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Abstract
It is a well known result that for β ∈ (1, 1+

√
5

2 ) and x ∈ (0, 1
β−1 ) there exists uncountably

many (εi)
∞
i=1 ∈ {0, 1}N such that x =

∑∞
i=1 εiβ

−i. When β ∈ ( 1+
√
5

2 , 2] there exists
x ∈ (0, 1

β−1 ) for which there exists a unique (εi)
∞
i=1 ∈ {0, 1}N such that x =

∑∞
i=1 εiβ

−i.
In this paper we consider the more general case when our sequences are elements of
{0, . . . ,m}N. We show that an analogue of the golden ratio exists and give an explicit
formula for it.

1. Introduction

Let m ∈ N, β ∈ (1,m + 1] and Iβ,m = [0, m
β−1 ]. Each x ∈ Iβ,m has an expansion of the

form

x =

∞∑
i=1

εi
βi
,

for some (εi)
∞
i=1 ∈ {0, . . . ,m}N. We call such a sequence a β-expansion for x. For x ∈

Iβ,m we denote the set of β-expansions for x by Σβ,m(x), i.e.,

Σβ,m(x) =
{

(εi)
∞
i=1 ∈ {0, . . . ,m}N :

∞∑
i=1

εi
βi

= x
}
.

In [6] the authors consider the case when m = 1, they show that for β ∈ (1, 1+
√
5

2 ) the set
Σβ,1(x) is uncountable for every x ∈ (0, 1

β−1 ). The endpoints of [0, 1
β−1 ] trivially have a

unique β-expansion. In [5] it is shown that for β ∈ ( 1+
√
5

2 , 2] there exists x ∈ (0, 1
β−1 )

with a unique β-expansion.
For m ∈ N we define G(m) ∈ R to be a generalized golden ratio for m if for β ∈

(1,G(m)) the set Σβ,m(x) is uncountable for every x ∈ (0, m
β−1 ), and for every β ∈

(G(m),m+ 1] there exists x ∈ (0, m
β−1 ) for which |Σβ,m(x)| = 1.
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In [11] the authors consider a similar setup. They consider the case where β-expansions
are elements of {a1, a2, a3}N, for some a1, a2, a3 ∈ R. They show that for each ternary al-
phabet there exists a constant G ∈ R such that, there exists nontrivial unique β-expansions
if and only if β > G. Moreover they give an explicit formula for G.

Our main result is the following.

Theorem 1.1. For each m ∈ N a generalized golden ratio exists and is equal to:

G(m) =

{
k + 1 if m = 2k

k+1+
√
k2+6k+5
2 if m = 2k + 1.

(1)

Remark 1.2. G(m) is a Pisot number for all m ∈ N. Recall a Pisot number is a real
algebraic integer greater than 1 whose Galois conjugates are of modulus strictly less than
1.

In section 6 we include a table of values for G(m). We prove Theorem 1.1 in section 3.
In section 4 we consider the set of points with unique β-expansion for β ∈ (G(m),m+ 1],

and in section 5 we study the growth rate and dimension theory of the set of β-expansions
for β ∈ (1,G(m)).

2. Preliminaries

Before proving Theorem 1.1 we require the following preliminary results and theory. Let
m ∈ N be fixed and β ∈ (1,m + 1]. For each i ∈ {0, . . . ,m} we fix Tβ,i(x) = βx − i.
The proof of the following lemma is trivial and therefore omitted.

Lemma 2.1. The map Tβ,i satisfies the following:

• Tβ,i has a unique fixed point equal to i
β−1 .

• Tβ,i(x) > x for all x > i
β−1 ,

• Tβ,i(x) < x for all x < i
β−1 ,

• |Tβ,i(x)− Tβ,i( i
β−1 )| = β|x− i

β−1 |, for all x ∈ R, that is Tβ,i scales the distance
between the fixed point i

β−1 and an arbitrary point by a factor β.

Understanding where in Iβ,m these fixed points are will be important in our later analy-
sis.

We let

Ωβ,m(x) =
{

(ai)
∞
i=1 ∈ {Tβ,0, . . . , Tβ,m}N : (an ◦ an−1 ◦ . . . ◦ a1)(x) ∈ Iβ,m

for all n ∈ N
}
.
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Similarly we define

Ωβ,m,n(x) =
{

(ai)
n
i=1 ∈ {Tβ,0, . . . , Tβ,m}n : (an ◦ an−1 ◦ . . . ◦ a1)(x) ∈ Iβ,m

}
.

Typically we will denote an element of Ωβ,m,n(x) or any finite sequence of maps by a.
When we want to emphasise the length of a we will use the notation a(n). We also adopt
the notation a(n)(x) to mean (an ◦ an−1 ◦ . . . ◦ a1)(x).

Remark 2.2. It is important to note that if for some finite sequence of maps a, a(x) /∈ Iβ,m
then we cannot concatenate a by any finite sequence of maps b, such that b(a(x)) ∈ Iβ,m.

Remark 2.3. Let β ∈ (1,m + 1]. For any x ∈ Iβ,m there always exists i ∈ {0, . . . ,m}
such that Tβ,i(x) ∈ Iβ,m. For β > m+ 1 such an i does not always exist.

Lemma 2.4. |Σβ,m(x)| = |Ωβ,m(x)| .

Proof. It is a simple exercise to show that

Σβ,m(x) =
{

(εi)
∞
i=1 ∈ {0, . . . ,m}N : x−

n∑
i=1

εi
βi
∈
[
0,

m

βn(β − 1)

]
for all n ∈ N

}
.

Following [8] we observe that

Σβ,m(x) =
{

(εi)
∞
i=1 ∈ {0, . . . ,m}N : x−

n∑
i=1

εi
βi
∈
[
0,

m

βn(β − 1)

]
for all n ∈ N

}
=
{

(εi)
∞
i=1 ∈ {0, . . . ,m}N : βnx−

n∑
i=1

εiβ
n−i ∈ Iβ,m for all n ∈ N

}
=
{

(εi)
∞
i=1 ∈ {0, . . . ,m}N : (Tβ,εn ◦ . . . ◦ Tβ,ε1)(x) ∈ Iβ,m for all n ∈ N

}
.

Our result follows immediately.

By Lemma 2.4 we can rephrase the definition of a generalized golden ratio in terms of
the set Ωβ,m(x). This equivalent definition will be more suitable for our purposes. The set
Ωβ,m,n(x) will be useful when we study the growth rate and dimension theory of the set of
β-expansions.

For a point x ∈ Iβ,m we can take i to be the first digit in a β-expansion for x if and only
if βx− i ∈ Iβ,m. This is equivalent to

x ∈
[ i
β
,
iβ +m− i
β(β − 1)

]
,

as such we refer to the interval [ iβ ,
iβ+m−i
β(β−1) ] as the i-th digit interval. Generally speaking

we can take i to be the j-th digit in a β-expansion for x if and only if there exists a ∈
Ωβ,m,j−1(x) such that, a(x) ∈ [ iβ ,

iβ+m−i
β(β−1) ]. When x or an image of x is contained in
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the intersection of two digit intervals we have a choice of digit in our β-expansion for x.
Generally speaking any two digit intervals may intersect for β sufficiently small, however
for our purposes we need only consider the case when the i-th digit interval intersects the
adjacent (i− 1)-th or (i+ 1)-th digit intervals, for some i ∈ {0, . . . ,m}. Any intersection
of this type is of the form [ i

β
,

(i− 1)β +m− (i− 1)

β(β − 1)

]
,

for some i ∈ {1, . . . ,m}. In what follows we refer to the interval [ iβ ,
(i−1)β+m−(i−1)

β(β−1) ] as
the i-th choice interval. Both Tβ,i−1 and Tβ,i map the i-th choice interval into Iβ,m. These
intervals always exist and are nontrivial for β ∈ (1,m+ 1).

Proposition 2.5. Suppose for any x ∈ (0, m
β−1 ) there always exists a finite sequence of

maps that map x into the interior of a choice interval, then Ωβ,m(x) is uncountable.

The proof of this proposition is essentially contained in the proof of Theorem 1 in [17].

Proof. Let x ∈ (0, m
β−1 ). Suppose there exists n ∈ N and a ∈ Ωβ,m,n(x) such that

a(x) ∈ ( iβ ,
(i−1)β+m−(i−1)

β(β−1) ), for some i ∈ {1, . . . ,m}. As a(x) is an element of the
interior of a choice interval both Tβ,i−1(a(x)) ∈ (0, m

β−1 ) and Tβ,i(a(x)) ∈ (0, m
β−1 ).

As such our hypothesis applies to both Tβ,i−1(a(x)) and Tβ,i(a(x)), and we can assert
that there exists a finite sequence of maps that map these two distinct images of x into the
interior of another choice interval. Repeating this procedure arbitrarily many times it is
clear that Ωβ,m(x) is uncountable.

By Proposition 2.5, to prove Theorem 1.1 it suffices to show that for β ∈ (1,G(m))

every x ∈ (0, m
β−1 ) can be mapped into the interior of a choice interval, and for β ∈

(G(m),m+ 1] there exists x ∈ (0, m
β−1 ) that never maps into a choice interval.

We define the switch region to be the interval[ 1

β
,

(m− 1)β + 1

β(β − 1)

]
.

The significance of this interval is that if a point x has a choice of digit in the j-th entry of
a β-expansion, then there exists a ∈ Ωβ,m,j−1(x) such that a(x) ∈ [ 1β ,

(m−1)β+1
β(β−1) ]. The

following lemmas are useful in understanding the dynamics of the maps Tβ,i around the
switch region, understanding these dynamics will be important in our proof of Theorem
1.1.

Lemma 2.6. For β ∈ (1, m+
√
m2+4
2 ) and x ∈ (0, m

β−1 ) there exists a finite sequence of
maps that map x into the interior of our switch region.

Proof. If x is contained within the interior of the switch region we are done, let us suppose
otherwise. By the monotonicity of the maps Tβ,0 and Tβ,m it suffices to show that

Tβ,0

( 1

β

)
<

(m− 1)β + 1

β(β − 1)
and Tβ,m

( (m− 1)β + 1

β(β − 1)

)
>

1

β
.
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Both of these inequalities are equivalent to β2 − mβ − 1 < 0, applying the quadratic
formula we can conclude our result.

Remark 2.7. Whenm = 1 the switch region is a choice interval. An application of Lemma
2.4, Proposition 2.5 and Lemma 2.6 yields the result stated in [6], i.e, for β ∈ (1, 1+

√
5

2 )

and x ∈ (0, 1
β−1 ) the set Σβ,1(x) is uncountable.

Lemma 2.8. For β ∈ (1, m+2
2 ) every x in the interior of the switch region is contained in

the interior of a choice interval.

Proof. It suffices to show that for each i ∈ {1, 2, . . . ,m− 1} the (i− 1)-th and (i+ 1)-th
digit intervals intersect in a nontrivial interval. This is equivalent to

i+ 1

β
<

(i− 1)β +m− (i− 1)

β(β − 1)
,

a simple manipulation yields that this is equivalent to β < m+2
2 .

We refer the reader to Figure 1 for a diagram depicting the case where β < m+2
2 . For

i ∈ {1, 2, . . . ,m− 1} and β ≥ m+2
2 the interval[ (i− 1)β +m− (i− 1)

β(β − 1)
,
i+ 1

β

]
is well defined. We refer to this interval as the i-th fixed digit interval. The significance
of this interval is that if a point x is contained in the interior of the i-th fixed digit interval
only Tβ,i maps x into Iβ,m. Similarly we define the 0-th fixed digit interval to be [0, 1

β ]

and the m-th fixed digit interval to be [ (m−1)β+1
β(β−1) , m

β−1 ]. Understanding how the different
Tβ,i’s behave on these intervals will be important when it comes to constructing generalized
golden ratios in the case where m is odd.

3. Proof of Theorem 1.1

We are now in a position to prove Theorem 1.1, for ease of exposition we reduce our
analysis to two cases, when m is even and when m is odd.

3.1. Case where m is even

In what follows we assume m = 2k for some k ∈ N.

Proposition 3.1. For β ∈ (1, k + 1) every x ∈ (0, m
β−1 ) has uncountably many β-

expansions.
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0 m
β−1

1
β

(m−1)β+1
β(β−1)

Figure 1: The case where β ∈ (1, m+2
2 )

Proof. By Lemma 2.4 and Proposition 2.5 it suffices to show that every x ∈ (0, m
β−1 )

can be mapped into the interior of a choice interval. It is a simple exercise to show that
m+2
2 < m+

√
m2+4
2 for all m ∈ N, therefore for β ∈ (1, k + 1) we can apply Lemma 2.6,

therefore there exists a sequence of maps that map x into the interior of the switch region.
By Lemma 2.8 every point in the interior of our switch region is contained in the interior
of a choice interval.

Proposition 3.2. For β ∈ (k + 1,m + 1] there exists x ∈ (0, m
β−1 ) with a unique β-

expansion.

Proof. It suffices to show that there exists x ∈ (0, m
β−1 ) that never maps into a choice

interval. We consider the point k
β−1 ,we will show that this point has a unique β-expansion.

This point is contained in the k-th digit interval and is the fixed point under the map Tβ,k.
To show that it has a unique β-expansion it suffices to show that it is not contained within
the (k − 1)-th or (k + 1)-th digit intervals, this is equivalent to

(k − 1)β +m− (k − 1)

β(β − 1)
<

k

β − 1
<
k + 1

β
.

Both of these inequalities are equivalent to β > k + 1.
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0 k
β−1

m
β−1

Figure 2: A point with unique β-expansion for β ∈ (k + 1,m+ 1].

Figure 2 describes the construction of our point with unique β-expansion for β ∈ (k +

1,m+1]. By Proposition 3.1 and Proposition 3.2 we can conclude Theorem 1.1 in the case
where m is even.

3.2. Case where m is odd

The analysis of the case where m is odd is somewhat more intricate. In what follows we
assumem = 2k+1 for some k ∈ N. Before finishing our proof of Theorem 1.1 we require
the following technical results.

Lemma 3.3. For β ∈ (1, k + 2) the fixed point of Tβ,i is contained in the interior of the
choice interval [ iβ ,

(i−1)β+m−(i−1)
β(β−1) ] for i ∈ {1, . . . , k}, and in the interior of the choice

interval [ i+1
β , iβ+m−iβ(β−1) ] for i ∈ {k + 1, . . . ,m− 1}.

Proof. Let i ∈ {1, . . . , k}. To show that the fixed point i
β−1 is contained in the interior of

the interval [ iβ ,
(i−1)β+m−(i−1)

β(β−1) ] it suffices to show that

i

β − 1
<

(i− 1)β +m− (i− 1)

β(β − 1)
.
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This is equivalent to β < m+ 1− i, which for β ∈ (1, k+ 2) is true for all i ∈ {1, . . . , k}.
The case where i ∈ {k + 1, . . . ,m− 1} is proved similarly.

Corollary 3.4. For β ∈ [ 2k+3
2 , k+ 2) the map Tβ,i satisfies Tβ,i(x)− i

β−1 = β(x− i
β−1 )

for all x contained in the i-th fixed digit interval for i ∈ {1, . . . , k}, and i
β−1 − Tβ,i(x) =

β( i
β−1 − x) for all x contained in the i-th fixed digit interval for i ∈ {k + 1, . . . ,m− 1}.

Proof. Let i ∈ {1, . . . , k}. By Lemma 3.3 the i-th fixed digit interval is to the right of
the fixed point of Tβ,i, our result follows from Lemma 2.1. The case where i ∈ {k +

1, . . . ,m− 1} is proved similarly.

Lemma 3.5. Suppose β ∈ [ 2k+3
2 , k+1+

√
k2+6k+5
2 ) and x is an element of the i-th fixed

digit interval for some i ∈ {1, . . . ,m− 1}. For i ∈ {1, . . . , k}

Tβ,i(x) <
kβ +m− k
β(β − 1)

and for i ∈ {k + 1, . . . ,m− 1}

Tβ,i(x) >
k + 1

β
.

Proof. By the monotonicity of the maps Tβ,i it is sufficient to show that

Tβ,i

( i+ 1

β

)
<
kβ +m− k
β(β − 1)

for i ∈ {1, . . . , k}, and

Tβ,i

( (i− 1)β +m− (i− 1)

β(β − 1)

)
>
k + 1

β
,

for i ∈ {k + 1, . . . ,m − 1}. Each of these inequalties are equivalent to β2 − (k + 1)β −
(k + 1) < 0. Our result follows by an application of the quadratic formula.

Proposition 3.6. For β ∈ (1, k+1+
√
k2+6k+5
2 ) every x ∈ (0, m

β−1 ) has uncountably many
β-expansions.

Proof. The proof where β ∈ (1, 2k+3
2 ) is analogous to that given in the even case. As such,

in what follows we assume β ∈ [ 2k+3
2 , k+1+

√
k2+6k+5
2 ). We remark that

k + 1 +
√
k2 + 6k + 5

2
≤ m+

√
m2 + 4

2

and
k + 1 +

√
k2 + 6k + 5

2
< k + 2,
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0 m
β−1

1
β

(m−1)β+1
β(β−1)

k+1
β

kβ+m−k
β(β−1)

Figure 3: A diagram of the case where m = 2k + 1 and β ∈ [ 2k+3
2 , k+1+

√
k2+6k+5
2 )

for all k ∈ N. We can therefore use Lemma 2.6 and Corollary 3.4. Let x ∈ (0, m
β−1 ).

We will show that there exists a sequence of maps that map x into the interior of a choice
interval, by Lemma 2.4 and Proposition 2.5 our result follows. By Lemma 2.6 there exist
a finite sequence of maps that map x into the interior of the switch region. Suppose the
image of x is not contained in the interior of a choice interval, then it must be contained in
the i-th fixed digit interval for some i ∈ {1, . . . ,m− 1}. By repeatedly applying Corollary
3.4 and Lemma 3.5 the image of x must eventually be mapped into the interior of a choice
interval.

We refer the reader to Figure 3 for a diagram illustrating the case where m = 2k + 1

and β ∈ [ 2k+3
2 , k+1+

√
k2+6k+5
2 ).

Proposition 3.7. For β ∈ (k+1+
√
k2+6k+5
2 ,m + 1] there exists x ∈ (0, m

β−1 ) that has a
unique β-expansion.

Proof. We will show that the points

kβ + (k + 1)

β2 − 1
and

(k + 1)β + k

β2 − 1
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have a unique β-expansion. The significance of these points is that

Tβ,k

(kβ + (k + 1)

β2 − 1

)
=

(k + 1)β + k

β2 − 1

and

Tβ,k+1

( (k + 1)β + k

β2 − 1

)
=
kβ + (k + 1)

β2 − 1
.

To show that these points have a unique β-expansion it suffices to show that kβ+(k+1)
β2−1 and

(k+1)β+k
β2−1 belong to the k-th and (k + 1)-th fixed digit intervals, respectively, i.e.

(k − 1)β +m− (k − 1)

β(β − 1)
<
kβ + (k + 1)

β2 − 1
<
k + 1

β
, (2)

and
kβ + (m− k)

β(β − 1)
<

(k + 1)β + k

β2 − 1
<
k + 2

β
. (3)

The left hand side of (2) is equivalent to 0 < β2 − kβ − (k + 2) which is equivalent to

k +
√
k2 + 4k + 8

2
< β,

in the same time
k +
√
k2 + 4k + 8

2
<
k + 1 +

√
k2 + 6k + 5

2

for all k ∈ N, therefore the left hand side of (2) holds. The right hand side of (2) is
equivalent to 0 < β2 − (k + 1)β − (k + 1). So (2) holds by the quadratic formula.

The right hand side of (3) is equivalent to 0 < β2−kβ−(k+2) which we know to be true
by the above. Similarly the left hand side of (3) is equivalent to 0 < β2−(k+1)β−(k+1),

which we also know to be true. It follows that both kβ+(k+1)
β2−1 and (k+1)β+k

β2−1 are never

mapped into a choice interval and have a unique β-expansion for β ∈ (k+1+
√
k2+6k+5
2 ,m+

1].

We refer the reader to Figure 4 for a diagram describing the points we constructed with
unique β-expansion for β ∈ (k+1+

√
k2+6k+5
2 ,m+ 1]. By Proposition 3.6 and Proposition

3.7 we can conclude Theorem 1.1.

4. The set of points with unique β-expansion

In this section we study the set of points whose β-expansion is unique for β ∈ (G(m),m+

1]. Let
Uβ,m =

{
x ∈ Iβ,m| |Σβ,m(x)| = 1

}
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0 m
β−1kβ+(k+1)

β2−1
(k+1)β+k
β2−1

Figure 4: A point with unique β-expansion for β ∈ (k+1+
√
k2+6k+5
2 ,m+ 1].

and
Wβ,m =

{
x ∈

(m+ 1− β
β − 1

, 1
)
| |Σβ,m(x)| = 1

}
.

The significance of the set Wβ,m is that if x ∈ Uβ,m, then it maps to Wβ,m under a finite
sequence of Tβ,i’s. In [9] the authors study the case where m = 1, they show that the
following theorems hold.

Theorem 4.1. The set Uβ,1 satisfies the following:

1. |Uβ,1| = ℵ0 for β ∈ ( 1+
√
5

2 , βc)

2. |Uβ,1| = 2ℵ0 for β = βc

3. Uβ,1 is a set of positive Hausdorff dimension for β ∈ (βc, 2].

Theorem 4.2. The set Wβ,1 satisfies the following:

1. |Wβ,1| = 2 for β ∈ ( 1+
√
5

2 , βf ], where βf is the root of the equation

x3 − 2x2 + x− 1 = 0, βf = 1.75487 . . .
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2. |Wβ,1| = ℵ0 for β ∈ (βf , βc)

3. |Wβ,1| = 2ℵ0 for β = βc

4. Wβ,1 is a set of positive Hausdorff dimension for β ∈ (βc, 2].

Here βc ≈ 1.78723 is the Komornik-Loreti constant introduced in [12]. It is the smallest
value of β for which 1 ∈ Uβ,1. Moreover βc is the unique solution of the equation

∞∑
i=1

λi
βi

= 1,

where (λi)
∞
i=0 is the Thue-Morse sequence (see [3]), i.e. λ0 = 0 and if λi is already defined

for some i ≥ 0 then λ2i = λi and λ2i+1 = 1− λi. The sequence (λi)
∞
i=0 begins

(λi)
∞
i=0 = 0110 1001 1001 0110 1001 . . . .

In [2] it was shown that βc is transcendental. Form ≥ 2 we define the sequence (λi(m))∞i=1 ∈
{0, . . . ,m}N as follows:

λi(m) =

{
k + λi − λi−1 if m = 2k
k + λi if m = 2k + 1.

We define βc(m) to be the unique solution of

∞∑
i=1

λi(m)

βi
= 1.

In [13] the authors proved that βc(m) is transcendental and the smallest value of β for
which 1 ∈ Uβ,m. In section 6 we include a table of values for βc(m). We begin our study
of the sets Uβ,m and Wβ,m by showing that the following proposition holds.

Proposition 4.3. If m ≥ 2, then |Uβ,m| ≥ ℵ0 for β ∈ (G(m),m+ 1].

In [14] the following statements were shown to hold: if β ∈ (1, βc(m)) then Uβ,m is
countable,Uβc(m),m has cardinality equal to that of the continuum, and for β ∈ (βc(m),m+

1] the Hausdorff dimension of Uβ,m is strictly positive. Combining these results with
Proposition 4.3 the following analogue of Theorem 4.1 is immediate.

Theorem 4.4. For m ≥ 2 the set Uβ,m satisfies the following:

1. |Uβ,m| = ℵ0 for β ∈ (G(m), βc(m))

2. |Uβ,m| = 2ℵ0 for β = βc(m)

3. Uβ,m is a set of positive Hausdorff dimension for β ∈ (βc(m),m+ 1].
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Proof of Proposition 4.3. To begin with let us assumem = 2k for some k ∈ N, in this case
G(m) = k + 1. It is a simple exercise to show that for β ∈ (k + 1,m+ 1]

T−nβ,0

( k

β − 1

)
=

k

βn(β − 1)
<

1

β
(4)

for all n ∈ N. By the proof of Proposition 3.2 we know that k
β−1 has a unique β-expansion.

It follows from (4) that T−nβ,0 ( k
β−1 ) is never mapped into a choice interval and therefore

has a unique β-expansion. As n was arbitrary we can conclude our result. The case where
m = 2k + 1 is proved similarly, in this case we can consider preimages of kβ+(k+1)

β2−1 .

We also show that the following analogue of Theorem 4.2 holds.

Theorem 4.5. If m = 2k the set Wβ,m satisfies the following:

1. |Wβ,m| = 1 for β ∈ (G(m), βf (m)], where βf (m) is the root of the equation

x2 − (k + 1)x− k = 0, βf (m) =
k + 1 +

√
k2 + 6k + 1

2

2. |Wβ,m| = ℵ0 for β ∈ (βf (m), βc(m))

3. |Wβ,m| = 2ℵ0 for β = βc(m)

4. Wβ,m is a set of positive Hausdorff dimension for β ∈ (βc(m),m+ 1].

If m = 2k + 1 the set Wβ,m satisfies the following:

1. |Wβ,m| = 2 for β ∈ (G(m), βf (m)], where βf (m) is the root of the equation

x3 − (k + 2)x2 + x− (k + 1) = 0

2. |Wβ,m| = ℵ0 for β ∈ (βf (m), βc(m))

3. |Wβ,m| = 2ℵ0 for β = βc(m)

4. Wβ,m is a set of positive Hausdorff dimension for β ∈ (βc(m),m+ 1].

Remark 4.6. βf (m) is a Pisot number for all m ∈ N.

Using Theorem 4.4, to prove Theorem 4.5 it suffices to show that statement 1 holds in
both the odd and even cases and |Wβ,m| ≥ ℵ0 for β > βf (m) in both the odd and even
cases. In section 6 we include a table of values for βf (m).
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4.1. Proof of Theorem 4.5

The proof of Theorem 4.5 is more involved than Theorem 4.4 and as we will see requires
more technical results. The following is taken from [14]. Firstly let us define the lexico-
graphic order on {0, . . . ,m}N : we say that (xi)

∞
i=1 < (yi)

∞
i=1 with respect to the lexico-

graphic order if there exists n ∈ N such that xi = yi for all i < n and xn < yn or if
x1 < y1. For a sequence (xi)

∞
i=1 ∈ {0, . . . ,m}N we define (x̄i)

∞
i=1 = (m − xi)∞i=1. We

also adopt the notation (ε1, . . . , εj)
∞ to denote the element of {0, . . . ,m}N obtained by the

infinite concatenation of the finite sequence (ε1, . . . , εj). Let the sequence (di(m))∞i=1 ∈
{0, . . . ,m}N be defined as follows: let d1(m) be the largest element of {0, . . . ,m} such
that d1(m)

β < 1, and if di(m) is defined for i < n then dn(m) is defined to be the largest

element of {0, . . . ,m} such that
∑n
i=1

di(m)
βi < 1. The sequence (di(m))∞i=1 is called the

quasi-greedy expansion of 1 with respect to β; it is trivially a β-expansion for 1 and the
largest infinite β-expansion of 1 with respect to the lexicographic order not ending with
(0)∞. We let

Sβ,m =
{

(εi)
∞
i=1 ∈ {0, . . . ,m}N :

∞∑
i=1

εi
βi
∈Wβ,m

}
,

it follows from the definition of Wβ,m that |Wβ,m| = |Sβ,m| and to prove Theorem 4.5 it
suffices to show that equivalent statements hold for Sβ,m. The following lemma which is
essentially due to Parry [15] provides a useful characterisation of Sβ,m.

Lemma 4.7.

Sβ,m =
{

(εi)
∞
i=1 ∈ {0, . . . ,m}N : (εi, εi+1, . . .) < (d1,m, d2,m, . . .) and

(d̄1,m, d̄2,m, . . .) < (εi, εi+1, . . .) for all i ∈ N
}

Remark 4.8. If β < β′ then the quasi-greedy expansion of 1 with respect to β is lexi-
cographically strictly less than the quasi-greedy expansion of 1 with respect to β′. As a
corollary of this we have Sβ,m ⊆ Sβ′,m for β < β′.

Proposition 4.9. For β ∈ (G(m), βf (m)] |Sβ,m| = 1 when m is even, |Sβ,m| = 2 when
m is odd and |Sβ,m| ≥ ℵ0 for β ∈ (βf (m),m+ 1].

By the remarks following Theorem 4.5 this will allow us to conclude our result.

Proof. We begin by considering the case where m = 2k. When β = βf (m) we have
(di(m))∞i=1 = (k + 1, k − 1)∞ and by Lemma 4.7

Sβf (m),m =
{

(εi)
∞
i=1 ∈ {0, . . . ,m}N : (εi, εi+1, . . .) < (k + 1, k − 1)∞ and

(k − 1, k + 1)∞ < (εi, εi+1, . . .) for all i ∈ N
}
.

By our previous analysis we know that for β ∈ (G(m),m+ 1] the point k
β−1 has a unique

β-expansion, the β-expansion of this point is the sequence (k)∞. By Remark 4.8, to prove
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|Sβ,m| = 1 for β ∈ (G(m), βf (m)] it suffices to show that Sβf (m),m = {(k)∞}. If
(εi)
∞
i=1 ∈ Sβf (m),m, then clearly εi must equal k − 1, k or k + 1. If εi = k + 1 then

by Lemma 4.7 εi+1 = k − 1, similarly if εi = k − 1 then εi+1 = k + 1. Therefore if
εi 6= k for some i, then (εi, εi+1, . . .) must equal (k − 1, k + 1)∞ or (k + 1, k − 1)∞. By
Lemma 4.7 this cannot happen and we can conclude that Sβf (m),m = {(k)∞}. For β ∈
(βf (m),m + 1], we can construct a countable subset of Sβ,m; for example all sequences
of the form (k)j(k + 1, k − 1)∞ where j ∈ N.

We now consider the case where m = 2k+ 1, when β = βf (m) we have (di(m))∞i=1 =

(k + 1, k + 1, k, k)∞ and

Sβf (m),m =
{

(εi)
∞
i=1 ∈ {0, . . . ,m}N : (εi, εi+1, . . .) < (k + 1, k + 1, k, k)∞ and

(k, k, k + 1, k + 1)∞ < (εi, εi+1, . . .) for all i ∈ N
}
.

By our earlier analysis we know that {(k, k+1)∞, (k+1, k)∞} ⊂ Sβ,m for β ∈ (G(m),m+

1]. By Remark 4.8 to prove |Sβ,m| = 2 for β ∈ (G(m), βf (m)] it suffices to show that
Sβf (m),m = {(k, k + 1)∞, (k + 1, k)∞}. By an analogous argument to that given in [9]
we can show that if (εi)

∞
i=1 ∈ Sβf (m),m then εi = k implies εi+1 = k + 1, and εi = k + 1

implies εi+1 = k. Clearly any element of Sβf (m),m must begin with k or k+1 and we may
therefore conclude that Sβf (m),m = {(k, k+ 1)∞, (k+ 1, k)∞}. To see that |Wβ,m| ≥ ℵ0
for β > βf (m) we observe that (k + 1, k)j(k + 1, k + 1, k, k)∞ ∈ Sβ,m for all j ∈ N, for
β > βf (m).

4.2. The growth rate of G(m), βf (m) and βc(m)

In this section we study the growth rate of the sequences (G(m))∞m=1, (βf (m))∞m=1 and
(βc(m))∞m=1. The following theorem summarises the growth rate of each of these se-
quences.

Theorem 4.10. 1. G(2k) = k + 1 for all k ∈ N.

2. βf (2k)− (k + 2) = O( 1
k ).

3. βc(2k)− (k + 2)→ 0 as k →∞.

4. G(2k + 1)− (k + 2) = O( 1
k ).

5. βf (2k + 1)− (k + 2)→ 0 as k →∞.

6. βc(2k + 1)− (k + 2)→ 0 as k →∞.

The proof of this theorem is somewhat trivial but we include it for completion. To prove
this result we firstly require the following lemma.

Lemma 4.11. The sequence βc(m) is asymptotic to m
2 , i.e., limm→∞

βc(m)
m/2 = 1.
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Proof. Suppose m = 2k. It is a direct consequence of the definition of λi(m) and βc(m)

that the following inequalties hold

∞∑
i=0

k − 1

βc(m)i
≤ βc(m) ≤

∞∑
i=0

k + 1

βc(m)i
,

which is equivalent to
k − 1

1− 1
βc(m)

≤ βc(m) ≤ k + 1

1− 1
βc(m)

.

Dividing through by m/2 and using the fact that βc(m)→∞ we can conclude our result.
The case where m = 2k + 1 is proved similarly.

We are now in a position to prove Theorem 4.10.

Proof of Theorem 4.10. Statements 1, 2 and 4 are an immediate consequence of Theorem
1.1 and Theorem 4.5. It remains to show statements 3 and 6 hold; statement 5 will follow
from the fact that G(2k+1) < βf (2k+1) < βc(2k+1). It is immediate from the definition
of λi(m) that if m = 2k then

βc(m) = k + 1 +
k

βc(m)
+

∞∑
i=2

λi+1(m)

βc(m)i
.

It is a straighforward consequence of 1 ∈ Uβc(m),m that |
∑∞
i=1

λi+j(m)
βc(m)i | ≤ 1, for all

j,m ∈ N. Therefore
∑∞
i=2

λi+1(m)
βc(m)i → 0 as m → ∞, combining this statement with

Lemma 4.11 we may conclude our result when m = 2k. The case where m = 2k + 1 is
proved similarly.

5. The growth rate and dimension theory of Σβ,m(x)

To describe the growth rate of β-expansions we consider the following. Let

Eβ,m,n(x) =
{

(ε1, . . . , εn) ∈ {0, . . . ,m}n|∃(εn+1, εn+2, . . .) ∈ {0, . . . ,m}N

:

∞∑
i=1

εi
βi

= x
}
.

We define an element of Eβ,m,n(x) to be a n-prefix for x. Moreover, we let

Nβ,m,n(x) = |Eβ,m,n(x)|
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and define the growth rate of Nβ,m,n(x) to be

lim
n→∞

logm+1Nβ,m,n(x)

n
,

when this limit exists. When this limit does not exist we can consider the lower and upper
growth rates of Nβ,m,n(x), these are defined to be

lim inf
n→∞

logm+1Nβ,m,n(x)

n
and lim sup

n→∞

logm+1Nβ,m,n(x)

n

respectively.
In this paper we also consider Σβ,m(x) from a dimension theory perspective. We endow

{0, . . . ,m}N with the metric d(·, ·) defined as follows:

d(x, y) =

{
(m+ 1)−n(x,y) if x 6= y, where n(x, y) = inf{i : xi 6= yi}
0 if x = y.

We will consider the Hausdorff dimension of Σβ,m(x) with respect to this metric. It is a
simple exercise to show that the following inequalities hold:

dimH(Σβ,m(x)) ≤ lim inf
n→∞

logm+1Nβ,m,n(x)

n
≤ lim sup

n→∞

logm+1Nβ,m,n(x)

n
. (5)

The case where m = 1 is studied in [4], [8] and [10]. In [4] and [8] the authors show that
for β ∈ (1, 1+

√
5

2 ) and x ∈ (0, 1
β−1 ) we can bound the lower growth rate and Hausdorff

dimension of Σβ,1(x) below by some strictly positive function depending only on β, in
[10] the growth rate is studied from a measure theoretic perspective. Our main result is the
following.

Theorem 5.1. For β ∈ (1,G(m)) and x ∈ (0, m
β−1 ) the Hausdorff dimension of Σβ,m(x)

can be bounded below by some strictly positive constant depending only on β.

By (5) a similar statement holds for both the lower and upper growth rates ofNβ,m,n(x).
Replicating the proof of Lemma 2.4 it can be shown that the following result holds.

Proposition 5.2. Nβ,m,n(x) = |Ωβ,m,n(x)|

By Proposition 5.2 we can identify elements of Ωβ,m,n(x) with elements of Eβ,m,n(x),

as such we also define an element of Ωβ,m,n(x) to be a n-prefix for x. To prove Theorem
5.1 we will use a method analogous to that given if [4]. We construct an interval Iβ ⊂
Iβ,m such that, for each x ∈ Iβ we can generate multiple prefixes for x of a fixed length
depending on β that map x back into Iβ . As we will see Theorem 5.1 will then follow
by a counting argument. As was the case in our previous analysis we reduce the proof of
Theorem 5.1 to two cases.
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5.1. Case where m is even

In what follows we assume m = 2k for some k ∈ N. To prove Theorem 5.1 we require the
following technical lemma.

Lemma 5.3. For each β ∈ (1, k + 1) there exists ε0(β) > 0 such that, if x ∈ [ 1β ,
1
β +

ε0(β)) then Tβ,0(x) ∈ [ 1β + ε0(β), (m−1)β+1
β(β−1) − ε0(β)], and similarly if x ∈ ( (m−1)β+1

β(β−1) −
ε0(β), (m−1)β+1

β(β−1) ] then Tβ,m(x) ∈ [ 1β + ε0(β), (m−1)β+1
β(β−1) − ε0(β)].

Proof. This follows from Lemma 2.6 and a continuity argument.

For each i ∈ {1, . . . ,m−1}we let εi(β) = 1
2 ( (i−1)β+m−(i−1)

β(β−1) − i+1
β ). If β ∈ (1, k+1)

then εi(β) > 0 for each i ∈ {1, . . . ,m − 1}. We define the interval Iβ = [L(β), R(β)]

where L(β) and R(β) are defined as follows:

L(β) = min

{
Tβ,1

( 1

β
+ ε0(β)

)
, min
i∈{1,...,m−1}

Tβ,i+1

( i+ 1

β
+ εi(β)

)}

and

R(β) = max

{
Tβ,m−1

( (m− 1)β + 1

β(β − 1)
− ε0(β)

)
,

max
i∈{1,...,m−1}

Tβ,i−1

( i+ 1

β
+ εi(β)

)}
.

We refer to Figure 5 for a diagram illustrating the interval Iβ in the case where m = 2 and
β ∈ (1, 2).

Proposition 5.4. Let β ∈ (1, k + 1). There exists n(β) ∈ N such that, for each x ∈ Iβ
there exists two elements a, b ∈ Ωβ,m,n(β)(x) such that a(x) ∈ Iβ and b(x) ∈ Iβ .

Proof. Let x ∈ Iβ . Without loss of generality we may assume that ε0(β) is sufficiently
small such that Iβ contains the switch region. By Lemma 2.6 there exists a sequence of
maps a that map x into the interior of our switch region. By Lemma 5.3 we may assume
that a(x) ∈ [ 1β + ε0(β), (m−1)β+1

β(β−1) − ε0(β)].

The distance between the endpoints of Iβ and the endpoints of Iβ,m (the fixed points
of the maps Tβ,0 and Tβ,m,) can be bounded below by some positive constant, by Lemma
2.1 Tβ,0 and Tβ,m both scale the distance between their fixed points and a general point by
a factor β, therefore we can bound the length of our sequence a above by some constant
ns(β) ∈ N that does not depend on x. We will show that we can take n(β) = ns(β) + 1.

We remark that:
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L(β) R(β)
1
β + ε0(β) 2

β + ε1(β) β+1
β(β−1) − ε0(β)

Figure 5: The interval Iβ in the case where m = 2 and β ∈ (1, 2).

[ 1

β
+ ε0(β),

(m− 1)β + 1

β(β − 1)
− ε0(β)

]
=
[ 1

β
+ ε0(β),

2

β

]
⋃[ (m− 2)β + 2

β(β − 1)
,

(m− 1)β + 1

β(β − 1)
− ε0(β)

]
m−2⋃
i=1

[ (i− 1)β +m− (i− 1)

β(β − 1)
,
i+ 2

β

]
m−1⋃
i=1

[ i+ 1

β
,

(i− 1)β +m− (i− 1)

β(β − 1)

]
.

We now proceed via a case analysis.

• If a(x) ∈ [ 1β + ε0(β), 2
β ] then Tβ,0(a(x)) ∈ Iβ and Tβ,1(a(x)) ∈ Iβ .

• If a(x) ∈ [ (m−2)β+2
β(β−1) , (m−1)β+1

β(β−1) −ε0(β)] then Tβ,m−1(a(x)) ∈ Iβ and Tβ,m(a(x)) ∈
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Iβ .

• If a(x) ∈ [ (i−1)β+m−(i−1)β(β−1) , i+2
β ] for some i ∈ {1, . . . ,m− 2} then Tβ,i(a(x)) ∈ Iβ

and Tβ,i+1(a(x)) ∈ Iβ .

• We reduce the case where a(x) ∈ [ i+1
β , (i−1)β+m−(i−1)β(β−1) ] for some i ∈ {1, . . . ,m−

1} to two subcases. If a(x) ∈ [ i+1
β , i+1

β + εi(β)] then by the monotonicity of our
maps, both Tβ,i−1(a(x)) ∈ Iβ and Tβ,i(a(x)) ∈ Iβ . Similarly, in the case where
a(x) ∈ [ i+1

β +εi(β), (i−1)β+m−(i−1)β(β−1) ] both Tβ,i(a(x)) ∈ Iβ and Tβ,i+1(a(x)) ∈ Iβ .

We have shown that for any x ∈ Iβ there exists n(x) ≤ ns(β) + 1 such that two distinct
elements of Ωβ,m,n(x)(x) map x into Iβ . If n(x) < ns(β)+1 then we can concatenate our
two elements of Ωβ,m,n(x)(x) by an arbitrary choice of maps of length ns(β) + 1 − n(x)

that map the image of x into Iβ . This ensures that we can take our sequences of maps to be
of length ns(β) + 1.

For β ∈ (1, k + 1) and x ∈ (0, m
β−1 ) we may assume that there exists a sequence of

maps a that maps x into Iβ . We denote the minimum number of maps required to do this
by j(x). Replicating arguments given in [4] we can use Proposition 5.4 to construct an
algorithm by which we can generate two prefixes of length n(β) for a(j(x)). Repeatedly
applying this algorithm to succesive images of a(j(x)) we can generate a closed subset of
Σβ,m(x). We denote this set by σβ,m(x) and the set of n-prefixes for x generated by this
algorithm by ωβ,m,n(x). Replicating the proofs given in [4] we can show that the following
lemmas hold.

Lemma 5.5. Let x ∈ (0, m
β−1 ). Assume n ≥ j(x) then

|ωβ,m,n(x)| ≥ 2
n−j(x)
n(β)

−1.

Lemma 5.6. Let x ∈ (0, m
β−1 ). Assume l ≥ j(x) and b ∈ ωβ,m,l(x), then for n ≥ l

|{a = (ai)
n
i=1 ∈ ωβ,m,n(x) : ai = bi for 1 ≤ i ≤ l}| ≤ 2

n−l
n(β)

+2.

With these lemmas we are now in a position to prove Theorem 5.1 in the case where
m is even. The argument used is analogous to the one given in [4], which is based upon
Example 2.7 of [7].

Proof of Theorem 5.1 when m = 2k. By the monotonicity of Hausdorff dimension with
respect to inclusion it suffices to show that dimH(σβ,m(x)) can be bounded below by a
strictly positive constant depending only on β. It is a simple exercise to show that σβ,m(x)

is a compact set; by this result we may restrict to finite covers of σβ,m(x). Let {Un}Nn=1 be
a finite cover of σβ,m(x). Without loss of generality we may assume that all elements of
our cover satisfy Diam(Un) < (m+ 1)−j(x). For each Un there exists l(n) ∈ N such that

(m+ 1)−(l(n)+1) ≤ Diam(Un) < (m+ 1)−l(n).
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It follows that there exists z(n) ∈ {0, . . . ,m}l(n) such that, yi = z
(n)
i for 1 ≤ i ≤ l(n),

for all y ∈ Un. We may assume that z(n) ∈ ωβ,m,l(n)(x), if we supposed otherwise then
σβ,m(x) ∩ Un = ∅ and we can remove Un from our cover. We denote by Cn the set of
sequences in {0, . . . ,m}N whose first l(n) entries agree with z(n), i.e.

Cn =
{

(εi)
∞
i=1 ∈ {0, . . . ,m}N : εi = z

(n)
i for 1 ≤ i ≤ l(n)

}
.

Clearly Un ⊂ Cn and therefore the set {Cn}Nn=1 is a cover of σβ,m(x).

Since there are only finitely many elements in our cover there exists J such that (m +

1)−J ≤ Diam(Un) for all n. We consider the set ωβ,m,J(x). Since {Cn}Nn=1 is a cover of
σβ,m(x) each a ∈ ωβ,m,J(x) satisfies ai = z

(n)
i for 1 ≤ i ≤ l(n), for some n. Therefore

|ωβ,m,J(x)| ≤
N∑
n=1

∣∣∣{a ∈ ωβ,m,J(x) : ai = z
(n)
i for 1 ≤ i ≤ l(n)}

∣∣∣ .
By counting elements of ωβ,m,J(x) and Lemmas 5.5 and 5.6 we observe the following;

2
J−j(x)
n(β)

−1 ≤ |ωβ,m,J(x)|

≤
N∑
n=1

∣∣∣{a ∈ ωβ,m,J(x) : ai = z
(n)
i for 1 ≤ i ≤ l(n)}

∣∣∣
≤

N∑
n=1

2
J−l(n)
n(β)

+2

= 2
J+1
n(β)

+2
N∑
n=1

2
−(l(n)+1)
n(β)

≤ 2
J+1
n(β)

+2
N∑
n=1

Diam(Un)
logm+1 2

n(β) .

Dividing through by 2
J+1
n(β)

+2 yields

N∑
n=1

Diam(Un)
logm+1 2

n(β) ≥ 2
−j(x)−3n(β)−1

n(β) ,

the right hand side is a positive constant greater than zero that does not depend on our
choice of cover. It follows that dimH(σβ,m(x)) ≥ logm+1 2

n(β) , our result follows.

5.2. Case where m is odd

In what follows we assume m = 2k + 1 for some k ∈ N. For β ∈ (1, 2k+3
2 ) the proof of

Theorem 5.1 is analogous to the even case for β ∈ (1, k + 1). As such, in what follows
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we assume β ∈ [ 2k+3
2 , k+1+

√
k2+6k+5
2 ). The significance of β ∈ [ 2k+3

2 , k+1+
√
k2+6k+5
2 )

is that for i ∈ {1, . . . ,m− 1} the i-th fixed digit interval is well defined.
Before defining the interval Iβ we require the following. We let

εi(β) =


1
2

(
(i−1)β+m−(i−1)

β(β−1) − i
β−1

)
if i ∈ {1, . . . , k}

1
2

(
i

β−1 −
i+1
β

)
if i ∈ {k + 1, . . . ,m− 1}

By Lemma 3.3, εi(β) > 0 for all i ∈ {1, . . . ,m − 1} for β ∈ (1, k + 2). Before proving
an analogue of Proposition 5.4 we require the following technical lemmas. It is a simple
exercise to show that the following analogue of Lemma 5.3 holds.

Lemma 5.7. For each β ∈ [ 2k+3
2 , k+1+

√
k2+6k+5
2 ) there exists ε0(β) > 0 such that, if

x ∈ [ 1β ,
1
β + ε0(β)) then Tβ,0(x) ∈ [ 1β + ε0(β), (m−1)β+1

β(β−1) − ε0(β)], and similarly if

x ∈ ( (m−1)β+1
β(β−1) − ε0(β), (m−1)β+1

β(β−1) ] then Tβ,m(x) ∈ [ 1β + ε0(β), (m−1)β+1
β(β−1) − ε0(β)].

Lemma 5.8. Let β ∈ [ 2k+3
2 , k+1+

√
k2+6k+5
2 ). For each i ∈ {1, . . . , k − 1} there exists

ε∗i (β) > 0 such that, if x ∈ [ (i−1)β+m−(i−1)β(β−1) − εi(β), i+1
β + ε∗i (β)] then Tβ,i(x) < k+2

β +

εk+1. Similarly for i ∈ {k + 2, . . . ,m − 1} there exists ε∗i (β) > 0 such that, if x ∈
[ (i−1)β+m−(i−1)β(β−1) − ε∗i (β), i+1

β + εi(β)] then Tβ,i(x) > (k−1)β+m−(k−1)
β(β−1) − εk.

Proof. By the analysis given in the proof of Lemma 3.5 for i ∈ {1, . . . , k − 1}, we have
Tβ,i(

i+1
β ) < kβ+m−k

β(β−1) for β ∈ (1, k+1+
√
k2+6k+5
2 ). However, for β ∈ [ 2k+3

2 , k+1+
√
k2+6k+5
2 )

kβ+m−k
β(β−1) ≤

k+2
β . The existence of ε∗i (β) then follows by a continuity argument and the

monotonicity of the maps Tβ,i. The case where i ∈ {k + 2, . . . ,m − 1} is proved simi-
larly.

We are now in a position to define the interval Iβ . Let Iβ = [L(β), R(β)] where

L(β) = min

{
Tβ,1

( 1

β
+ ε0(β)

)
, Tβ,k+1

(kβ + k + 1

β2 − 1

)
,

min
i∈{2,...,k}

{
Tβ,i

( i
β

+ ε∗i−1(β)
)}
, min
i∈{k+2,...,m}

{
Tβ,i

( i
β

+ εi−1(β)
)}}

and

R(β) = max

{
Tβ,k

( (k + 1)β + k

β2 − 1

)
, Tβ,m−1

( (m− 1)β + 1

β(β − 1)
− ε0(β)

)
,

max
i∈{1,...,k}

{
Tβ,i−1

( (i− 1)β +m− (i− 1)

β(β − 1)
− εi(β)

)
max

i∈{k+2,...,m−1}

{
Tβ,i−1

( (i− 1)β +m− (i− 1)

β(β − 1)
− ε∗i (β)

)}}
.
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1
β + ε0(β) 3

β(β−1) − ε1(β) β+2
β2−1

2β+1
β2−1

3
β + ε2(β) 2β+1

β(β−1) − ε0(β)

L(β) R(β)

Figure 6: The interval Iβ in the case where m = 3 and β ∈ [ 52 , 1 +
√

3).

For ease of exposition in Figure 6 we give a diagram illustrating the interval Iβ , in the case
where m = 3 and β ∈ [ 52 , 1 +

√
3).

Proposition 5.9. Let β ∈ [ 2k+3
2 , k+1+

√
k2+6k+5
2 ). There exists n(β) ∈ N such that, for

each x ∈ Iβ there exists two elements a, b ∈ Ωβ,m,n(β)(x) such that a(x) ∈ Iβ and
b(x) ∈ Iβ .

Proof. Without loss of generality we may assume that ε0(β) is sufficiently small such that
Iβ contains the switch region. By Lemma 2.6 there exists a sequence of maps a that map
x into the switch region. As the endpoints of Iβ are bounded away from the endpoints of
Iβ,m we can bound the length of a above by some ns(β) ∈ N. Moreover, by Lemma 5.7
we may assume that a(x) ∈ [ 1β + ε0(β), (m−1)β+1

β(β−1) − ε0(β)]. As in the even case it is useful



INTEGERS: 13 (2013) 24

to treat [ 1β + ε0(β), (m−1)β+1
β(β−1) − ε0(β)] as the union of subintervals. We observe that

[ 1

β
+ ε0(β),

(m− 1)β + 1

β(β − 1)
− ε0(β)

]
=
[ 1

β
+ ε0(β),

m

β(β − 1)
− ε1(β)

]
⋃[m

β
+ εm−1(β),

(m− 1)β + 1

β(β − 1)
− ε0(β)

]
⋃[ (k − 1)β +m− (k − 1)

β(β − 1)
− εk(β),

k + 2

β
+ εk+1(β)

]
k⋃
i=2

[ i
β

+ ε∗i−1(β),
(i− 1)β +m− (i− 1)

β(β − 1)
− εi(β)

]
m−1⋃
i=k+2

[ i
β

+ εi−1(β),
(i− 1)β +m− (i− 1)

β(β − 1)
− ε∗i (β)

]
k−1⋃
i=1

[ (i− 1)β +m− (i− 1)

β(β − 1)
− εi(β),

i+ 1

β
+ ε∗i (β)

]
m−1⋃
i=k+2

[ (i− 1)β +m− (i− 1)

β(β − 1)
− ε∗i (β),

i+ 1

β
+ εi(β)

]
.

Without loss of generality we may assume that ε0(β), εi(β), ε∗i (β) are all sufficiently small
such that each of the above intervals in our union are well defined and nontrivial. We now
proceed via a case analysis.

• If a(x) ∈ [ 1β + ε0(β), m
β(β−1) − ε1(β)] then Tβ,0(a(x)) ∈ Iβ and Tβ,1(a(x)) ∈ Iβ .

• If a(x) ∈ [mβ +εm−1(β), (m−1)β+1
β(β−1) −ε0(β)] then Tβ,m−1(a(x)) ∈ Iβ and Tβ,m(a(x)) ∈

Iβ .

• Suppose a(x) ∈ [ (k−1)β+m−(k−1)β(β−1) −εk(β), k+2
β +εk+1(β)]. If a(x) ∈ [kβ+k+1

β2−1 , (k+1)β+k
β2−1 ]

then Tβ,k(a(x)) ∈ Iβ and Tβ,k+1(a(x)) ∈ Iβ . If a(x) ∈ [ (k−1)β+m−(k−1)β(β−1) −
εk(β), kβ+k+1

β2−1 ] then we are a bounded distance away from the fixed point of the
map Tβ,k, by Lemma 2.1 we know that Tβ,k scales the distance between a(x) and
the fixed point of Tβ,k by a factor β, therefore we can bound the number of maps
required to map a(x) into [kβ+k+1

β2−1 , (k+1)β+k
β2−1 ]. By a similar argument, if a(x) ∈

[ (k+1)β+k
β2−1 , k+2

β + εk+1(β)] we can bound the number of maps required to map a(x)

into [kβ+k+1
β2−1 , (k+1)β+k

β2−1 ]. By the above we can assert that when a(x) ∈ [ (k−1)β+m−(k−1)β(β−1) −
εk(β), k+2

β + εk+1(β)] there exists two distinct sequences of maps whose length we
can bound above by some nc(β) ∈ N that map a(x) into Iβ .

• If a(x) ∈ [ iβ + ε∗i−1(β), (i−1)β+m−(i−1)β(β−1) − εi(β)] for some i ∈ {2, . . . , k − 1} then
Tβ,i−1(a(x)) ∈ Iβ and Tβ,i(a(x)) ∈ Iβ .
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• If a(x) ∈ [ iβ + εi(β), (i−1)β+m−(i−1)β(β−1) − ε∗i (β)] for some i ∈ {k + 2, . . . ,m − 1}
then Tβ,i−1(a(x)) ∈ Iβ and Tβ,i(a(x)) ∈ Iβ .

• If a(x) ∈ [ (i−1)β+m−(i−1)β(β−1) − εi(β), i+1
β + ε∗i (β)] for some i ∈ {1, . . . , k − 1} then

a(x) is a bounded distance away from the fixed point of the map Tβ,i, by Lemma 2.1
we know that Tβ,i scales the distance between a(x) and its fixed point by a factor
β, therefore we can bound the number of maps required to map a(x) outside of the
interval [ (i−1)β+m−(i−1)β(β−1) −εi(β), i+1

β +ε∗i (β)] by some ni(β) ∈ N. If a(x) has been
mapped into an interval covered by one of the above cases we are done, if not it has to
be mapped into another interval of the form [ (j−1)β+m−(j−1)β(β−1) − εj(β), j+1

β + ε∗j (β)].

By Corollary 3.4 and Lemma 5.8 we know that i < j ≤ k+1. Repeating the previous
step as many times as is necessary we can ensure that within

∑k−1
i=1 ni(β) maps, a(x)

has to be mapped into an interval that was addressed in one of our previous cases.

• The case where a(x) ∈ [ (i−1)β+m−(i−1)β(β−1) − ε∗i (β), i+1
β + εi(β)] for some i ∈ {k +

2 . . . ,m−1} is analogous to the case where a(x) ∈ [ (i−1)β+m−(i−1)β(β−1) −εi(β), i+1
β +

ε∗i (β)] for some i ∈ {1, . . . , k − 1}.

We have shown that for any x ∈ Iβ there exists n(x) ∈ N such that, two distinct
elements of Ωβ,m,n(x)(x) map x into Iβ , moreover n(x) ≤ ns(β) +nc(β) +

∑k−1
i=1 ni(β).

We take n(β) to equal ns(β) + nc(β) +
∑k−1
i=1 ni(β). If n(x) < n(β) then as in the even

case we concatenate our image of x by an arbitrary sequence of maps of length n(β)−n(x)

that map x into Iβ , this ensures our sequences of maps are of length n(β).

Repeating the analysis given in the case where m is even we can conclude Theorem 5.1
in the case where m is odd.

6. Open questions and a table of values for G(m), βf (m) and βc(m)

We conclude with a few open questions and a table of values for G(m), βf (m) and βc(m).

• In [1] the authors study the order in which periodic orbits appear in the set of unique-
ness. Whenm = 1 they show that as β ↗ 2 the order in which periodic orbits appear
in the set of uniqueness is intimately related to the classical Sharkovskii ordering. It
is natural to ask whether a similar result holds in our general case.

• In [18] it is shown that when m = 1 and β = 1+
√
5

2 the set of numbers: x =
(1+
√
5)n

2 (mod 1) for some n ∈ N have countably many β-expansions, while the
other elements of (0, 1

β−1 ) have uncountably many β-expansions. Does an analogue
of this statement hold in the case of general m?
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• Let p1, . . . , pk be points in Rd such that the polyhedra Π with these vertices is con-
vex. Let {fi}ki=1 be the one parameter family of maps given by

fi(x) = λx+ (1− λ)pi,

where λ ∈ (0, 1) is our parameter. As is well know there exists a unique compact
non-empty Sλ such that Sλ = ∪ki=1fi(Sλ). We say that (εi)

∞
i=1 ∈ {1, . . . , k}N is an

address for x ∈ Sλ if limn→∞(fεn◦. . .◦fε1)(0) = x.We ask whether an analogue of
the golden ratio exists in this case, i.e, does there exists λ∗ such that for λ ∈ (λ∗, 1)

every x ∈ Sλ \ {p1, . . . , pk} has uncountably many addresses, but for λ ∈ (0, λ∗)

there exists x ∈ Sλ \ {p1, . . . , pk} with a unique address. In [16] the author shows
that an analogue of the golden ratio exists in the case when d = 2 and k = 3.

Table 1: Table of values for G(m), βf (m) and βc(m)

m G(m) βf (m) βc(m)

1 1+
√
5

2 ≈ 1.61803 . . . 1.75488 . . . 1.78723 . . .

2 2 1 +
√

2 = 2.41421 . . . 2.47098 . . .

3 1 +
√

3 ≈ 2.73205 . . . 2.89329. . . 2.90330. . .
4 3 3+

√
17

2 = 3.56155 . . . 3.66607 . . .

5 3+
√
21

2 ≈ 3.79129 . . . 3.93947 3.94583 . . .

6 4 2 +
√
28
2 = 4.64575 . . . 4.75180 . . .

7 2 + 2
√

2 ≈ 4.82843 . . . 4.96095. . . 4.96496 . . .

8 5 5+
√
41

2 = 5.70156 . . . 5.80171 . . .

9 5+
√
45

2 ≈ 5.85410 . . . 5.97273 . . . 5.97537 . . .

10 6 3 +
√

14 = 6.74166 . . . 6.83469 . . .
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