundary228

condition uncertainty are considered when drawing conclusions from this study.229

LiDAR elevation data at 2m resolution are available for the reach from the230

Ouse Bridge gauge to a few kilometres downstream of the former Camerton gauge231

(see Figure 2). The Digital Elevation Model (DEM) used in this study is an232

almagamation of data from flights in 1998 and April / May 2009, with the majority233

sourced from a dataset collected in 1998. LiDAR data of this resolution from 1998234

have a vertical Root Mean Square Error (RMSE) of approximately 0.25m (personal235

communication with Al Duncan, EA). The channel bed elevations have been burnt236

into the DEM using ground survey information from a 1D hydraulic model of the237

catchment provided by the EA.238

Aerial photography of the flood is provided by the EA (see Figure 4 for an area239

of the image). According to the metadata provided the flight took place between240

13.10 and 14.50 on November 20th, so for the purpose of comparing to model241

results the time is taken as 14:00, (86 hours into the flood event as modelled).242

These data have a horizontal resolution of 15cm. An outline of a flood extent243

derived from the aerial photography was provided by the EA, and this was edited244

using the imagery as a reference to improve its precision, and then converted245

to points. This dataset of points has then been cut down by removing points246

which would likely be erroneous (such as at the boundary of, or underneath, dense247

vegetation), as well as next to walls or other vertical features where an accurate248

delineation of the elevation at the edge of the flood could not be achieved. This249

results in a total of 3724 data points. Well defined wrack marks are visible along250

much of the extent of the flood in the aerial photograph (see Figure 5). Manual251

digitisation of these marks has provided a total of 177 maximum water elevations,252

intersected with the LiDAR topographic data to provide maximum water surface253

elevations for further comparison with model results. The aerial photography data254
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will provide a stern test for the model on the falling limb of the flood. At the time255

of aerial photography overpass, flows still remained out of bank (as can be seen256

from the imagery), and so the floodplain is not considered to be draining at this257

point. However, it is worth noting that coarse resolution models have been shown258

to be poor at draining the floodplain (Bates et al., 2006; Wright et al., 2008; Neal259

et al., 2011).260

While in many studies aerial photography is used as a benchmark to assess261

the accuracy of satellite observed flood extents (Horritt et al., 2001; Mason et al.,262

2007), thereby assuming it to be accurate and precise, here this assumption is263

not made since these data will contain unknown errors. This is demonstrated264

in Figure 6, where there is obvious deviation from a smooth water surface for265

what should be an easy 200m stretch of floodplain to delineate the flood extent266

from. These deviations from a smooth water surface will be from two sources; the267

first being geolocational errors in the (manual or automatic) demarcation of the268

outline and the geocorrection of the data, and the second; errors in the LiDAR269

data used in the intersection of the flood extent and the topography. While it270

could be argued that the deviation would be smaller if the points were better271

digitised, these points have already been manually repositioned from the data as272

provided by the EA, and consequently any better recorrection of these 2000+273

data points would be a significant time burden. Also, and as can be seen in274

Figure 6, there is some confusion over whether the edge of the water surface lies275

at the edge of the sediment-laden area of water, or whether it lies at the edge of276

the surrounding darker area of vegetation which could be the current flood level,277

emergent vegetation or simply wet vegetation that has been previously flooded.278

Further, the vertical height errors that are incorporated with the intersection with279

the LiDAR data could be in the region of 0.25m RMSE, and cannot be removed.280

2.2 Model Set-Up and Calibration281

A 2D LISFLOOD-FP model was set-up using the inertial formulation of the shal-282

low water equations as decribed by Bates et al. (2010). The model incorporates283

the LiDAR topographic data outlined above rescaled to 20m resolution to enable284

multiple simulations to be run without unreasonable computational cost, and the285

gauged data as upstream boundary conditions. The gauged data for Camerton286

have not been used as a downstream stage-varying boundary condition due to the287

known poor data quality. Instead a free boundary condition has been imposed288

using test runs of the model to approximate the water surface slope at this part of289

the catchment, which was shown to vary slightly from the local valley slope. The290

model is run for 167.75 hours, from 12.00 on 17th November 2009 to 23:45 on the291

23rd November 2009, across a domain 100km2 in size (including No Data cells).292

A simulation of the model run on 4 processors of the University of Bristol’s Blue293
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Crystal supercomputer takes between 1.5 and 2 hours depending on the friction294

parameters used, and the model runs with very small mass balance error.295

The upland nature of the upper Cockermouth catchment means that channel296

friction values might be higher than lowland rivers such as the Dee due to a gravel297

bed, and consequently, floodplain friction values may possibly be lower than those298

for the channel due to the pastural land use which dominates the floodplain across299

the catchment. While it is expected that parameter values are effective, physically-300

based parameter ranges can be used to define the parameter space. According to301

Chow (1959) pasture with short grass would have a minimumManning’s n of 0.025,302

and a gravel bed would have a minimum of 0.030. Some areas of the catchment are303

heavily forested or have medium to dense brush, which might be expected to have304

a maximum Manning’s n value of 0.12 (Chow, 1959). To ensure that the entire305

range of potential friction values are sampled, but also accepting that friction as306

specified in LISFLOOD-FP also acts as an ‘effective’ parameterisation (to account307

for unrepresented model structures such as sub-grid scale topographic features,308

and also unquantified uncertainties such channel topography and input flows), the309

parameter space is defined by channel and floodplain friction values of between310

0.02 and 0.14. Calibration of the model was carried out by randomly sampling311

300 parameter sets from the parameter space.312

Four different measures are used to assess the performance of each of the three313

hundred parameter sets. The first is the water surface elevation comparison de-314

scribed by Mason et al. (2009), which is simply the Root Mean Square Error315

(RMSE) between the DEM elevation at each point on the observed flood margin,316

and the nearest water surface elevation in the model. If the cell that the observed317

point occupies is not flooded in the model, then an algorithm looks around ad-318

jacent cells (and then at cells of an increasing distance away) to this point until319

the water surface elevation is found. If multiple cells of an equal distance to the320

observed data point have a water surface elevation value then the value of the321

cell with the closest DEM elevation to the observed data point will be used. The322

second performance measure is the binary Critical Success Index (CSI):323

CSI =
A

A+B + C
(2.1)

Where A is the number of cells correctly predicted as flooded (wet in both324

observed and modelled image), B is the number of overpredicting cells (dry in325

observed but wet in modelled) and C is the number of underpredicting cells (wet326

in observed but dry in modelled).327

The third performance measure, Perc 50 is the percentage as optimum measure328

detailed in Stephens et al. (2012), developed to provide an (implicit) representation329

of the uncertainty in the observed data into the calibration process. For this330

measure, ten thousand subsets of fifty points are taken from the observed dataset,331
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and the parameter set which produces the lowest RMSE for each subset is recorded.332

The frequency for which each parameter set occurs as the optimum is calculated,333

and converted into a percentage of the total number of subsets that have been334

evaluated.335

The fourth performance measure, Perc 1 is similar to the third, except that it336

uses subsets of 1, i.e. just individual data points, and then records the optimum337

parameter set for each of the individual points. Again, the frequency for which338

each parameter set occurs as the optimum is recorded, and turned into a per-339

centage of the total number of subsets that have been evaluated. It was decided340

to additionally use this measure (compared to Stephens et al. (2012)), since by341

sampling each point it may be possible to implicitly account for the full range of342

observed data uncertainty, with no averaging over observation errors. For example,343

a single observed water surface elevation, will contain some unknown uncertainty344

due to LiDAR data errors and potentially geocorrection errors when intersecting345

the observed outline with the topographic data, but provided that enough data346

points are used, the LiDAR topographic errors and any geolocational errors will347

be accounted for by combining the results from all of these points to look at the348

effect of the uncertainty on the modelled parameter space. This assumes that the349

errors are random rather than systematic.350

The Perc measures allow for areas of the parameter space to be rejected, thereby351

acting as a behavioural threshold. One criticism of this measure could be that a352

model could be rejected by using this measure even if its performance compared353

to an optimal model could not be differentiated from the [estimated] observational354

error. There is no averaging of the observation errors in Perc 1, and so it provides355

an alternative approach to model rejection. To test whether it is this rejection cri-356

teria that influences reliability, or the measure itself, two more weighting methods357

are used based on a simple adjustment of the RMSE and CSI weightings. These358

RMSE* and CSI* inundation maps are constructed using a simple adjustment of359

the RMSE and CSI weightings by setting all weightings for the RMSE and CSI360

measures to 0 for parameter sets that are deemed non performing from the Perc 1361

measure.362

Other studies have represented the uncertainty in observational data more ex-363

plicitly; Pappenberger et al. (2007a) use a fuzzy map of flood extent and a global364

fuzzy performance measure, and Di Baldassarre et al. (2009b) produced a ‘pos-365

sibility of inundation map’ by looking at how the model calibration varies when366

different methods of determining the flood outline from two different SAR im-367

ages of a flood event are used. However, these existing studies have focussed368

on the uncertainty in the pattern of flood extent. Such contingency table based369

performance measures have been shown to be problematic for model calibration370

given their sensitivity to spatial variations in topographic gradient (Stephens et al.,371
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2014), as such, research efforts should focus on the use of water surface elevation372

observations instead. Some studies have used an explicit representation of the373

uncertainty in satellite-derived water surface elevations for predicting flood wave374

propogation using a 1D model (Di Baldassarre et al., 2009a) and discharge (Neal375

et al., 2009), but this has yet to be addressed for (2D model) predictions of the376

pattern of flood inundation.377

There is certainly a requirement for future inundation modelling studies to378

address explicit representations of uncertainty in water surface elevation observa-379

tions, and these should also be tested using assessments of reliability. This was380

considered to be outside the scope for this study, as it would require a considerable381

amount of discussion on how best to address the multiple sources of error in the382

observed data, such as the affect of wind on the deposition of wrack marks or on the383

reflectance of the water surface for SAR imagery, error due to LiDAR resampling384

or registration errors in remotely sensed imagery. Accordingly, this study focusses385

on the behaviour of the Perc measures in comparison to the Critical Success Index386

and RMSE.387

2.3 Probability of inundation maps388

The generalized likelihood uncertainty estimation (GLUE) technique of Beven and389

Binley (1992) has been extended to estimate spatially distributed uncertainty in390

models that are conditioned using the binary pattern of flooding extracted from391

satellite data (e.g. Romanowicz et al., 1996; Aronica et al., 1998, 2002; Romanow-392

icz and Beven, 2003). An ensemble of the model is run with each ensemble member393

using a different parameter set. These ensemble members are weighted in a prob-394

abilistic assessment of flooding based on their ability to match an observed binary395

flood extent. While these earlier studies conditioned uncertain predictions based396

on the model’s ability to match the binary pattern of flooding, Mason et al. (2009)397

detailed how the weighting could also be based on a model’s ability to match a398

set of observed water surface elevations, and Stephens et al. (2012), extended this399

water surface elevation comparison to use multiple subsets of these observed data.400

This percentage as optimum performance measure converts easily to a weighting401

because it sums to a percentage.402

For the RMSE and CSI measures, parameter sets are weighted based on how403

they perform on a sliding scale from the best performing parameter set (weight-404

ing=1) to the worst performing parameter set (weighting=0). For example:405

Weighting =
RMSEp −RMSEmin

RMSEmax −RMSEmin

(2.2)

Using the GLUE procedure extended by Aronica et al. (2002) it is possible to406

calculate and then map the probability (P flood
i ) that a given pixel is inundated.407
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P flood
i =

∑
j fijWj∑
j Wj

(2.3)

Where j is the number of model simulations, f is the flooded state of the pixel408

(1 = wet, 0 = dry) and Wj is the weighting given to each model simulation.409

2.4 Methods for evaluation of probabilistic predictions410

Stephens et al. (2012) showed how these different methods of calculating the P flood
i411

in each cell led to clear differences in the uncertain flood inundation maps pro-412

duced. Consequently it is important to be able to evaluate how the use of different413

weighting methods influences predictive skill. It is possible to carry out such an414

evaluation by assessing the reliability of model predictions. Detailed below are two415

different methods of evaluating the reliability of uncertain flood inundation maps416

used for this study.417

2.4.1 Assessing reliability using the Horritt method418

A reliability diagram allows for a visual assessment to be made of whether the419

model is over or underestimating probabilities, by plotting the predicted probabil-420

ity on the x-axis, and the observed probability on the y-axis. A perfectly reliable421

prediction would lie on the 1:1 line. The reliability can be quantified as an average422

of the differences between the average forecast / predicted probability and the423

observed probability (Stephenson et al., 2008):424

Reliability =
1

N

m∑
k=1

n(f̄k − ōk)
2 (2.4)

Where f̄k is the mean of the probability forecasts of event k occurring (in each425

bin), and ōk is the observation of event k. N is the total number of observations,426

n is the number of events that fall into each bin m. Such an evaluation of reliabil-427

ity requires a wealth of event data which is problematic given the (very) limited428

number of observations of flood inundation (Horritt, 2006).429

Despite this, it is important for the demonstration of the applicability of proba-430

bilistic predictions to be able to give some estimate of their reliability. Accordingly,431

modellers of extreme events and climate change, who have similar data limita-432

tion issues, have proposed the use of spatial patterns of predictions and outcomes433

to build sufficient datasets for evaluation (Horritt, 2006; Annan and Hargreaves,434

2010). As such, Horritt (2006) proposed assessing reliability using the probabilities435

of inundation assigned to each cell.436

For the Horritt method Equation 2.4 is adjusted such that f̄k is the mean of437

the probability forecasts of a cell being flooded k (in each bin), and ōk is the438
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observation of flooding k in each bin. N is the total number of observations, n is439

the number of events that fall into each bin m. Note that for the Horritt method440

model cells where the predicted probability of flooding = 0 are ignored in the441

calculation since they account for the vast majority of the domain and therefore442

would bias the result.443

2.4.2 Assessing reliability of water surface elevation predictions444

To achieve an assessment of the reliability using water surface elevation predictions445

rather than the probability of inundation in each cell the following methodology446

is proposed:447

The first step is to calculate a predicted water surface elevation probability448

distribution for each cell, based on a weighting using the performance measures449

used in Stephens et al. (2012). It is important to sample from a large parameter450

space so that the limits of the probability distribution are not predetermined by a451

subjective choice of potential parameter sets. For observations where the modelled452

water surface elevation is zero an algorithm is used to search, with a increasing453

distance away from the observation cell, for the nearest water surface elevation.454

Where two cells of equal distance away from the observation contain water, the455

water elevation value from the cell with the closest topographic elevation to the456

observation cell is used.457

The next step is, for each observation, to record where it lies within the pre-458

dicted probability distribution. These records of observation location can be rep-459

resented in a cumulative frequency plot, where the number of observations that460

fall within each bin of predictions is plotted. If the predictions are perfectly re-461

liable the gradient of the line should be 1 since 10% of observations would fall462

within the first 10% of the probability distribution, 20% within the first 20%, and463

so on. Where the gradient is steeper than the 1:1 line then, in general, there has464

been an overestimation of the uncertainty in the model. Where the gradient is465

less steep than the 1:1 line there has been an underestimation of uncertainty, with466

observations having been made that lie outside of the predicted range.467

An indication of bias within predictions, or where the full range of uncertainty468

has not been adequately captured, can be seen by identifying where the line inter-469

cepts with the vertical lines of x=0 (the y axis) and x=100. The intercept with470

the y axis is the percentage of observations that fall outside the lower bounds of471

the predicted probability distribution of water surface elevations. The intercept472

with the line x=100 can be substracted from 100 to give the percentage of obser-473

vations that fall outside the upper bounds of the predicted probability distribution474

of water surface elevation predictions. The reliability of model predictions using475

this method can also be quantified using a calculation similar to Equation 2.4, by476

finding the difference between the expected and observed cumulative frequency of477
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observations 2.5. For the wse reliability the cumulative reliability is calculated478

rather than an isolated comparison of the expected and actual number of observa-479

tions in each bin to ensure that no model is penalised for bringing the probabilistic480

predictions back towards the expected 1:1 line. For example, if no observations fell481

within the first bin (0%-10% decile), then if 20% of observations fell in the (10%-482

20% decile), then the first bin should be penalised for a 10% difference, but the483

second bin should not be because it brings the overall percentage of observations484

in the first two bins back to the expected value. As such, for the WSE method Em485

is the expected number of observations to have fallen up to and including bin m,486

and the Om is the actual number of observations to have fallen up to and including487

bin m. If the bins were set as every 10%, then the total number of bins would be488

10 and so the expected value for each individual bin inside the distribution would489

be 10%.490

Reliability =
1

N

m∑
n(Em −Om)

2 (2.5)

3 Results491

3.1 Modelled parameter space using different performance492

measures / data sources493

Figure 8 shows the parameter space of the LISFLOOD-FP 2D model for different494

performance measures using the aerial photography data. The Perc measures495

provide well defined (perhaps spuriously precise) optimum friction values, whereas496

the drop-off in performance across the parameter space is less defined for RMSE497

and CSI. The RMSE measure (Plot a) and CSI (Plot b), show that these parameter498

spaces are unexpected or at least unusual compared to those for other catchments499

(such as the Dee), in that the model shows no real sensitivity to channel friction,500

only floodplain friction. This sensitivity is also seen in the calibration using the501

peak flood wrack mark data (Figure 9). This might be explained by putting this502

particular flood event into context - the flows during this extreme event are so503

large that the channel friction has little effect on the amount of water that flows504

out of bank, and also in some areas the floodplain becomes the channel as flood505

waters bypass river meanders. In effect, the entire valley floor is acting as a single506

channel unit in conveying the large flows; the channel is only a small proportion507

of the total flow area, and so floodplain friction is by far the dominant control on508

flood extent.509

Optimum friction parameter sets for each measure and each dataset are shown510

in Table 1. For such an extreme event upstream boundary conditions are unlikely511

to be error-free, and as described previously, the friction parameters used in the512
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modelling should also be considered as ‘effective’ given that they also compensate513

for subgrid scale processes. Accordingly, some deviation from physically realistic514

values for friction are to be expected, but a modeller that finds a ‘physically515

realistic’ parameterisation may have overconfidence in thinking that the model is516

robust with respect to other uncertainties. Here, the RMSE measure gives the most517

physically realistic floodplain friction optimum of around 0.03 for short pasture,518

the CSI measure finds higher than expected values, and the Perc measure does not519

find a well-defined optimum within the areas of the parameter space that might520

be considered to be physically realistic. However, it is important to assess whether521

these ‘physically realistic’ parameterisations produce reliable predictions.522

It might be possible to conclude that there is no significant difference between523

the RMSE and CSI measures, given that the RMSE difference is less than the524

LiDAR data vertical error of 0.25m. However, care should be taken when drawing525

conclusions from averages of data. A histogram of the distribution of the two sets526

of model errors paints a more complete picture, giving an indication of the shift527

in the distribution of errors rather than just the difference between the means528

of each distribution. Figure 6 shows the error structure of two model parameter529

sets with RMSEs of 0.5624 (blue) and 0.4015 (red). It demonstrates that while530

the difference in RMSE is only 0.16m, a shift of approximately 0.4m would be531

required for the distributions to match, and this, backed up by the medians of532

each distribution (-0.0335 and 0.450083), is actually greater than the observed data533

error. Nevertheless, the observed data RMSE of 0.25m itself masks a distribution534

of errors, and therefore firm conclusions can not be drawn.535

If a significant difference between the RMSE and CSI measures is assumed,536

it could be concluded that the CSI measure gives a much larger optimum value537

for floodplain friction than the other performance measures, while the broader538

pattern of non-sensitivity to channel friction remains the same. This comparison539

between parameter spaces can only be undertaken for the time of aerial photog-540

raphy overpass, since the CSI measure cannot be calculated for the discontinuous541

wrack marks dataset.542

This optimum for higher floodplain friction parameters is investigated using543

a visual comparison between the observed dataset and the model output for two544

simulations with a fixed channel and different floodplain frictions (respectively of545

[0.027,0.026] and [0.027,0.057]). There are several areas across the domain where546

the higher floodplain friction simulation better matches a particular area of the547

observed extent than the low floodplain friction simulation (such as in the top548

right area of the catchment shown in Figure 10), but in doing so the higher flood-549

plain friction simulation fails to match the areal pattern in nearby areas. These550

areas of unexpected inundation are not relics of observed data error, since there is551

strong agreement for multiple data points and they are clearly visible in the aerial552
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photography. This suggests that higher floodplain friction simulation is perhaps553

correctly matching the observed inundation in specific areas for the wrong reasons.554

There are several possible explanations for the inability of the lower floodplain fric-555

tion simulation to capture these flooded areas; the model may have a resolution556

too coarse to accurately capture bank heights, or processes not represented in the557

lower friction model such as bank failure might be important. Consequently, it is558

thought that the higher floodplain friction simulation is matching the pattern of559

flooding better, but for the wrong reasons.560

Stephens et al. (2012) and Stephens et al. (2014) described the CSI measure’s561

sensitivity to topographic slope, caused by it being more sensitive to correctly562

matching areas of the domain with low slope, where water elevation changes lead563

to greater changes in the areal pattern, rather than where gradients are steeper.564

Similarly, in this study calibration carried out using the CSI performance measure565

is more sensitive to (relatively) small parts of the model domain where there are566

large areal changes caused by tipping points (such as a bank being breached),567

than capturing the general pattern across the whole model domain. While for568

some applications it may be (more) important that the model correctly predicts569

these specific areas than the general pattern, caution should be exercised since the570

model could be capturing them for the wrong reasons or there could be observed571

data errors, therefore leading to a poorly calibrated model. While it is believed that572

for this case study the CSI might be showing the model matching the flood extent573

better but for the wrong reasons, it will be important to test this by evaluating574

the uncertain predictions produced when parameter sets are weighted using this575

and other performance measures.576

In general there is more agreement in the form of the parameter space where the577

same performance measure is used for the two different datasets than between the578

measures themselves. This suggests that there is some consistency in parameter579

performance for two different times during the flood, but given that the interval580

between these datasets is relatively short, this consistency is less likely to occur for581

when flows are considerably different either during the same event or for different582

events.583

The Perc 1 and Perc 50 plots distinguish areas of the parameter space that are584

non-performing, where parameter sets never appear as the optimum using multi-585

ple realisations of the observed data. Perc 50 shows (as would be expected) larger586

non-performing areas than Perc 1, since subsets of 50 act to average the range of587

uncertainty that can be represented using each individual point. The Perc mea-588

sures hint that the optimum parameter sets sit to the margins of the parameter589

space, which suggests that the model (or at least its floodplain) contains too much590

water. This could be due to errors in the specification of the upstream flows, which591

is quite likely because of the potential errors in the gauged data detailed earlier in592
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this paper, or alternatively due to geomorphological changes during the flood event593

that increased the capacity of the river channel. Such geomorphological changes594

can be identified in a post-flood LiDAR dataset of the event, and consequently595

will have some effect, although it is not possible without further modelling to be596

confident of whether this or incorrect upstream flows are the cause of the apparent597

bias in the model. Ignoring the CSI measure due to its known problems, it is inter-598

esting that the RMSE shows a well defined optimum within the parameter space,599

and this demonstrates the need for evaluating whether the Perc measures or the600

RMSE provides more reliable predictions. As mentioned earlier in this study in601

Section 2.4.2; it is important to ensure that the parameter space is large enough so602

that the limits of the predicted probability distribution are not predetermined by603

a subjective choice of potential parameter sets. The identification of optimum pa-604

rameter sets at the margins of the parameter space for the Perc measures suggests605

that this may be an issue; however the lower bounds for the roughness parameters606

are limited by model stability rather than subjectivity, which is not untypical for607

hydraulic models and is not thought to affect the conclusions drawn in this study.608

3.2 Uncertain Inundation Maps609

The Probability of Inundation maps shown in Figure 11 demonstrate the effect that610

the choice of weighting method has on the mapping of flood hazard. Weighting611

measures that act to discard areas of the parameter space as non-performing mean612

that the flood margin becomes more certain / less blurred. This could lead to613

spurious precision, or could be an effective way of determining which parameter614

sets should be discarded or given low weighting: this can only be assessed by615

looking at the reliability of the predictions.616

3.3 Reliability617

A reliability plot using the Horritt method is shown in Figure 12, and the associated618

quantifications of this reliability can be found in Table 2. Note that the Horritt619

method requires a binary flood map of wet / dry areas, so can only be carried620

out using the aerial photography evaluation data since the wrack marks do not621

provide a continous boundary. Additionally, the reliability calculations for the622

Horritt method are strongly influenced by the number of cells predicted as having623

a 100% probability of flooding. Figure 12, Panel 2 does not use independent624

calibration and validation data, so the analysis here is focussed on Panel 1.625

Figure 12, Panel 1 (calibration using wrack marks deposited at the time of626

peak flood) clearly demonstrates that the RMSE weighting overpredicts inundation627

probabilities, and that the Perc 50 method is an improvement on the RMSE,628

showing no bias but still some noise. As would be expected, the RMSE* method629
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[0.0087] performs considerably better than RMSE [0.0161] since it uses the Perc 1630

method to discard non performing areas of the parameter space (parameter sets631

that never appeared as an optimum using multiple realisations of the observed632

data). Closest to the 1:1 line is the Perc 1 method [0.0070], which shows little633

bias or noise. There is only one non-performing point for the Perc 1 method that634

deviates far from the 1:1 line, and this could be due to the small number of data635

points in that category. Although drawing conclusions from Plot 2 should be done636

with caution because it uses the same dataset for calibration and validation data,637

it can clearly be seen that the CSI performance measure produces even less reliable638

predictions than RMSE.639

The reliability plots using the new water surface elevation method are shown in640

Figure 13. In this Figure panels 1a) and 2b) use the same dataset for calibration641

and evaluation and so are not discussed. The WSE reliability plot for the time of642

flood peak (1b) reiterates the results of the Horritt method, showing that the CSI643

weighting produces the least reliable predictions, with RMSE also quite unreliable.644

These show that, on the whole, modelling using these weighting methods produces645

an overestimation of flood depths. The plotted line is always above the 1:1 line,646

showing that, in the case of CSI, 80% of observations fall within the first 20% of647

the predicted distribution of water depths. Discarding areas of the RMSE and CSI648

parameter spaces using Perc 1 enables a small improvement in reliability (RMSE*649

and CSI*), but the overestimation of flood depths remains. The Perc 50 method650

appears to have less bias than the RMSE or CSI, but should be penalised for the651

number of observations (approximately 20%) that fall outside the upper limit of652

the predicted range. The Perc 1 appears to be the best weighting method since653

it lies close to the 1:1 line and no observations fall outside the upper limits of654

the predicted WSE distribution. This conclusion is solidified by the calculated655

reliability shown in Table 2, where Perc 1 has clearly the best WSE reliability656

of 0.0133, and the RMSE* (0.1072) and CSI* (0.2120) measures do not perform657

better than even Perc 50 (0.0254). Markedly, the CSI measure (0.3028) has a658

poorer WSE reliability than an equal weighting (0.2361) would provide.659

The WSE reliability plot for the time of aerial photography (2a) in general660

shows that the model is less reliable after the flood peak (1b) than before it, and661

this is backed up by an approximate halving of the (best) reliability score for662

Perc 1. It could also be argued that for the peak flood (1b) the model shows a663

tendency towards underpredicting flood depths (certainly for Perc 1), whereas for664

the aerial photography (2a) there is definite overprediction. Previous studies such665

as Wright et al. (2008) have shown model accuracy to diminish after peak flood,666

and this result is repeated for the 2009 Cockermouth event. The reliability plots667

used in this study suggest that the (effective) parameters used in LISFLOOD-FP668

modelling become less ‘effective’ post flood peak, in that they can no longer account669
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for as much of the uncertainty in the modelling post flood peak. Consequently it670

will be important to account for these uncertainties explicitly.671

It is possible to compare the Horritt and WSE reliability methods by looking672

at the evaluation for the time of aerial photography overpass calibrated using the673

wrack marks dataset (Plot 1 of Figure 12 and Plot 2a of Figure 13). While it ap-674

pears at first that the two plots are ‘switched’ in that the points in the former lie675

mostly to the bottom right side of the diagonal, and in the latter the points lie to676

the top left, actually the plots show the same pattern. The WSE reliability plots677

give an indication as to what percentage of the observations have fallen within678

the corresponding cumulative percentile of the predicted distribution. As such,679

while (for example) the RMSE calibration is shown for the Horritt reliability to be680

overpredicting the probability of inundation, the WSE reliability plot shows that681

more observations than expected have occurred for a particular predicted cumu-682

lative percentile; e.g. the model has overestimated the likelihood of higher water683

surface elevations. The WSE reliability plot also provides additional information684

to the Horritt reliability plots; demonstrating the percentage of observations that685

fall outside the predicted distribution of water surface elevations.686

It is clear that Perc 1 is the most reliable weighting method, but there is687

disagreement between the Horritt and WSE reliability methods over the worst688

performing weighting method. The WSE method suggests that it is Perc 50, but689

the Horritt method identifies RMSE. This is because the Horritt method does not690

penalise observations falling outside the range of predictions: the Perc 50 method691

for the time of aerial overpass shows only 60% to 70% of observations to fall within692

the predicted WSE distribution, and the line has a more shallow gradient than 1:1.693

The WSE method therefore makes clear that this Perc 50 method underestimates694

the full range of uncertainty, probably because it has discarded too many parameter695

sets as non-performing. RMSE is again quite an unreliable measure (note that696

there is no CSI measure for this because of the calibration using the discontinuous697

wrack marks), but RMSE* shows considerable improvement due to the link with698

the Perc 1 measure.699

4 Discussion700

One of the aims of this paper was to evaluate the most reliable performance mea-701

sure for weighting parameter sets to produce uncertain flood inundation maps. As702

well as the conventional performance measures of RMSE and CSI, the Perc mea-703

sure, developed in Stephens et al. (2012), was also used to address how observed704

data errors are accounted for in the calibration process. Unlike the Perc 50 mea-705

sure, which uses multiple subsets of 50 data points, the Perc 1 measure records,706

using individual observed data points, the number of times that each parameter set707
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appears as the optimum. This measure of agreement provides a parameter space708

that appears to give the best overall picture of the likelihood of each parameter709

set being the optimum.710

Both methods of assessing model reliability show that the Perc 1 measure pro-711

duces the most reliable predictions, and this result is consistent for the validation712

data at the time of peak flood and at the time of the aerial photography over-713

pass. This is a surprising result as, up until now, observations are usually grouped714

together into a ‘global’ dataset for model calibration. While Pappenberger et al.715

(2007b) highlight the importance of a vulnerability-weighted model calibration to716

produce an improved local model performance, e.g. with respect to locations of717

critical infrastructure, we show that considering observations individually can ac-718

tually improve the global performance. But RMSE, as a measure which uses an719

average of all the (uncertain) observed data, will be influenced by outliers. As720

there is no reason to discard such an outlying point (unlike points that are in721

densely vegetated areas), there is still a (perhaps very small) chance that it is722

correct, and that all other points are affected by some systematic error. Therefore723

with these outliers influencing model calibration, it is important that they are used724

proportionately.725

In the Perc 1 measure an optimum parameter set that is only agreed upon by726

one data point will only be given a small weighting proportionate to the level of727

agreement, whereas for RMSE this data point will influence the characteristics728

of the entire parameter space. Perc 1 therefore reduces the influence of what729

are likely to be erroneous data points, but gives them some weighting based on730

their agreement with the rest of the observed dataset, such that if 10 out of 1000731

observations point at a particular optimum parameter set, this parameter set will732

be given a weighting of 1%.733

It could be argued that the Perc 1 measure should incorporate some kind of734

limits of acceptability approach so that a model is not rejected on this measure735

when its difference from an optimal model is less than the observational error.736

However, it is extremely rare to be able to adequately quantify the error in ob-737

servations of flood extent, due not only to the availability of suitable validation738

datasets, but also because of the complexity of predicting the effect of wind on739

the deposition of wrack marks, or on the reflectance of the water surface for SAR740

imagery.741

The Perc 1 methodology implicitly accounts for the potential uncertainty, ar-742

guably providing a different approach to acceptability rather than applying a sub-743

jective behavioural threshold based on a simple estimation of observed data un-744

certainty for the limit of acceptability. If there were observed data of multiple745

flood events on a catchment, and none showed a particular parameter set as an746

optimum, then this parameter set would surely be rejected. The Perc 1 measure747
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applies this logic (albeit with assumptions) to multiple observations from the same748

flood event; in this approach each observation is treated as a separate observation,749

such that if a parameter set is never the ‘optimum’ the agreement or lack of in the750

Perc 1 measure is used to define acceptability. Ideally, this of course requires that751

all sources of uncertainty are accounted for, as potentially areas of the parame-752

ter space might be discarded that would otherwise be acceptable, if, for example,753

boundary condition uncertainty were taken into account.754

Assessing reliability is a good way of testing the methodologies for defining ac-755

ceptability and weighting the parameter space. In this study the focus was on the756

treatment of observed data for model calibration, and so the boundary condition757

uncertainty has not been taken into account. To provide a preliminary assessment758

of the sensitivity of the results described in this paper to upstream boundary con-759

dition uncertainty, a change in the hydrograph was simulated by taking / adding760

different amounts from the water surface elevations produced by the ensemble761

modelling Figure 14. These changes are commensurate with the changes seen762

when changing the hydrograph by a fixed percentage for a single parameter set,763

as indicated on the figure. The Brier reliability was recalculated for each applied764

change to give an indication of its sensitivity to boundary condition uncertainty.765

Figure 14 therefore demonstrates that if, in reality, the flows were consistently 10%766

lower then the choice of optimum weighting method would be different. Given that767

the uncertainty in the upstream boundary condition during this flood is unknown,768

this sensitivity urges caution when considering the robustness of these results.769

Future work should explicitly incorporate boundary condition uncertainty into770

the analysis, as well as produce and test a methodology that incorporates a more771

detailed and explicit representation of observed data uncertainty, incorporating, for772

example, the resampling errors of the LiDAR data. Further studies are needed to773

confirm whether the conclusions are robust on different flood events with different774

magnitudes. Namely, does the Perc 1 measure produce the most reliable predic-775

tions for flood events of smaller magnitude, and can weighting using these smaller776

events still provide reliable inundation possibilities for extreme events such as the777

1 in 1000 year return period flood? Further, would a more explicit representation778

of uncertainty in the observed data produce more reliable predictions?779

The other main aim of this study was to develop a new method for evaluating780

uncertain flood inundation predictions, and then compare the results from this781

with those from the Horritt method. One of the advantages of the WSE method782

is that it can be used for discontinuous datasets (such as the wrack marks in this783

study), and it therefore has wider applicability. On top of this, and despite both784

reliability methods coming to the same overall conclusion, there are differences in785

the level of information provided by each that indicates that the WSE method786

is more discriminatory, since it produces a wider range of reliability scores, and787
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also has wider diagnostic capabilities since it provides more information than the788

Horritt method. For example, the Horritt method does not show any bias when the789

Perc 50 measure is used, but the plots of cumulative reliability for the WSE method790

clearly show that this measure underestimates the range of uncertainty in the791

model. This underestimation is caused by discarding areas of the parameter space792

as ‘non-performing’ when they should still be taken into account when producing793

the uncertain estimates of flood hazard. Further, the WSE method can show794

whether and how many of the water surface elevation observations lie within the795

predicted range. If they do not, then this hints at epistemic uncertainty that needs796

to be addressed.797

The Horritt method is poor at telling the modeller of model underprediction,798

and this is especially the case for cells that had a predicted probability of flooding799

of 0. Depending on how the domain is set up, large proportions of the cells in800

it would have predicted inundation probabilities of 0, including cells that lie well801

outside or above the floodplain. If some of these cells did in reality flood then802

the flooded percentage would be biased by the sheer number of cells that have803

a predicted probability of 0, therefore the Horritt method does not quantify how804

wrong these predictions are.805

Similar problems can be seen for overprediction of flooding. Cells that have806

a probability of inundation of 1 (or perhaps even 0.9 or greater), and that are807

observed as flooded, may have considerably greater water surface elevations than808

were predicted, but this would not be recognised or penalised. The WSE method809

is be able to diagnose whether observations of water surface elevation fall outside810

the upper limit of the predicted distribution of water surface elevations. Further,811

it makes it possible to understand where the majority of observations lie within812

the predicted distribution.813

Model evaluation using the WSE method has proved a useful diagnostic tool814

that provides more information about model performance than the Horritt method,815

giving an indication of the percentage of observations that fall outside the upper816

and lower limits of the probability distribution of water surface elevations. In the817

case of the Cockermouth flood it can be seen (using the Perc 1 measure which818

has been identified as producing the most reliable predictions), that at the time819

of the peak flood the model has around 12% of observations that fall below the820

lower limits of the range of water surface elevation predictions, which increases to821

around 22% at the time of the aerial photography overpass. Despite there being822

no other study for comparison, that 88% of peak flood observations fall within the823

predicted range could be considered good for a model that only takes into account824

parameter and observed data uncertainty, and especially for such an extreme flood825

event where the errors in the inflow and wrack mark data are likely to be high.826

The drop in model performance only a few hours after peak flood suggests that827
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new sources of uncertainty need to be taken into account to produce a similar828

reliability to predictions made of the peak flood, and as mentioned previously the829

uncertainty in geomorphological change during the flood, or in the gauged flow830

data should be investigated.831

Despite the apparent improvement in assessing reliability that the WSE method832

has over the Horritt method, this method is by no means a perfect test of prob-833

abilistic model performance. Such spatially-averaged approaches are problematic834

in that reliability is likely to be highly variable in space (Atger, 2003), and so an835

averaged estimate of reliability might hide local variations in model bias (Toth836

et al., 2003). For example, the spatially-averaged reliability is likely to hide lo-837

calised performance, for example, a perfect reliability might be recorded, but half838

of the domain might be overestimating probabilities and the other half underesti-839

mating them (Ferro, 2012). However, given the limited number of observations of840

flood inundation on a single catchment, the best that can be achieved is a careful841

analysis that requires a balance between achieving a sample size that is sufficient842

for a robust statistic, and being able to dissect localised variations in performance843

(Toth et al., 2003).844

5 Conclusions845

This study aimed to determine which performance measure should be used to846

weight model parameter sets to produce reliable assessments of uncertain flood847

hazard. It was shown that the most reliable method is one that assesses the848

range in model performance across the parameter space by running multiple model849

calibrations using each of the observed data points individually. This result is in850

contradiction to current approaches used to map flood inundation, which generally851

group observed data points. However, an indicative assessment suggests that this852

conclusion may be sensitive to boundary condition uncertainty. Consequently it853

will be important to understand whether this conclusion is robust for flood events854

of different magnitude and in differenct locations.855

This study has strong implications for the methodologies used for uncertain856

inundation mapping by practitioners; an uncertain treatment of observed data in857

the calibration process has been shown for the Cockermouth flood event to provide858

more reliable flood probabilities, and within or post-event surveyed water levels859

(where in abundance) are the best observed data to do this with because they will860

contain less uncertainty than water levels processed from remotely sensed extent861

data. In turn, these derived water levels have wider potential for use than binary862

maps of flood extent for model calibration and evaluation. It could be argued863

that these results reflect the better quality assurance carried out when processing864

extents to water levels, and to some extent this is true, but it is perhaps more865
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reflective of the ability of water elevation comparisons to make better or broader866

use of the available data.867

In assessing these weighting methods a new method of evaluating the reliability868

of uncertain flood inundation predictions has been developed by recording where869

observations lie within predicted probabilistic water surface elevation distributions.870

This method not only has the advantage over existing methods of being applicable871

for observations that are discontinuous, such as wrack marks or remote sensing872

images in vegetated areas, but it is also a more discriminatory technique with873

better diagnostic capabilities. It gives an indication of whether uncertainty is being874

under or over estimated, whether there is bias in the model, and also calculates the875

percentage of water surface elevation observations that fall within the predicted876

range.877

Consequently, this WSE method has provided useful information about the878

LISFLOOD-FP model of the Cockermouth flood event. It demonstrates that, at879

peak flood, 88% of water surface elevation observations fall within the predicted880

model range, suggesting that the model does not take into account the full range881

of uncertainty seen in the observations (assuming the observations to be error-882

free), and as the 12% of observations outside the predicted range lie outside the883

lower limits of the distribution, the model is clearly biased towards over-predicting884

flood depths, and the source of this bias should perhaps be further examined. As885

some of the water surface elevation observations will be erroneous (for example the886

wrack marks could have been laid down after the peak flood), perhaps this figure887

is within the limits of acceptability for these data, and therefore it could be said888

that the model is performing well, but it would be interesting to observe how this889

figure might change if a higher resolution model were used, or model results were890

resampled onto higher resolution topography.891

This study also shows model performance decreasing over the course of the892

flood, suggesting that the uncertainties that are not accounted for have greater893

influence after the flood peak. Further research could aim to improve model reli-894

ability by taking into account the uncertainties introduced into the modelling by895

gauged flow errors and geomorphological change, and evaluate whether different896

model complexities can better represent these uncertainties. It could also address897

how the resolution of the topographic data used in the model influences reliabil-898

ity, and whether improving the resolution of topographic data limits the number899

of observations that fall outside the predicted range of water surface elevations.900

Further investigation could also examine the potential for using the Perc measure901

as a discriminatory tool to identify subtle differences between the performance of902

different model structures and the benefits of including explicit representations of903

different sources of uncertainty.904
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Table 1: Optimum parameter sets of channel (ch) and floodplain (fp) friction
identified using different performance measures for both aerial photography and
wrack marks

Aerial Photography Wrack Marks
Measure ch fp Value ch fp Value

CSI 0.026 0.057 83.67% (0.61m) - - -
RMSE 0.038 0.029 0.40m 0.034 0.036 0.28m
Perc 50 0.054 0.022 12.42% (0.41m) 0.034 0.036 29.1% (0.28m)
Perc 1 0.047 0.02 20.76% (0.47m) 0.047 0.02 12.99% (0.48m)

Table 2: Brier Reliability for Different Uncertain Calibrations of the Cockermouth
Model. Numbers in italics indicate where calibration / validation data are the
same.

Aerial Photography Wrack Marks
Weighting Method Horritt WSE Horritt WSE

Wrack RMSE 0.0157 0.038 - 0.1304
Wrack RMSE* 0.0079 0.053 - 0.0279
Wrack RMSE** 0.0133 0.128 - 0.0255
Wrack Perc 50 0.0157 0.1106 - 0.0581
Wrack Perc 1 0.0098 0.0221 - 0.0130
AP RMSE 0.0157 0.0991 - 0.1304
AP RMSE* 0.0126 0.0460 - 0.1072
AP RMSE** 0.0115 0.2467 - 0.0235
AP Perc 50 0.0170 0.0435 - 0.0254
AP Perc 1 0.0087 0.0201 - 0.0133
AP CSI 0.0265 0.2467 - 0.3028
AP CSI* 0.0213 0.1998 - 0.2120
Equal 0.0268 0.2262 - 0.2361
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Figure 1: Location map showing the River Derwent catchment in the north-west
of England. Source: Ordnance Survey
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Figure 2: Topographic map of the River Derwent using LiDAR data at 2m reso-
lution, showing location of gauges (red points). Source: Environment Agency
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Figure 3: Gauged upstream flows for the River Derwent at Ouse Bridge, the River
Cocker at Southwaite Bridge and the River Marron, with gauged downstream flows
for the River Derwent at Camerton. Source: Environment Agency
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Figure 4: Extent of the aerial photography flown during the flood event. Source:
Environment Agency

Figure 5: Example of wrack marks visible in the aerial photography adjacent to
the then-current flood extent. Source: Environment Agency
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Figure 6: Demarked points along the margin of the flood along a field, with asso-
ciated elevations derived by intersecting with LiDAR topographic data.
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Figure 7: Frequency of error between individual observed and modelled data
points, for two parameter sets with RMSEs of 0.5624 (blue) and 0.4015 (red).
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Figure 8: Parameter spaces for calibration of channel (x-axis) and floodplain (y-
axis) friction parameters using Aerial Photography with the performance measures
of: a) RMSE; b) CSI; c) Percentage as optimum parameter set for subsets of 50
points; and d) c) Percentage as optimum parameter set for all individual points
(subsets of 1).
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Figure 10: Difference in modelled extent compared to aerial photography for a high
and low floodplain friction parameter sets on a subsection of the domain covering
the Cockermouth area.
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Figure 11: Cut-out from Probability of Inundation maps for the time of a Terrasar-
X overpass (see 3). Showing the subtle differences in the mapped probabilities with
the different weighting methods used for their construction.38
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Figure 13: WSE Reliability for 1) Flood Peak using a) Wrack Marks, b) Aerial
Photography, and 2) Time of Aerial Photography using a) Wrack Marks and b)
Aerial Photography. Greyed out plots indicate where the calibration / validation
data are the same
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