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Resonances in the
Two-Centers Coulomb Systems

Marcello Seri∗, Andreas Knauf†, Mirko Degli Esposti‡ and Thierry Jecko§

We investigate the existence of resonances for two-centers Coulomb systems
with arbitrary charges in two dimensions, defining them in terms of gener-
alised complex eigenvalues of a non-selfadjoint deformation of the two-centers
Schrödinger operator. We construct the resolvent kernels of the operators and
prove that they can be extended analytically to the second Riemann sheet. The
resonances are then analysed by means of perturbation theory and numerical
methods.
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1. Introduction

Our work concerns the study of the quantum mechanical two-fixed-centers Coulomb systems
in two dimensions. The two-dimensional restriction of the two-centers problem arises natu-
rally in the analysis of the three-dimensional problem and, as described in [45], it is essential
to be able to analyse that case.

Since three centuries the two-centers Coulombic systems have been studied, from a classi-
cal and later also from a quantum mechanical point of view, starting from pioneering works
of Euler, Jacobi [26] and Pauli [40] and going on until the recent years. For an historical
overview we refer the reader to [45].

The interest for the quantum mechanical version of the problem comes mainly from molec-
ular physics. Indeed it defines the simplest model for one-electron diatomic molecules (e.g.
the ions H+

2 and He H++) and a first approximation of diatomic molecules in the Born-
Oppenheimer representation.

In fact many of the results in the literature are related to the hard problem of finding
algorithms to obtain good numerical approximations of the discrete spectrum and of the
scattering waves [20, 21, 32, 33, 44]. In contrast, really little is known on the regularity of
the solutions with respect to the parameters of the system [49] and even less on the problem
of resonances.

Quantum resonances are a key notion of quantum physics: roughly speaking these are
scattering states (i.e. states of the essential spectrum) that for long time behave like bound
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states (i.e. eigenfunctions). They are usually defined as poles of a meromorphic function,
but note that there is no consensus on their definition and their study [59]. On the other
hand, it is known that many of their definitions coincide in some settings [24] and that their
existence is related to the presence of some classical orbits “trapped” by the potential.

If a quantum systems has a potential presenting a positive local minimum above its upper
limit at infinity, for example, it is usually possible to find quantum resonances, called shape
resonances. These are related to the classical bounded trajectories around the local minimum
[25]. These are not the only possible ones: it has been proven in [7, 8, 18, 47] that there can
be resonances generated by closed hyperbolic trajectories or by a non-degenerate maximum
of the potential. The main difference is that the shape resonances appear to be localised
much closer to the real axis with respect to these last ones.

Even the presence or absence of these resonances is strictly related to the classical dynam-
ics. In fact it is possible to use some classical estimates, called non-trapping conditions, to
prove the existence of resonance free regions (see for example [6, 35, 36]).

A major shortcoming of the actual theory of resonances is that the existence and localisa-
tion results require the potentials to be smooth or analytic everywhere, with the exception
of few results concerning non-existence [35, 36] or restricting to centrally symmetric cases
[3].

In this sense, the two-centers problem represents a very good test field. In fact, it is not
centrally symmetric but presents still enough symmetries to be separated (see Theorem 2.7).
This allows us to shift most of the analysis from the theory of PDEs with singular potentials
to the theory of ODEs, simpler and more explicitly accessible.

Moreover, the two-centers models present all the previously cited classical features related
to the existence of resonances: the non-trapping condition fails to hold [10], there are
closed hyperbolic trajectories with positive energies [29, 46] and there is a family of bounded
trajectories with positive energies [46]. At the same time, the energy ranges corresponding
to the closed hyperbolic trajectories and to the bounded ones are explicitly known [46].

In general the relation between different definitions of resonances is not fully understood,
even for smooth symbols. In this work we define a notion of resonances for the two-centers
Coulomb system. These are defined as poles of the meromorphic extension of the Green’s
functions of the separated equations. We then show how to approximate them in different
semiclassical energy regimes.

These approximations lead to strong evidence that relates the energies of the resonances
far from the real axis (i.e. not-exponentially close to it w.r.t. the semiclassical parameter) to
that of the closed hyperbolic trajectories.

Our work is strongly inspired by [3] but we treat a more interesting situation since the
scattering by two nuclei is richer than the one by one nucleus. We get similar results as in
[3], except for the expansion of the Green function in partial waves. In [3], the latter can be
justified thanks to a special property of spherical harmonics. We did not succeed in proving
it in our context (and this would be an important result). This explains why we did not
completely connect our definition of resonances to usual ones.

Compared to other results on resonances, we provide quite precise informations in an
usually unpleasant context since our potential (as in [3]) contains Coulomb singularities.
Except for some results in Section 6.2, our main contributions are not of semi-classical
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nature in contrast to those in [6, 7, 8, 47].
The structure of the paper is as follows.
In Section 2 we introduce the two-centers problem both in its classical and quantum

mechanical formulation. We describe its main properties and the separation of the differential
equation associated to the operator into radial and angular equations.

In Section 3 we describe the spectrum of the operator obtained from the angular differential
equation and the properties of its analytic continuation.

In Section 4 we focus on the spectrum of the operator obtained from the radial differential
equation and the analytic continuation of its resolvent. This is done constructing explicitly
two linearly independent solutions with prescribed asymptotic behaviour. They mimic the
incoming and outgoing waves of scattering theory, in fact we will use them to construct the
Jost functions, and consequently define and analyse the Green’s function and the scattering
matrix. The main results are contained in Theorem 4.5 and Theorem 4.14 and their corol-
laries. In particular they provide the key ingredients to define the Jost functions and their
analytic continuation in Corollary 4.19. In Theorem 4.5 is proven the existence and unique-
ness of the incoming and outgoing waves for real and complex values of the parameters. In
Theorem 4.14, it is shown that these solutions admit an analytic continuation across the
positive real axis into the second Riemann sheet.

In Section 5 we explain how the resolvent of the two-centers system relates to the angular
and radial operators.

In Section 6 we apply the theory developed for the angular and radial operators to the
objects described in Section 5. Here we define the resonances for the two-centers problem
(see (6.2)) and analyse some of their properties. The rest of the section is devoted to
the computation of approximated values of the resonances in different semiclassical energy
regimes, see in particular (6.9), (6.18) and (6.22).

In Section 7 we use the approximations obtained in the previous section to compute the
resonances and study their relationship with the structure of the underlying classical systems.
The numerics strongly support the relation between the resonances that we’ve found and the
classical closed hyperbolic trajectories.

In Section 8 we make some additional comments relating our results for the planar two-
centers problem to the three-dimensional one and to the n-centers problem.

In the Appendix A we describe how to modify the generalised Prüfer transformation in the
semi-classical limit to get precise high-energy estimates. These results are needed for the
high-energy approximation obtained in Section 6.5.

Notation. In this article N = {1, 2, 3, . . .}, R∗ := R \ {0}.

2. The two-centers system on L2(R2)

2.1. The two-centers Coulomb system

We consider the operator in L2(R2), given by

H := −h2∆ + V (q) with V (q) :=
−Z1

|q − s1|
+
−Z2

|q − s2|
, (2.1)
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where h > 0 is a small parameter.
This describes the motion of an electron in the field of two nuclei of charges Zi ∈ R∗ =

R\{0}, fixed at positions s1 6= s2 ∈ R2, taking into account only the electrostatic force. By
the unitary realisation Uf(x) := | detA|−1/2f(Ax+ b) of an affinity of R2 we assume that
the two centers are at s1 := a := ( 1

0 ) and s2 := −a.

Remarks 2.1.

• Notice that if we set Z1 = Z2 > 0 in the operator in (2.1), we get the Schrödinger
operator for the simply ionized hydrogen molecule H+

2 [50], whereas for Z1 = −Z2 it
describes an electron moving in the field of a proton and an anti-proton [19]. Another
example covered by this model is the doubly charged helium-hydride molecular ion
He H++, with Z1 = 2Z2 > 0, see [57].
• Even if (2.1) does not directly describe the interactions in molecules, it is related to

the study of scattering theory for such systems. In Example 1.3 in [10], the scat-
tering of a heavy particle by a molecule is partially studied and, thanks to a natural
physical assumption, the Hamiltonian of the heavy particle is given by (2.1) plus an
additional potential correction. In the paper [27], scattering cross sections for diatomic
molecules are estimated in a semi-classical regime related to the Born-Oppenheimer
approximation. A Schrödinger operator of the type (2.1) enters in the computations
as an effective Hamiltonian for the scattering process. ♦

2.2. Elliptic coordinates

The restriction to the rectangle M := (0,∞)× (−π, π) of the map

G : R2 → R2 ,
(
ξ
η

)
7→
(

cosh(ξ) cos(η)
sinh(ξ) sin(η)

)
(2.2)

defines a C∞ diffeomorphism
G : M → G(M) (2.3)

whose image G(M) = R2 \ (R × {0}) is dense in R2. Moreover it defines a change of
coordinates from q ∈ R2 to (ξ, η) ∈M . These new coordinates are called elliptic coordinates.

Remarks 2.2. 1. In the (q1, q2)-plane the curves ξ = c are ellipses with foci at ±a, while
the curves η = c are confocal half hyperbolas, see Figure 2.1.

2. The Jacobian determinant of G equals

F (ξ, η) := det(DG(ξ, η)) = sinh2(ξ) + sin2(η) = cosh2(ξ)− cos2(η). (2.4)

Thus the coordinate change (2.2) is degenerate at the points (ξ, η) ∈ {0} × {0,±π}
in M . For ξ = 0 the η coordinate parametrizes the q1-axis interval between the two
centers. For η = 0 (η = ±π) the ξ coordinate parametrizes the positive (negative)
q1-axis with |q1| > 1. ♦
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Figure 2.1: Elliptic coordinates.

2.3. Classical results

The classical analogue of (2.1) is described by the Hamiltonian function on the cotangent
bundle T ∗Q2 of Q2 := R2 \ {±a} relative to the two-center potential given by:

H : T ∗Q2 → R , H(p, q) :=
|p|2

2
+
−Z1

|q − a|
+
−Z2

|q + a|
. (2.5)

Lemma 2.3 (see e.g. [46]). Using G defined in (2.3), and Z± := Z2±Z1, H is transformed
by the elliptic coordinates into

H ◦ (G−1)∗(pξ, pη, ξ, η) =
1

F (ξ, η)

(
H1(pξ, ξ) +H2(pη, η)

)
(2.6)

where (G−1)∗ : T ∗M → T ∗Q2 is the cotangential lift of G−1, and

H1(pξ, ξ) :=
p2
ξ

2
− Z+ cosh(ξ) , H2(pη, η) :=

p2
η

2
+ Z− cos(η). (2.7)

There are two functionally independent constants of motion H and L := H1 − cosh2(ξ)H
with values E and K respectively.

Taken together, the constants of motion define a vector-valued function on the phase
space of a Hamiltonian. We can study the structure of the preimages of this function (its
level sets), in particular their topology. In the simplest case the level sets are mutually
diffeomorphic manifolds.

Definition 2.4. (see [1, Section 4.5]) Given two manifolds M,N , f ∈ C∞(M,N) is called
locally trivial at y0 ∈ N if there exists a neighborhood V ⊆ N of y0 such that f−1(y) is a
smooth submanifold of M for all y ∈ V and there there is a map g ∈ C∞(f−1(V ), f−1(y0))
such that f × g : f−1(V )→ V × f−1(y0) is a diffeomorphism.

The bifurcation set of f is the set

B(f) := {y0 ∈ N | f is not locally trivial at y0}.
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Notice that if f is locally trivial, the restriction g�f−1(y) : f−1(y) → f−1(y0) is a diffeo-
morphism for every y ∈ V .

Remark 2.5. The critical points of f lie in B(f) (see [1, Prop. 4.5.1]), but the converse is
true only in the case f is proper (i.e. it has compact preimages). ♦

Define the function on the phase space as follows (omitting a projection in the second
component)

F :=
(

H
Hξ◦G∗

)
: T ∗Q2 → R2, (2.8)

where Hξ(pξ, ξ) := H1(pξ, ξ)− cosh2(ξ)E.

Theorem 2.6 ([46]). Let (Z1, Z2) ∈ R∗ ×R∗, then the bifurcation set of (2.8) for positive
energies equals

B (F) ∩ (R+ × R) = {(E,K) ∈ L | E ≥ 0 and K+(E) ≤ K ≤ K−(E)} .

Here L := L0 ∪ L1
− ∪ L2

− ∪ L3
− ∪ L2

+ ∪ L3
+⊂ R2 with

L0 := {E = 0}, L1
− := {K = Z− − E},

L2
+ := {K = −Z+ − E}, L2

− := {K = −Z− − E},
L3

+ := {4EK = Z2
+}, L3

− := {4EK = Z2
−},

(2.9)

and K+ and K− are defined by

K+(E) :=


−∞, E > 0

−(Z+ + E), E ≤ min
(
−Z+

2 , 0
)

Z2
+

4E , 0 ≥ E > min
(
−Z+

2 , 0
) ,

K−(E) :=

{
Z− − E, E ≤ Z−

2
Z2
−

4E , E > Z−
2

.

The energies lying on the line L2
+ are the ones associated with the closed hyperbolic

trajectory bouncing between the two centers [46].
Moreover, for |Z+| < Z− the set of energy parameters included in the region {E ≥

0}∩
{

(E,K) ∈ L3
+

∣∣∣ E < |Z+|
2

}
and contained between the curves L2

+ and L1
+ is somewhat

special: on the configuration space they are associated with a family of bounded trajectories
trapped near the attracting center [46].

2.4. Separation in elliptic coordinates

The importance of the change of coordinate (2.3) for the quantum problem is clarified by
the following well-known theorem (see e.g. [5]). Here we enlarge the domain of G to M .
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Theorem 2.7. Let u ∈ Ca(R2) :=
{
u ∈ C(R2)

∣∣∣ u�R2\{±a} is twice continuously differentiable
}

.

The eigenvalue equation (
− h2∆ + V (q)

)
u(q) = Eu(q), E ∈ R,

transformed to prolate elliptic coordinates, separates with the ansatz

u ◦G(ξ, η) = f(ξ)g(η)

into the decoupled system of ordinary differential equations{(
−h2∂2

ξ − Z+ cosh(ξ)− E cosh2(ξ) + µ
)
f(ξ) = 0(

−h2∂2
η + Z− cos(η) + E cos2(η)− µ

)
g(η) = 0,

where µ ∈ C is the separation constant,

f ∈ C2
N ([0,∞)) :=

{
h ∈ C2([0,∞)) | h′(0) = 0

}
,

g ∈ C2
per([−π, π]) :=

{
h ∈ C2([−π, π]) | h(k)(−π) = h(k)(π) for k = 0, 1

}
and we have set Z± := Z2 ± Z1 and ∂α = ∂

∂α .

Remark 2.8. Without loss we assume Z− ∈ [0,∞) and Z+ ∈ R, Z+ 6= Z−, i.e. Z2 ≥ Z1.
♦

Remark 2.9. Since G is a diffeomorphism and since F defined in (2.4) equals det(DG), the
transformation to prolate elliptic coordinates (ξ, η) defines a unitary operator

G : L2(R2, dq)→ L2(M,dχ) , with dχ := F (ξ, η) dξ dη.

♦

Proof of 2.7. We set r1 := |q− s1|, r2 := |q− s2| and transform to elliptic coordinates.
We have

r2
2,1 = (q1 ± 1)2 + q2

2 =
(

cosh(ξ)± cos(η)
)2
.

Thus the distances from the centers equal

r1 = cosh ξ − cos η and r2 = cosh ξ + cos η.

For F (ξ, η) = sinh2(ξ) + sin2(η) = cosh2(ξ)− cos2(η) we obtain

V ◦G(ξ, η) = − Z1

|q − a|
− Z2

|q + a|
= −Z+ cosh(ξ)− Z− cos(η)

F (ξ, η)

and the Laplacian ∆ acts in elliptic coordinates as

∆G :=
1

F (ξ, η)

(
∂2
ξ + ∂2

η

)
. (2.10)
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With the ansatz

ũ(ξ, η) = f(ξ)g(η) with f ∈ C2
N ([0,∞)) and g ∈ C2

per([−π, π])

the first equation separates and we obtain the decoupled system of ordinary differential
equations

− h2∂2
ξ f(ξ) + (Vξ(ξ) + µ) f(ξ) = 0 , − h2∂2

ηg(η) + (Vη(η)− µ) g(η) = 0 (2.11)

where Vξ and Vη are the multiplication operators for the functions

Vξ(ξ) := −Z+ cosh(ξ)− E cosh2(ξ) , Vη(η) := Z− cos(η) + E cos2(η) (2.12)

Remark 2.10. Here the separation constant µ plays the role of the spectral parameter in
time independent Schrödinger equations, and energy E the one of a coupling constant. ♦

Proposition 2.11. The operator H on L2(R2) defined as in (2.1) is unitarily equivalent to
the operator in L2(M,dχ), given by

HG := −h2∆G + VG with VG(ξ, η) := −Z+ cosh(ξ)− Z− cos(η)

F (ξ, η)
.

HG has form core

G
(
C∞0 (R2)

)
=
{
f ∈ C∞0

(
M
)
| f(ξ, π) = f(ξ,−π) and ∂ξf |ξ=0 = 0

}
.

It admits a unique self-adjoint realisation with domain G(D(H)) with

D(H) :=
{
u ∈ L2(R2) | V u ∈ L1

loc(R2), u ∈ H1
loc(R2), Hu ∈ L2(R2)

}
, (2.13)

where Hu is to be understood in distributional sense.

Proof. It is well-known thatH has a self-adjoint realisation on L2(R2). The proof is based on
the infinitesimal form boundedness of V w.r.t. ∆ [2, Theorem 3.2] and the KLMN Theorem
[41, Theorem X.17]. In this way the operator is well-defined and has form domain H1(R2).
Moreover its domain D(H) is given by (2.13), see [2, Theorem 3.2].

The domain of the unitarily transformed HG = GHG−1 is then transformed to G(D(H)).
Finally C∞0 (R2) is a form core for the quadratic form associated to H, therefore it is

unitarily transformed to a form core for the quadratic form associated to HG . See [43,
Section VIII.6] for the definitions. The form of the operator is given by Theorem 2.7.

It is natural at this point to move our point of view from the study ofHG−E on L2(M,dχ)
to the study of the separable operator

KE := Kξ ⊗ 1l + 1l⊗Kη

acting on L2(M,dξ dη) = L2([0,∞), dξ)⊗ L2([−π, π], dη). Here

Kξ(h) := Kξ,E,h := −h2∂2
ξ − Z+ cosh(ξ)− E cosh2(ξ),

Kη(h) := Kη,E,h := −h2∂2
η + Z− cos(η) + E cos2(η).

(2.14)
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In fact, the separation reduces the problem to the study of two Sturm-Liouville equations

(Kξ + µ)f(ξ) = 0 and (Kη − µ)g(η) = 0. (2.15)

Following the standard convention used in the literature, we will call the first equation radial
equation and the second equation angular equation. For the proper boundary conditions on
L2([0,∞), dξ) respectively L2([−π, π], dη) they define essentially self-adjoint operators.

More specifically the eigenvalue equation of Kη(h) is in the class of the so called Hill’s
equation. In view of Proposition 2.11, we are interested in the 2π-periodic solutions of the
equation, i.e. we look for g ∈ L2([−π, π], dη) such that

g(−π) = g(π) and g′(−π) = g′(π).

For Kξ(h) it is clear that 0 is a regular point, we will see later how to treat the singular
point∞ (we refer the reader to [58] for additional information concerning regular and singular
points of Sturm-Liouville Problems). For what concerns the boundary conditions in 0, as
suggested by Proposition 2.11 we will require

f ′(0) = 0. (2.16)

The transformation needed to move from HG−E to (2.14) is obviously not unitary, as we are
passing from a semibounded operator to a family of non-semibounded ones. On the other
hand, their spectra are related, and we will study σ(HG) by means of the spectra associated
to (2.14).

3. Spectrum of the angular operator and its analytic
continuation

We now turn the attention to the second equation in (2.15), the angular equation. Let

T := Tη(Z−, h, µ,E) := h−2Kη(h)− h−2E, (3.1)

with parameters Z− ∈ R and E ∈ (0,∞). With this definition, h2[Tψ](η) = 0 denotes the
eigenvalue equation for Kη.

We start considering the simpler case of equal charges (Z− = 0). Then the eigenvalue
equation [Tψ](η) = 0 is the Mathieu equation

[Tψ](η) = −∂2
ηψ(η)− 2µ− E

2h2
ψ(η) + 2

E

4h2
cos(2η)ψ(η) = 0 (3.2)

with periodic boundary conditions in [−π, π]. We apply Floquet theory (see [14, 34, 38, 52]),
using the fundamental matrix

F(λ, δ) :=
(
f1 f2
f ′1 f

′
2

)
(π;λ, δ), λ :=

2µ− E
2h2

, δ :=
E

4h2
, (3.3)

built from the fundamental system of solutions η 7→ fi(η;λ, δ), with

f1(0;λ, δ) = 1 = f ′2(0;λ, δ) , f2(0;λ, δ) = 0 = f ′1(0;λ, δ) (3.4)
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(henceforth the prime ′ means the partial derivative w.r.t. the first variable). The potential
V (η) := cos(2η) being even, it follows that all the 2π-periodic solutions must be either
π-periodic or π-antiperiodic in [0, π] (or [−π, 0]).

The structure of the periodic solutions and their eigenvalues for the Mathieu equation
is well-understood (see [38, Chapter 2]): For each integer n ≥ 0 one finds two solutions
cen(•; δ) and sen+1(•; δ), called Mathieu Cosine and Mathieu Sine respectively, that have
exactly n zeroes in (0, π) and that are π-periodic for even n and π-antiperiodic for odd n,
the corresponding eigenvalues being λ+

n (δ) and λ−n+1(δ) respectively. For parameter values
E ∈ R, δ ∈ (0,∞) the λ+

n and λ−n+1 are real and

λ+
0 < λ−1 < λ+

1 < λ−2 < λ+
2 < · · · .

The following facts are proved in [28, Chapter VII.3.3], [37, Chapter 2.4], [38, Chapter
2.2] and [55].

1. The eigenvalues of the Mathieu operators are real-analytic functions in δ ∈ C, whose
algebraic singularities all lie at non-real branch points.

2. They can be defined uniquely as functions λ±n (δ) of δ by introducing suitable cuts in
the δ-plane. Moreover they admit an expansion in powers of δ with finite convergence
radius rn such that lim infn→∞

rn
n2 ≥ C for some C > 0.

3. The number of branch points is countably infinite, and there are no finite limit points.
4. The operator T corresponding to (3.2) can be decomposed according to

L2([−π, π]) = L+
0 ⊕ L

+
1 ⊕ L

−
0 ⊕ L

−
1

where the superscripts ± denote respectively the sets of even and odd functions and
where the subscripts 0 and 1 denote respectively the sets of functions symmetric and
antisymmetric with respect to x = π/2.

5. The restrictions of T to the four subspaces L±0/1 are self-adjoint and have only simple
eigenvalues, as given by the following scheme:

L+
0 : λ+

n , ψ
+
n , n = 0, 2, 4, 6, . . . ;

L+
1 : λ+

n , ψ
+
n , n = 1, 3, 5, . . . ;

L−0 : λ−n , ψ
−
n , n = 1, 3, 5, . . . ;

L−1 : λ−n , ψ
−
n , n = 2, 4, 6, . . . .

6. All the eigenvalues in each of the four groups of the previous remark belong to the
same analytic function, i.e. the eigenvalues in the same group lie on the same Riemann
surface [38, 56].

7. The eigenfunctions η 7→ ψ±n (η) are themselves analytic functions of x and δ. For all
n ∈ N they coincide with the Mathieu Cosine and the Mathieu Sine introduced above,
namely ψ+

n ≡ cen and ψ−n+1 ≡ sen+1 (n ∈ N0).

Despite the completeness and the clarity of perturbation theory for one-parameter analytic
families of self-adjoint operators, the situation is much more intricate and much less complete
in presence of more parameters. On the other hand we can use our restrictions on the
parameters and the special symmetries of the potential to play in our favor.
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For a general value of Z−, the eigenvalue equation is

[Tψ](η) = −∂2
ηψ(η) +

(
Z−
h2

cos(η) +
E

2h2
cos(2η)− 2µ− E

2h2

)
ψ(η) = 0, (3.5)

with periodic boundary conditions on [−π, π] and eigenvalue µ. Let us call

λ :=
2µ− E

2h2
, γ1 :=

Z−
h2
, γ2 :=

E

2h2
. (3.6)

Notice that the main difference between (3.5) and the Mathieu equation is that now the
period of the potential is no more smaller than the length of the considered interval. Thus,
in applying Floquet theory we do not anymore look for solutions which are (anti-)periodic
under translation by π.

Remark 3.1. By standard Sturm-Liouville theorems (see for instance [14, Theorems 2.3.1
and 3.1.2]) we know that for every choice of γ1 and γ2 the spectrum of Kη(h) is discrete,
at most doubly degenerate and accumulates only at infinity. Anyhow it follows from [34,
Theorem 7.10] using a change of variable that in this case there cannot be coexistence of
2π-periodic eigenfunctions for the same eigenvalue. Thus the spectrum is non-degenerate.
♦

It is proved in [51] that, for real-valued E and Z−, the eigenvalues of h−2Kη(h) form
a countably infinite set {λn(γ1, γ2, h)}n≥0 of transcendental real analytic (actually entire)
functions of the parameters γ1, γ2 ∈ R, so that in the (γ1, γ2, λ) space the sets{

(γ1, γ2, λn(γ1, γ2)) | (γ1, γ2) ∈ R2
}

define a countably infinite number of uniquely defined real-analytic surfaces.
We can apply analytic perturbation theory [28, Chapter VII] to

T (β) := T + β(1 + cos(2η))

where T is defined in (3.1) and β is assumed to be defined by h and some real parameter
Eim as follows

β(Eim, h) := i
Eim

2h2
(with i =

√
−1, h ∈ (0,∞)).

Therefore T (β) is merely (3.5) with complex E. It is evident that T (β) defines a self-
adjoint analytic family of type (A) in the sense of Kato. Therefore [28, Chapter VII] each
λn(γ1, γ2, β) admits an analytic extension on the complex plane around each real E that
can be expanded as a series in β = iEim/2h

2 with an n-dependent convergence radius
ρn. Remark 3.1 concerning the simplicity of the spectrum and the construction described
at points 4. and 5. on page 11 is still valid. Therefore we may continue to regard each
eigenvalue as simple restricted on its proper subspace and consider the lower bound of the
convergence radius in terms of the eigenvalues’ spacing in the proper subspace. These
distances are known to be at least of order n, in the sense that there exists C > 0 such that
lim infn→∞

nth-distance
n ≥ C, see [28, Chapter VII.2.4].
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In the particular case considered, we can use the ansatz given by [34, Theorem 1.1] to
bound the distance between the periodic solutions with a boundary-value problem. To this
end we can use the discussion of [54, Section 5] and apply it to our case to obtain the
following rough estimate, generalizing point (2) on page 11.

Theorem 3.2. Let E > 2|Z−|. Then the convergence radii ρD,Nn corresponding to (3.5)
with Dirichlet (resp. Neumann) boundary conditions satisfy

lim inf
n→∞

ρD,Nn

n2
≥ 6

13

Proof. In [54], Section 5, it is shown that a result like our Theorem 3.2 holds for the Mathieu
equation (see [54, Theorem 5.1]). This is a particular case of a more general theorem on the
quadratic growth of the convergence radii for the eigenvalues of a big family of differential
equations (see [54, Theorem 3.4]).

To apply [54, Theorem 3.4] and obtain the theorem for the Mathieu equation, it is enough
to check the assumptions and use the estimates obtained there to get the constants in the
growth rate. This check relies on some crude estimates on incomplete elliptic integrals and
on the potential that can be used also for our problem.

Indeed, we can replace the estimate |2 cos(2z)| ≤ 2 cosh(2=z) for the Mathieu potential
by a corresponding estimate for cos(2x) + Z−

2E cos(x): if E � |2Z−|, then∣∣∣∣cos(2z) + 2
Z−
E

cos(z)

∣∣∣∣ ≤ 2 cosh(2=z).

Then, the constants in the proof of [54, Theorem 5.1], would coincide with the constants

obtained for our potential: R = 2 cosh(2δ), R0 = 2, U2 = π2

16 + δ2 (notation from [54,
Section 5]). And choosing δ = 1

2 one can check that the assumptions of [54, Theorem 3.4]
are satisfied and the growth constant is 6

13 also in this case.

Remark 3.3. As for [54, Theorem 5.1], we used very crude estimates. The constants, and
in particular the lower bound for the growth rate, are far from being optimal also in this case
and could be improved following the enhancements presented in [55].

Remark 3.4. We expect that Theorem 3.2 still holds true for 0 < E ≤ 2|Z−|. ♦

4. Asymptotic behaviour of solutions of the radial Schrödinger
equation and their analytic extensions

The general estimates that we develop in this section are needed in order to justify the formal
step in the separation of variables and the construction of the Green’s functions. We proceed
with a philosophy close to the one of [3].

With the substitution E = k2 of its parameter, the radial equation in (2.15) takes the
form

v′′(ξ, k) + h−2
(
k2 cosh2(ξ) + Z+ cosh(ξ)− µ

)
v(ξ, k) = 0 (4.1)
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where ξ > 0, h > 0 and k ∈ C are arbitrary. Now for l ∈ N we set µ := µl, the l-th eigenvalue
of Kη (counted in ascending order for real parameters and then extended analytically). We
assume w.l.o.g. that h = 1, since h can be absorbed in the other parameters.

We will be interested in the solutions v±(ξ, k) := v±(ξ, k, µ) of (4.1) which decay as
ξ →∞ for k in the upper, resp. lower, half-plane C± = {k ∈ C | =(k) ≶ 0}. We call them,
following [3] “outgoing”, resp. “incoming”, and we will make a specific choice of such a
family of solutions by fixing the behaviour of v±(ξ, k) as ξ →∞.

We want to construct a phase function that is an approximate solution of the eikonal
equation for the Schrödinger equation (4.1), that is characterized by a particular asymptotic
behaviour and that is analytic in k. We would like to consider something of the form

φ(ξ, k) ∼
∫ ξ

0

√
k2 cosh2(t) + Z+ cosh(t)− µ dt, (4.2)

but this gives a well-defined analytic function only for |k|2 > |Z+ − µ|. For our analysis
it will be essential that the phase function is analytic in k ∈ C \ {0}. To construct it we
reconsider the previous ansatz and perform a change of variables. If we call τ = sinh(t), the
above equation is transformed into

φ(ξ, k) ∼
∫ sinh(ξ)

0

√
k2 − q(τ) dτ with q(τ) :=

µ

1 + τ2
− Z+√

1 + τ2
. (4.3)

If we call r = sinh(ξ), we may consider the map r 7→ φ(arcsinh(r), k) to be the phase
function of a long-range potential, asymptotic to r 7→ kr as r → ∞, (see (4.7) for a more
precise statement), plus a short-range perturbation.

4.1. Decomposition into long and short range

To construct the phase function φ, we introduce an appropriate decomposition of the po-
tential q into short and long range parts.

Let j ∈ N. We define lj , sj ∈ (0,∞)→ R by

sj(τ) := q(τ)− lj(τ) and lj(τ) := −χ(τ)
Z+√
1 + τ2

, (4.4)

where χ(τ) = 1 if Z+ ≥ 0 and otherwise is defined as follows: χ ∈ C∞c ((0,∞); [0, 1]) such
that χ(τ) = 0 if τ ≤ j|Z+| and χ(τ) = 1 if τ ≥ j|Z+|+ 1.

Note that sj(τ) ∈ L1((0,∞)), lj ∈ C2((0,∞)),

sup
τ>0

lj(τ) ≤ 1/j and lj(τ) = − Z+√
1 + τ2

for τ > Rj ,

for Rj := j|Z+|+ 1.
Let Ωj := {k ∈ C | |k|2 > 1/j} and φj ∈ (0,∞)× Ωj → C, defined by

φj(ξ, k) :=

∫ sinh(ξ)

0

√
k2 − lj(τ) dτ. (4.5)
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Here we have taken the principal branch of the square root, i.e. the uniquely determined
analytic branch of

√
z that maps (0,∞) into itself.

Note that φj(ξ, ·) is analytic in Ωj and φj(·, k) ∈ C2((0,∞)). Furthermore, for k ∈ Ωj ,
φj(·, k) satisfies the eikonal equation

|∂ξψ(ξ)|2 = k2 − lj(sinh(ξ)) (4.6)

on (0,∞).

Theorem 4.1. Let

D := {(ξ, k) ∈ (0,∞)× C \ {0} | sinh(ξ) ≥ |k−2Z+|+ 1}.

There exist a function φ : D → C satisfying the following properties:

1. For all (ξ, k) ∈ D, φ(ξ,−k) = −φ(ξ, k).

2. For all j ∈ N, the restriction of φ − φj to (Rj ,∞) × Ωj doesn’t depend on ξ and is
an analytic function of k.

3. For all k ∈ C \ {0}, φ(ξ, ·) is analytic on each Ωj , for j ∈ N such that sinh(ξ) > Rj .

4. For all k ∈ C \ {0}, φ(·, k) ∈ C2((0,∞)) and satisfies the eikonal equation (4.6) on
(Rj ,∞) where j is the integer part of |k2|−1.

The theorem follows from the construction above with the same proof as [3, Proposition
2.1].

Remark 4.2. The phase function φ defined in the previous theorem is not unique. This
is, however, immaterial for our purposes. In fact, our main concern is to have a controlled
behaviour, as ξ →∞ (see Proposition 4.3) and good analyticity properties in order to identify
the two (unique) waves v± for a wide range of parameters.

Henceforth we will refer to the φ(ξ, k) defined in Theorem 4.1 as a global phase function.

Proposition 4.3. The global phase function φ(ξ, k) has the asymptotic behaviour given by

φ(ξ, k) = k sinh(ξ) +
Z+

2k
ξ +O(1) =

k

2
eξ
(
1 + o(1)

)
as ξ →∞. (4.7)

Remark 4.4. In the proposition the term s(τ) := µ
1+τ2

has been dropped out. In fact
it belongs to the short range component sj of (4.4) and choosing in (4.4) a different
decomposition of q(τ) into a short-range and long-range part, keeping l(ξ) fixed near infinity,
modifies φ(ξ, k) by an analytic function of k alone. ♦

Proof. Without losing generality we can suppose |k| > |Z+| and consider the simplified
phase function

φ(ξ, k) :=

∫ ξ

0

√
k2 cosh2(t) + Z+ cosh(t) dt = k

∫ ξ

0

cosh(t)

√
1 +

Z+

k2 cosh(t)
dt (4.8)
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as ξ →∞:

φ(ξ, k) = k

∫ ξ

0
cosh(t)

(
1 +

Z+

2k2 cosh(t)
+O

(
k−2 cosh−2(t)

))
dt

= k sinh(ξ) +
Z+

2k
ξ +O(1),

Writing sinh(ξ) = (ex − e−x)/2 and collecting the growing term we have the thesis.
The Liouville-Green Theorem [15, Corollary 2.2.1] guarantees that for each k ∈ C there

exist two linearly independent solutions of (4.1) whose asymptotics as ξ →∞ is given by

y1,2(ξ) = 1√
φ′(ξ,k)

exp
(
±iφ(ξ, k)

)(
1 + o(1)

)
for ξ →∞.

In particular, it follows from the asymptotic estimate of Proposition 4.3 that (4.1) must be
in the Limit Point Case at infinity (more precisely Case I of [9, Theorem 2.1]) if we set
r(x) := cosh2(x), p := 1 and λ := k2. In what follows we investigate the regularity of the
solutions with respect to ξ and k.

Theorem 4.5 (Outgoing and incoming solutions). For each k ∈ C \ {0}, equation (4.1) has
unique solutions v±(ξ, k) verifying the asymptotic relation

v±(ξ, k) =
√

2e−
ξ
2 exp

(
± iφ(ξ, k)

)(
1 + o(1)

)
as ξ →∞. (4.9)

(4.9) holds uniformly in any truncated cone

Λ±(η, δ) := {k ∈ C \ {0} | η ≤ arg(±k) ≤ π − η, |k| ≥ δ} with η ≥ 0, δ > 0.

The family of solutions k 7→ v±(ξ, k) defined by (4.9) is analytic in the half planes k ∈ C±
pointwise in ξ, and extends continuously to k ∈ C± \ {0}.

Λ+ (η ,δ )

Λ-(η ,δ )

-1 0 1

-1

0

1

-1 0 1

-1

0

1

��(�)

��
(�
)

Figure 4.1: Cones Λ± for η = 1/3 and δ = 1/2.
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Remark 4.6. (1) and the uniqueness of Theorem 4.5 imply that v+(ξ, k) = v−(ξ,−k). In
particular it suffices to consider v+. ♦

Proof. In view of Theorem 4.1 and the subsequent remark, we can reduce the proof to the
case where the phase function φ is given by (4.8) for ξ > 0 and |k|2 > |Z+|. We call φ a
local phase function. Let

V±(ξ, k) :=

(
k

∂ξφ(ξ, k)

) 1
2

e±iφ(ξ,k) (4.10)

define the approximate solutions of (4.1).
For |k| ≥ δ the function V± satisfies the comparison equation

V ′′±(ξ, k) +
(
k2 cosh2(ξ) + Z+ cosh(ξ) + 1

2Sφ(ξ, k)
)
V±(ξ, k) = 0 (4.11)

where Sφ denotes the Schwarzian derivative

Sφ =
φ′′′

φ′
− 3

2

(
φ′′

φ′

)2

(4.12)

w.r.t. ξ. For k ∈ Λ±(η, δ) we consider the inhomogeneous Volterra Integral Equation [53]

v±(ξ, k) = V±(ξ, k)−
∫ ∞
ξ

Kk(ξ, t)Fk(t)v±(t, k) dt (4.13)

where Fk(t) = 1
2Sφ(t, k) + µ is the function that expresses the difference between the

Schrödinger equation (4.1) and the comparison equation (4.11) and K(ξ, t) is the Green’s
function associated with equation (4.10):

K(ξ, t) = W (V−, V+)−1 {V+(ξ)V−(t)− V+(t)V−(ξ)} (4.14)

(the parameter k being suppressed), with Wronskian W (V−, V+) := V−V
′

+ − V ′−V+ = 2ik.
To give (4.13) meaning we need to check if the definition makes sense and a solution can

be found.
We explicitly compute Sφ and thus F using (4.12), obtaining

Sφ (ξ) =
10k4 − Z2

+ − 2k4 cosh(2ξ) + Z+ sech(ξ)
(
12k2 + 5Z+ sech(ξ)

)
8 (Z+ + k2 cosh(ξ))2

and thus, for real ξ and for every k ∈ Λ+(η, δ), we have

lim
ξ→∞

|F (ξ)| = 1
8 + µ and CF := sup

ξ∈(0,∞)
|F (ξ)| <∞. (4.15)

Of course CF depends on Z+, µ and k, thus on η and δ. Moreover from (4.10) and (4.7),
writing k ∈ Λ+(η, δ) as k = kr + iki (kr, ki real), we get

|V±(ξ, k)| =
√

2e−
ξ
2 (1 + o(1))

∣∣∣∣eik(φ(ξ,k)k

)∣∣∣∣ ≤ CV e− ξ2 exp
(
−ki

2 e
ξ(1 + o(1)

)
, (4.16)
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where CV (k) := sup
ξ∈(0,∞)

(
eξ/2|k/φ′(ξ, k)|

)
<∞ by (4.8). Therefore for 0 < ξ ≤ t <∞ we

have

|K(ξ, t)| =

∣∣∣∣∣ 1

2ik

√
k2

φ′(t, k)φ′(ξ, k)

(
ei(φ(ξ,k)−φ(t,k)) − ei(φ(t,k)−φ(ξ,k))

)∣∣∣∣∣
≤
C2
V

2
e−

ξ+t
2 CK

∣∣∣exp
(
−ik

∫ t
ξ cosh(τ)

√
1 + Z+

k2 cosh(τ)
dτ
)∣∣∣ , (4.17)

where
CK(k) := sup

t,ξ∈R+

∣∣∣1− exp
(

2ik
∫ t
ξ cosh(τ)

√
1 + Z+

k2 cosh(τ)
dτ
)∣∣∣ ≤ 2.

It follows from (4.15), (4.16) and (4.17) that the Volterra Integral Equation (4.13) is
well-defined as a mapping from the function space

C±(η, δ) :=
{
f ∈ C2

(
(0,∞)×Λ±(η, δ)

)∣∣∣ ∀k ∈ Λ±(η, δ), ‖f‖k := sup
x∈(0,∞)

∣∣∣f(x, k) e∓iφ(x,k)
∣∣∣ <∞}

(4.18)
to itself. In particular, being V± ∈ C±(η, δ) we can apply the Picard iteration procedure to
find a solution of the equation and prove its existence. We claim that the solution must be
unique. Suppose that there exists two solutions v+, ṽ+ ∈ C+ of (4.13), then

ψ(ξ, k) := v+(ξ, k)− ṽ+(ξ, k) = −
∫ ∞
ξ

K(ξ, t)F (t)ψ(t, k) dt. (4.19)

At this stage, it is not obvious that the r.h.s. of (4.13) is a contraction, that would allow us
to conclude the proof in a standard way. In the rest of the proof we show that for appropriate
initial values this is indeed the case, therefore proving the unicity and the uniformity of the
estimates. The previous estimates applied to (4.19) give

|ψ(ξ, k)| =
∣∣∣∣∫ ∞
ξ

K(ξ, t)F (t)ψ(t, k) dt

∣∣∣∣ ≤ ∫ ∞
ξ
|K(ξ, t)F (t)ψ(t, k)| dt

≤
CKCFCψ

2

∣∣∣∣∣
√

k

φ′(ξ, k)

∣∣∣∣∣ ∣∣∣eiφ(ξ,k)
∣∣∣ ∫ ∞

ξ

∣∣∣∣∣
√

k

φ′(t, k)

∣∣∣∣∣ dt
≤
CKCFCψCV

2
e−

ξ
2

∣∣∣eiφ(ξ,k)
∣∣∣ ∫ ∞

ξ

√
2e−

t
2 (1 + o(1)) dt

≤
CKCFCψCV CI

2
e−

ξ
2

∣∣∣eiφ(ξ,k)
∣∣∣ ∫ ∞

ξ
e−

t
2 dt = CψCtote

−ξ
∣∣∣eiφ(ξ,k)

∣∣∣ (4.20)

where Cψ(k) := ‖ψ‖k, CI := supξ∈(0,∞)

√
2
(

(1 + e−2ξ)
√

1 + Z+

k2 cosh(ξ)

)− 1
2

and Ctot :=

CKCFCV CI . Using equations (4.19) and (4.20) we can reiterate the procedure, in fact
defining

ψ1(ξ, k) :=

∫ ∞
ξ

K(ξ, t)F (t)ψ(t, k) dt and ψn(ξ, k) :=

∫ ∞
ξ

K(ξ, t)F (t)ψn−1(t, k) dt,
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one can prove by induction that

|ψ(ξ, k)| = |ψn(ξ, k)| ≤ Cntot e
−nξ

(2n− 1)(2n− 3) · · · 3 · 1

∣∣∣eiφ(ξ,k)
∣∣∣ ≤ CψCntot e

−nξ

n!

∣∣∣eiφ(ξ,k)
∣∣∣

(4.21)
uniformly in k ∈ Λ+(η, δ) and for all n ∈ N. The convergence of

∞∑
n=1

Cψ
Cntot

n!
e−nξ

∣∣∣eiφ(ξ,k)
∣∣∣ = Cψ

∣∣∣eiφ(ξ,k)
∣∣∣ (eCtote−ξ − 1

)
(4.22)

implies that |ψ(ξ, k)| = 0, i.e. ṽ+ = v+.
The same inequality implies that after some iterates the homogeneous integral equation is

a contraction, and coupled with the bounds on V+ it implies that (4.13) has a unique fixed
point. This proves the existence and uniqueness of the solution. In fact if we define

v0,+(ξ, k) := V+(ξ, k) , vn,+(ξ, k) := −
∫ ∞
ξ

K(ξ, t)F (t)vn−1,+(t, k) dt,

the Picard iteration converges to v+ =
∑∞

n=0 vn,+, and the series converges absolutely

uniformly in k ∈ Λ+(η, δ) with |v+(ξ, k)| ≤ |V+(ξ, k)| eCe−ξ for some positive constant C.
Therefore one has

v+(ξ, k) = V+(ξ, k)(1 + o(1)) as ξ →∞

and (4.9) holds.
The fact that all the bounds are valid for k ∈ R completes the proof.

Remark 4.7. It is possible to compute an explicit bound like (4.21) using the fact that

|vn,+(ξ)| ≤ CV e−
ξ
2

∣∣∣eiφ(ξ,k)
∣∣∣ Cntote

−nξ

2nn!
.

In particular the dependence on µ, the parameter of the short-range potential in (4.3),
appears in the constant Ctot. In view of the previous estimates it can be bounded by
|µ|O(1). Therefore we can be more precise and estimate

v±(ξ, k) =
√

2e−
ξ
2 e±iφ(ξ,k)

(
1 +M±(ξ, k, µ)

)
as ξ →∞, (4.23)

where for some constant C 6= 0 we have M±(ξ, k, µ) = eC|µ|e
−ξ
o(1). ♦

Remark 4.8. Let w be any other family of solutions of (4.1), analytic in k ∈ C \ {0} and
satisfying for k ∈ Λ+(η, δ) the estimate w(ξ, k) = o(1) as ξ →∞. Then

w(ξ, k) = γ(k)v+(ξ, k),

where γ(k) is a nowhere-vanishing analytic function of k ∈ Λ+(η, δ). ♦
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Remark 4.9. In case Z+ = 0, the solutions of (4.1) are given by linear combinations of
the modified Mathieu functions (Mc and Sc) [16, §16.6]. In particular, if we look at their
asymptotic behaviour, we find out that up to a constant factor

v+(ξ, k) = Mc

(
µ− k2

2
,
k2

4
, ξ

)
(4.24)

where Mc(a, q, x) is the modified Mathieu cosine, i.e. the solution of

y′′(x)− (a− 2q cosh(2x))y(x) = 0

that decays for
√
q ∈ C+. It is well-known [38, Chapter 2] that the function in the RHS

of (4.24) admits an analytic continuation through the positive real axis on the negative
complex plane for −π/2 ≤ arg(k) ≤ π/2 and that for x → ∞ and k ∈ C+ it has the
following asymptotic behaviour [16, 38]

Mc

(
µ− k2

2
,
k2

4
, x

)
= e−

x
2 exp

(
ik2e

x(1 + o(1))
)(

1 + o(1)
)
,

in line with the estimates (4.7) and (4.9), valid for all Z+. ♦

For what follows we will need to work in a slightly different setting. If we perform the
change of variable defined by ξ 7→ Log(x+1) (with the principal branch Log of the logarithm),
for ṽ(x, k) := v(Log(x+ 1), k) Equation (4.1) takes the form(

(x+ 1)ṽ′(x, k)
)′

+ h−2 q(x, k, Z+, µ) ṽ(x, k) = 0 with

q(x, k, Z+, µ) :=
k2

4

(
x+ 1 + 2(x+ 1)−1 + (x+ 1)−3

)
+
Z+

2

(
1 + (x+ 1)−2

)
− µ

x+ 1
.

(4.25)

where x > 0, h > 0 and k ∈ C \ {0}. As before we assume h = 1 for the moment.

Remark 4.10. In this case Theorem 4.5 and Remark 4.8 is still valid and in accord with the
Liouville-Green Theorem we have two unique solutions that as x→∞ are asymptotic to

ṽ±(x, k) =
1√
x+ 1

e±iΨ(x,k)(1 + o(1))

=
1√
x+ 1

exp
(
±i
(
k
2x+ Z+

2k log(x+ 1) + k
2

))
· exp

(
±i
(
Z2
+

4k3
(x+ 1)−1 +O

(
(x+ 1)−2

)))
(1 + o(1))

(4.26)

where Ψ(x, k) = φ(Log(x+1), k). The asymptotic behaviour (4.26) holds uniformly for k in
any sector Λ±(η, δ) = {k ∈ C | η ≤ arg(±k) ≤ π − η, |k| ≥ δ} with η ≥ 0 and δ > 0. The
family of solutions defined by (4.26) is analytic in k ∈ C± \ {0} and extends continuously
to k ∈ C± \ {0}. ♦

Remark 4.11. From now on we write with an abuse of notation φ(x, k) in place of Ψ(x, k).
♦
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Before presenting Theorem 4.14, the main result of this section, we need the following lemma.

Lemma 4.12. Let K be a compact set in C \ {0}. Then for any −π < θ < π, there is a
constant Aθ such that any solution of Equation (4.25) verifies the estimate

|ṽ(x, k)| ≤ Aθ (|c|+ |c′|) 1√
x
e|=φ(x,k)| (4.27)

for x ∈ eiθ[0,∞) and k ∈ K, where c = ṽ(0, k), c′ = ṽ′(0, k) are the initial data at x = 0.

Proof. We start proving (4.27) in the case η ≤ | arg k| ≤ π−η for any η ≥ 0 and θ = 0 (i.e.
x ∈ (0,∞)). All the constants that we are going to use without an explicit definition are
defined as previously. Using the approximate solutions given by (4.10) defined by V±(x, k) :=
V±(log(x+ 1), k), we determine a+ and a− from the initial data requiring

c = a+V+(0, k) + a−V−(0, k), , c′ = a+V ′+(0, k) + a−V ′−(0, k). (4.28)

Then ṽ(x, k) satisfies the Volterra Integral Equation

ṽ(x, k) = a+V+(x, k) + a−V−(x, k) +

∫ x

0
K(x, t)F(t)ṽ(t, k)

dt

t+ 1
(4.29)

where K(x, t) := K(Log(x + 1),Log(t + 1)) and F(t) := F (Log(t + 1)) are defined from
the respective function (4.14) and (4.13). Notice similarly as in the previous theorem that
for 0 ≤ t ≤ x there exist constants C0(η, δ) and CV such that we have

|K(x, t)| ≤ C0(η, δ)

2

∣∣∣∣ 1

φ′(x, k)

∣∣∣∣ ∣∣∣∣ 1

φ′(t, k)

∣∣∣∣ exp
(
|=(φ(x, k)− φ(t, k))|

)
≤
C2
VC0(η, δ)

2

1√
(x+ 1)(t+ 1)

exp
(
|=(φ(x, k)− φ(t, k))|

)
. (4.30)

Define now

V(x, k) =
√

2(|a+|+ |a−|)
1√
x+ 1

exp
(
|=φ(x, k)|

)
. (4.31)

The sequence

ṽ0(x, k) := a+V+(x, k) + a−V−(x, k) , ṽn(x, k) :=

∫ x

0
K(x, t)F(t)ṽn−1(t, k)

dt

t+ 1
,

is uniformly convergent. In fact, suppressing the dependence of the constant on η and δ,
we have |ṽ0(x, k)| ≤ CVV(x, k) and, using the transformed version of (4.30), it follows by
induction that

|vn(x, k)| ≤ 1

n!
V(x, k)Ln(x), (4.32)

where

L(x) := C0

∫ x

0

∣∣∣∣ 1

φ′(t, k)

∣∣∣∣ |F(t)| dt

t+ 1
= C0CV

∫ x

0

1√
t+ 1

|F(t)| dt

t+ 1
≤ C0CVCF

1√
x+ 1
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is uniformly bounded for x ∈ (0,∞). Therefore
∑∞

n=0 ṽn(x, k) converges uniformly and
absolutely and coincides with the given solution ṽ(x, k) of (4.29) for η ≤ | arg k| ≤ π − η,
η ≥ 0. In particular being a± bounded in terms of the initial data c and c′, we obtain (4.27)
for real values of x.

At this point it is enough to notice that as soon as we do not cross the branch cut of the
logarithm, all the inequalities and the equations written up to this point are valid, therefore
the result holds replacing x with eiθx for every −π < θ < π.

4.2. Analytic continuation

We are ready to prove that the functions v± can be analytically extended in k up to the
positive real axis. To this end we consider the transformed form ṽ±.

Remark 4.13. The potential q defined in (4.25) is analytic in C \ (−∞,−1]. Therefore its
analyticity in the cone

Σα,β := {z ∈ C \ {0} | −α < arg z < β} (4.33)

for all α, β ∈ [0, π) is clear. ♦

Theorem 4.14. Let ṽ±(x, k) be defined as in Remark 4.10. Then ṽ+(x, k) admits an
analytic continuation in k through the positive real k-axis into the region

{k ∈ C \ {0} | −β < arg k < β} ,

ṽ−(x, k) admits an analytic continuation into

{k ∈ C \ {0} | −α < arg k < α} ,

for any α, β ∈ [0, π) and both verify the asymptotic relation (4.9)

ṽ±(x, k) =
1√
x
e±iφ(x,k) (1 + o(1)) as x→∞ in Σα,β, (4.34)

where (4.34) holds locally uniformly in k and uniformly in x. Furthermore an analytic
continuation of ṽ+(x, k) and ṽ−(x, k) through the negative real axis is defined via

ṽ+(x, k) = ṽ−(x,−k). (4.35)

Remark 4.15. If α + β > π, the analytically continued function ṽ±(x, k) may be double-
valued for k ∈ C∓. By an abuse of notation we denote the corresponding, possibly not
simply-connected, domain by

D±(α, β) := {k ∈ C \ {0} | −β < arg(±k) < π + α} . (4.36)

See Figure 4.2.
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Figure 4.2: Domains D± for α = 2π/3 and β = 2π/5.

Proof. It is well-known [11, Chapter 3.7] that, as solutions of the linear differential equation
(4.25) with analytic coefficients, ṽ±(x, k) admit an analytic continuation in x into the region
Σα,β. The main point of this proof is to use this information to obtain the analyticity in k via
dilation. More in details we will imitate the strategy of [3, Theorem 2.6], refining the crude
bound of Theorem 4.12 by using the Phragmen-Lindelöf principle. This allows us to identify
the dilated solutions with a decaying solution of the dilated equation. In view of Lemma
4.12, (up to multiplication with a function only depending on k) this solution is uniquely
defined by the asymptotic behaviour as x goes to infinity.

Let us consider ṽ+(z, k) along a ray Γ := {z ∈ C \ {0} | arg z = γ} with 0 < γ < β.
Then for x > 0 and k ∈ C+ \ {0}, the function

ω(x, k, γ) := ṽ+(eiγx, k) (4.37)

satisfies the equation

(
(eiγx+ 1)ω′(x, k)

)′
+
e2iγ

h2
q(eiγx, k, Z+, µ)ω(x, k) = 0 (4.38)

with q from (4.25). Moreover the initial data

ω(0, k, γ) = ṽ+(0, k), ω′(0, k, γ) = eiγ ṽ′+(0, k), (4.39)

are analytic in k ∈ C+ \ {0}.
To obtain an analytic continuation of ṽ+(x, k) into the lower half-plane, first observe that

by the Liouville-Green Theorem and Remark 4.10, Equation (4.38) has a unique solution
ω+(x, k, γ) in the cone −γ < arg k < π − γ characterized by the asymptotic relation

ω+(x, k, γ) =
1√
eiγx

eiφ(eiγx,k)(1 + o(1)) as x→∞. (4.40)
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We claim that in fact

ω+(x, k, γ) = ω(x, k, γ) for x ∈ (0,∞), 0 < arg k < π − γ. (4.41)

Then ω+(0, k, γ) and ω′+(0, k, γ) provide the analytic continuation of the initial data for
ṽ+(x, k) into the region−γ < arg k < 0, implying that ṽ+(x, k) can be continued analytically
into the lower half-plane.

To prove (4.41), we observe that x 7→ ṽ+(x, k) is of exponential type for x ∈ Σα,β and
decays exponentially for =(k) > 0. Then it follows from the Phragmen-Lindelöf principle
[12, VI.4], applied to

g(x, k) :=
√
x exp

(
− iφ(x, k)

)
ṽ+(x, k) (4.42)

that for fixed =(k) > 0 the function ṽ+(x, k) decays exponentially as x → ∞ in a small
cone containing (0,∞).

Therefore Remark 4.10 and Remark 4.8 applied to the dilated function ω+(x, k, γ̃) for
some small γ̃ > 0 imply that ω+(x, k, γ̃) is a multiple of ω(x, k, γ̃). This means moreover
that it decays at a rate given by the expected function

1√
eiγ̃x

exp
(
iφ(eiγ̃x, k)

)
.

We can repeat this procedure a finite number of times and deduce that for fixed k the
analytic function g(x, k) is uniformly bounded as x→∞ within an angle −ε < arg x < γ+ε
for some ε > 0. Since by (4.26)

lim
x→∞

g(x, k) = 1,

it follows from Montel’s theorem [12, VII.2] that this limit is assumed uniformly as x→∞
in 0 ≤ arg x ≤ γ. This proves (4.41). Since γ ∈ (0, β) was arbitrary, we obtain an analytic
continuation of ṽ+(x, k) to −β < arg k < π. It remains to prove (4.34).

For −α < γ < β we can apply Lemma 4.12 to the dilated function ω(x, k, γ) to have

g(x, k) = O(1) as x→∞ within Σα,β. (4.43)

We already know from (4.41) that g(x, k) → 1 as x → ∞ along any ray such that 0 <
η ≤ arg(kx) ≤ π − η for some η ≥ 0. Therefore we have that also locally uniformly in
k ∈ C \ {0}, −β < arg k < π

g(x, k) = O(1) as x→∞ within Σα,β

and g(x, k) is uniformly bounded along the boundary rays of Σα,β. That g(x, k) is uniformly
bounded in x ∈ Σα,β is now a consequence of the Phragmen-Lindelöf Principle. The fact
that g(x, k) tends to 1 as x → ∞ since it does so along some ray contained in its interior,
completes the proof of the theorem.

Remark 4.16. The analytical extension of ṽ(x, k) = v(Log(x + 1), k) gives in turn the
extension of v(ξ, k). ♦
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4.3. Generalised eigenfunctions, Green’s function and the scattering matrix

We are now ready to construct the main elements for the partial wave expansion required to
give a definition of the resonances of our operator.

We considered in the previous section the outgoing respectively incoming solutions as the
solutions meeting a “regular” boundary condition at infinity. Because of the fact that the
boundary conditions are at infinity it requires some work to prove that they can be analytically
extended to the second Riemann sheet across the positive real axis.

This is much simpler for the solution ṽ0(x, k) of (4.25) (or the corresponding v0(ξ, k) of
(4.1)) that is regular in 0 in the sense of the boundary conditions derived from (2.16), i.e.

ṽ0(0, k) = 1 , ṽ′0(0, k) = 0. (4.44)

Being the solution of a boundary problem with analytic coefficients and analytic initial condi-
tions, the following theorem follows as a corollary of the standard theory of complex ordinary
differential equations (see [11, Chapter 1.8]).

Theorem 4.17 (The regular solution). The unique solution ṽ0(x, k) of (4.25) defined by
the condition (4.44) is analytic in the cone x ∈ Σα,β, k ∈ C \ {0} defined in (4.33) and
satisfies

ṽ0(x, k) = ṽ0(x,−k). (4.45)

Remark 4.18. Working with (4.25) or (4.1) is equivalent. We will use each time the
representation that makes the proofs and the computations easier. Therefore in what follows
we do not continue to remark that the properties are equivalent. It is always possible to
understand in which setting we are working, looking at the name of the functions and the
variables.

From now on, we will always assume that the Wronskian is defined in its generalised form
given by

Wx(f, g) := p(x)
(
f(x)g′(x)− f ′(x)g(x)

)
,

where the notation comes from (A.6).

We are finally ready to introduce the basic elements for scattering theory on the half-line.
We call Jost functions associated to the radial equation (4.25) and our choice of phase
function φ(x, k) the Wronskians

f±(k) := W
(
ṽ±(•, k), ṽ0(•, k)

)
. (4.46)

They connect the regular solution to the incoming and outgoing ones via the identity

W (ṽ−, ṽ+)ṽ0 = f+ṽ− − f−ṽ+, with W (ṽ+, ṽ−) = 2ik, (4.47)

that follows expanding explicitly the Wronskian and using the asymptotic behaviour of the
solutions in their domain of analyticity. In particular this implies the following corollary of
Theorem 4.17 and Theorem 4.14.
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Corollary 4.19. The Jost functions f±(k) are analytic in k ∈ D±(α, β) defined in (4.36)
and verify

f±(k) = ±(2ik) lim
x→∞

eiγ/2
√
x exp

(
±iφ(eiγx, k)

)
ṽ0(eiγx, k), (4.48)

where γ ∈ (−α, β) satisfies γ ≷ − arg(k) according to the choice of sign of (4.48).

It will be convenient for what follows to change the normalisation ṽ0(0, k) = 1 to one at
“infinity” in the sense of Corollary 4.19. Namely if f+(k) 6= 0, we define the generalised
eigenfunction of the radial equation (4.25) and our choice of phase function φ(x, k) the
function

e(x, k) := f+(k)−1ṽ0(x, k). (4.49)

With this notation we introduce for k ∈ Σα,β with f+(k) 6= 0 the radial Green’s function

G(x, x′; k) := e(x<, k)ṽ+(x>, k), (4.50)

where for x, x′ > 0, x< := min{x, x′} and x> := max{x, x′}. G(x, x′; k) is a fundamental
solution of the radial Schrödinger equation (4.25).

Remark 4.20. We now consider the spectral parameter µ appearing in Equation (4.1) as a
perturbation of the operator Kξ defined in (2.14). Consequently we will write

Kξ(Z+, µ) := Kξ + µ

for the perturbed operator. ♦

Remark 4.21. Notice that eventual zeros of f+(k) for k ∈ C+\{0} correspond to eigenvalues
of the operator. ♦

In view of Theorem 4.14 and 4.17, G(x, x′; k) possesses a meromorphic continuation in k
into the possibly two-sheeted domain, projecting to D+(α, β) defined by (4.36).

Finally we introduce the so-called scattering matrix element

s(k) =
f−(k)

f+(k)
(4.51)

which in view of Corollary 4.19 is a meromorphic function of k over D+(α, β) ∩D−(α, β).

Lemma 4.22. Let x, x′ > 0 and −β < arg(k) < α.
1. The radial Green’s function and the radial generalised eigenfunctions satisfy the func-

tional relation

G(x, x′; k)−G(x, x′;−k) = −2ik e(x<, k)e(x>,−k). (4.52)

2. The scattering matrix element satisfies the following relation

s(−k) = s(k)−1. (4.53)

3. The scattering matrix elements and the radial generalised eigenfunctions satisfy the
functional relation

s(k)e(x,−k) = e(x, k). (4.54)
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Proof. From (4.35) and (4.45) we have that

f+(−k) = W
(
ṽ+(•,−k), ṽ0(•,−k)

)
= W

(
ṽ−(•, k), ṽ0(•, k)

)
= f−(k) (4.55)

for k ∈ D+(α, β) ∩ D−(α, β). Therefore, using (4.47) and the definitions of the radial
Green’s function and the radial generalised eigenfunctions, we get

G(x, x′; k)−G(x, x′;−k) = e(x<, k)ṽ+(x>, k)− e(x<,−k)ṽ+(x>,−k)

= ṽ0(x<, k)
(
f−(−k)−1ṽ+(x>, k)− f+(−k)−1ṽ+(x>,−k)

)
= ṽ0(x<, k)f−(−k)−1f+(−k)−1

(
f+(−k)ṽ+(x>, k)− f−(−k)ṽ+(x>,−k)

)
= ṽ0(x<, k)f+(k)−1f+(−k)−1

(
f+(−k)ṽ−(x>,−k)− f−(−k)ṽ+(x>,−k)

)
= −2ik e(x<, k)f+(−k)−1ṽ0(x>,−k) = −2ik e(x<, k)e(x>,−k).

The second part and the third part follows as a direct application of (4.55) to the definition
of the scattering matrix elements.

A first consequence of Lemma 4.22 is that it is enough to discuss the scattering matrix
elements in the angle −β < arg(k) < α.

With the above definitions we can discuss the notion of eigenvalues for the radial non-
selfadjoint Schrödinger operator Kξ(Z+, µ) in L2((0,∞), cosh2(ξ)dξ). We define

EZ+,µ :=
{
k ∈ C+ \ {0} | f+(k) = 0, e−ξ/2eiφ(ξ,k) ∈ L2((0,∞), cosh2(ξ)dξ)

}
. (4.56)

If k ∈ EZ+,µ, we call k an eigenvalue of this quadratic eigenvalue problem. All other zeros
of the Jost function f+(k) are called resonances of Kξ(Z+, µ) and we denote them by

RZ+,µ :=
{
k ∈ D+(α, β) \ EZ+,µ | f+(k) = 0

}
. (4.57)

Remarks 4.23. 1. The condition ξ 7→ e−
ξ
2 eiφ(ξ,k) ∈ L2((0,∞), cosh2(ξ)dξ) is automat-

ically fulfilled when k ∈ C+ \ {0}, independently of µ.
2. There cannot be real positive k ∈ EZ+,µ. In fact, if there would exist k ∈ (0,∞) in
EZ+,µ, then by Theorem 4.14 we would have v+(ξ, k) ∈ L2((0,∞), cosh2(ξ)dξ), but
it is evident from the asymptotic behaviour of v+ that this is impossible. On the other
hand, we cannot exclude a priori the presence of real k in RZ+,µ.

3. Two Jost functions cannot vanish simultaneously in −β < arg(k) < α, otherwise
ṽ+ and ṽ− (or v+ and v−) would be linearly dependent in contradiction with their
asymptotic behaviour. Therefore the points of EZ+,µ ∪ RZ+,µ contained in −β <
arg(k) < α are in one to one correspondence with all the poles of the scattering
matrix elements s(k).
In view of the definitions (4.49) and (4.50), the set EZ+,µ ∪ RZ+,µ can be identified
with the set of poles of the radial Green’s function G(ξ, ξ′; k) or with the set of poles
of the generalised radial eigenfunctions e(x, k).

4. The set RZ+,µ of resonances does not depend on the choice of the phase function
which determines the Jost functions f±(k), the generalised radial eigenfunctions and
the scattering matrix elements. ♦
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5. Formal partial wave expansion of the Green’s function

For real E we know from Remark 3.1 that the spectrum of Kη = Kη(E,Z−, h) consists of
an infinite number of simple eigenvalues

µ0(E) < µ1(E) < µ2(E) < µ3(E) < . . .

tending to infinity, where in the notation of Remark 3.1 we have µn := λn+γ2. These extend
to analytic functions of E in some neighborhood of the real line. We shall denote by ϕn,E
the eigenfunctions

Kη(E)ϕn,E(η) = µn(E)ϕn,E(η), n ∈ N0,

normalised by

‖ϕn,E‖2 =

∫ +π

−π
|ϕn,E(η)|2 dη = 1

for E ∈ (0,∞) and then extended analytically. We choose ϕn,E real for E real.
Define

K := F HG (5.1)

with HG from Proposition 2.11 and F from (2.4). Instead of solving (HG − E)u = f in
L2(M,F (ξ, η)dξdη) for E ∈ C \ σ(HG), we look at the solutions of(

K − F (ξ, η)E
)
u(ξ, η) = F (ξ, η)f(ξ, η). (5.2)

We already know (see (2.14)) that(
K − F (ξ, η)E

)
u(ξ, η) = KE u(ξ, η) = (Kξ +Kη)u(ξ, η).

Now, using the completeness of the orthonormal base {ϕn,E}n∈N for E ∈ R, u possesses
the expansion

u(ξ, η) =
∑
n∈N0

un(ξ, η) with un(ξ, η) := ϕn,E(η)ψn,E(ξ), (5.3)

where

ψn,E(ξ) =

∫ +π

−π
ϕn,E(η)u(ξ, η) dη.

This expansion extends to complex values of E by analyticity (note that no complex conjugate
is involved, since ϕn,E is chosen real for E ∈ R). Analogously we get

F (ξ, η)f(ξ, η) =
∑
n∈N0

ϕn,E(η)gn,E(ξ) with gn,E(ξ) :=

∫ +π

−π
ϕn,E(η)(Ff)(ξ, η) dη.

(5.4)
Substituting (5.3) and (5.4) into (5.2) one gets

(Kξ +Kη)
∑
n∈N0

un(ξ, η) =
∑
n∈N0

ϕn,E(η)gn,E(ξ)
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or equivalently ∑
n∈N0

ϕn,E(η)
(

(Kξ(E) + µn(E))ψn,E(ξ)− gn,E(ξ)
)

= 0. (5.5)

Remark 5.1. (5.5) extends to complex points E 6∈ σ(H), where Kξ(E) + µn(E) possesses
an inverse Rn(E) by means of the Green’s function defined in (4.50). ♦

ψn,E(ξ) = Rn(E)gn,E(ξ) =

∫
(0,∞)

Gn(ξ, ξ̃;E)

∫ +π

−π
ϕn,E(η̃)(Ff)(ξ̃, η̃) dη̃ dξ̃, (5.6)

using (5.5). Combining (5.6) and (5.3) we obtain

u(ξ, η) =
∑
n∈N0

ϕn,E(η)

∫∫
M0

Gn(ξ, ξ̃;E)ϕn,E(η̃)(Ff)(ξ̃, η̃) dξ̃ dη̃

and we read off the partial wave expansion for the Green’s function

G(ξ, η; ξ̃, η̃;E) =
∑
n∈N0

ϕn,E(η)ϕn,E(η̃)Gn(ξ, ξ̃;E)(cosh2 ξ̃ − cos2 η̃). (5.7)

It would be of great interest to be able to prove that the sum converges in the sense of
distributions in the product space D′(M) ⊗D′(M). Then we could use our results on the
analytic continuation of the Gn and of the angular eigenfunctions to give a meromorphic
continuation of the G(ξ, η; ξ̃, η̃;E) in E to the second Riemann sheet (or k ∈ C−).

Anyhow, for each fixed N ∈ N, we can consider the restriction KN of the operator K to
the subspace

ΥN (E) :=
N⊕
n=0

Φn(E)⊗L2((0,∞), cosh2(ξ)dξ) ⊂ L2([−π, π], dη)⊗L2((0,∞), cosh2(ξ)dξ)

(5.8)
where Φn(E) is the subspace spanned by ϕn,E . The relative Green’s function

GN (ξ, η; ξ̃, η̃;E) =
N∑
n=0

ϕn,E(η)ϕn,E(η̃)Gn(ξ, ξ̃;E)(cosh2 ξ̃ − cos2 η̃)

is the truncated sum obtained from (5.7). Being a finite sum of well-defined terms, it is
convergent. Moreover it follows from the results of the previous sections that it possesses a
meromorphic continuation in E to the second Riemann sheet.

6. Resonances for the two-centers problem

With the expansion of Section 5 and the theory developed in the previous sections, we are
finally ready to define the resonances for the two-centers problem and analyse some of their
properties. This is done in Section 6.1.
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The rest of the section is then devoted to asymptotically locate these resonances. In
particular in Section 6.2 we show that the resonances can be computed as roots of some
explicit asymptotic equation, and in the subsequent sections we explicitly solve this equation
in different semiclassical energy regimes.

6.1. Definition of the resonances

The operator Kη defined by (3.5) has discrete spectrum µn(k2) admitting an analytic con-
tinuation in k2 := E in some neighborhood of the real axis. At the same time for each µ,
the resolvent of the operator Kξ(µ,Z+) (see Remark 5.1) can be extended in terms of k to
the negative complex plane, having there a discrete set of poles km(µ).

With the definitions given in Section 4.3 we set

En :=
{
k ∈ C+ \ {0} | f+(k, µn(k2)) = 0, e−ξ/2eiφ(ξ,k,µn(k2)) ∈ L2((0,∞), cosh2(ξ)dξ)

}
.

(6.1)
If k ∈ En (for some n ∈ N0), we call k an eigenvalue of the quadratic eigenvalue problem

for K = K(Z−, Z+) defined in (5.1). All other zeros of the Jost function f+(k, µn(k)) are
called resonances of K(Z−, Z+) and we denote them by

Rn :=
{
k ∈ D+(α, β) \ En | f+(k, µn(k2)) = 0

}
. (6.2)

Proposition 6.1. The sets En andRn are made by an at most countable number of elements
km ∈ D+(α, β) (m ∈ I ⊆ N) of finite multiplicity such that f+(km, µn(k2

m)) = 0.

Proof. f+(k) and µn(k2) being non-constant analytic functions of k, the statement is clear.

Remark 6.2. Notice that if k2 is an eigenvalue of the full operator K (or its restriction
KN ), then it must be an eigenvalue of Kξ(Z+, µn) for some µn(k2) (i.e. an element of En).
♦

Remark 6.3. By definition En ∩Rn = ∅. Furthermore, it is clear looking at the asymptotic
behaviour (4.7) of the phase function that it is impossible that k ∈ En and k ∈ Rn′ for
n 6= n′. ♦

Relying on the previous discussion and on Remark 4.23.2 we can switch from the k2 plane
to the k plane and refer to

EN :=
N⋃
n=0

En, RN :=
N⋃
n=0

Rn (6.3)

as the sets of eigenvalues and resonances of KN . Moreover, in view of Remark 4.23.2, the
points of EN ∪ RN contained in D+(α, β) ∩ D−(α, β) are in one-to-one correspondence
with the poles of the scattering matrix elements sn(k) := s(k, µn) and with the poles of the
Green’s functions Gn(ξ, ξ̃; k) := G(ξ, ξ̃; k, µn(k)) for n ∈ {0, . . . , N}.
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Remark 6.4. If we suppose that (5.7) is convergent, we can refer to

E :=
∞⋃
n=0

En, R :=
∞⋃
n=0

Rn (6.4)

as the sets of eigenvalues and resonances of K. As for the restricted operator, in view of
Remark 4.23.2, the points of E ∪ R contained in D+(α, β) ∩ D−(α, β) are in one-to-one
correspondence with the poles of the scattering matrix elements sn(k) and with the poles of
the Green’s functions Gn(ξ, ξ̃; k). ♦

6.2. Computation of the resonances of Kξ

Consider the equation

0 = Kξ(h)ψ(ξ) = −h2∂2
ξψ(ξ)− Z+ cosh(ξ)ψ(ξ)− E cosh2(ξ)ψ(ξ) (6.5)

with the condition ψ′(0) = 0. The potential

V (ξ;Z+, E) := −Z+ cosh(ξ)− E cosh2(ξ)

has a Taylor expansion around ξ = 0 given by

V (ξ;Z+, E) = −Z+

2

(
eξ + e−ξ

)
− E

4

(
eξ + e−ξ

)2

= −Z+ − E −
(
E +

Z+

2

)
ξ2 +O(ξ4) = A− ω2ξ2 +O(ξ4),

where A := −Z+ − E and ω =
√
E + Z+

2 .

Let now E + Z+

2 > 0. We would like to apply the theory developed in [6, 7, 8] and [47]
to get the resonances from the eigenvalues

en(h) = h(2n+ 1)ω (n ∈ N0)

of the harmonic oscillator
Hosc = −h2∂2

ξ + ω2ξ2,

according to
An(h,E, Z+) = −Z+ − E − ih(2n+ 1)ω +O(h3/2).

Remark 6.5. [6, 7, 8] and [47] are not directly applicable, as there it is essential to assume
that the potential is bounded, and this is clearly false in (6.5). ♦

The problem stressed by the previous remark can be solved. With the change of variable
given by y := sinh(ξ) : (0,∞) → (0,∞) we change the measure from cosh2(ξ) dξ to√
y2 + 1 dy. At the same time the differential equation of Kξ(Z+, µ) takes the form

−h2(y2 + 1)∂2
yu(y)− h2y∂yu(y) +

(
µ− k2(y2 + 1)− Z+

√
y2 + 1

)
u(y) = 0.
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Note that µ will correspond to an eigenvalue of the angular equation Kη, and as such it will
be an analytic function of E. Moreover it will be real for real values of E (see Section 3).

With the ansatz

u(y) :=
1

4
√
y2 + 1

v(y)

we can rewrite the differential equation in Liouville normal form as

y2 + 1
4
√
y2 + 1

(
−h2∂2

yv(y) + V (k, Z+, µ, h; y)v(y)
)

= 0 (6.6)

where

V (k, Z+, µ, h; y) := −k2 − Z+√
y2 + 1

+
µ

1 + y2
− y2 − 2

4(y2 + 1)2
h2.

This potential V has the following properties:
• it is smooth in (0,∞);
• it is bounded;
• it is analytic in a cone centered at the positive real axis;
• it has a non-degenerate global maximum at y = 0;
• around the maximum V can be expanded in Taylor series as

V (k, Z+, µ, h; y) = A− ω2y2 +O(y4),

where A := −Z+ − k2 + µ− h2

2 and ω =
√
µ+ 5

4h
2 − Z+

2 .

Therefore it satisfies the assumptions of [6, 7, 8] and [47], there a resonance is an exact
zero of some symbol in the semi-classical parameter, and we are left to compute the leading
terms of this symbol. This allows us to approximate the resonances with the eigenvalues of
the harmonic oscillator according to

An(h,E, Z+, µ) = −Z+ − k2 + µ− ih(2n+ 1)ω +O(h3/2). (6.7)

This given, we have a solution of (6.6) if v is identically 0 or if An = 0. In summary,

Proposition 6.6. For any given Z+ and µ, the resonances of Kξ(Z+, µ) are asymptotically
given by the zeroes of a symbol An(h,E, Z+, µ) whose expansion as h → 0 is provided by
(6.7).

From this formula one can have a first very rough approximation of the resonances En = k2
n

in orders of <(µ)� 0 and h small but constant as follows

=En = (2n+ 1)h
√
<µ+ =µ+O

(
(<µ)−1/2

)
, <En =

√
<µ− Z+ +O

(
(<µ)−1/2

)
.

(6.8)

Remark 6.7. The approximation (6.7) identifies the resonances generated by the top of
the potential (at ξ = 0) and these corresponds to the resonances generated by the classical
closed hyperbolic trajectory bouncing between the two centers (see Remark 2.2.1). ♦
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Remark 6.8. In [46] it is proven that for Z+ < 0, |Z+| < Z−, there is for small energies a
region of the phase-space characterized by closed orbits related to a local minimum of the
potential. We expect in this case the appearance of some shape resonances at exponentially
small distance in h from the real axis (see [22, 23] and [25, Chapter 20]). We plan to study
the existence and the distribution of these other resonances in a future work. ♦

6.3. Eigenvalues asymptotics and resonant regions for Z− = 0 near the
bottom of the spectrum

As we did previously, before studying the general system, let us have a look to the simplest
case Z− = 0. With a proper renaming of the constants and the notation of (3.3), in [38,
Section 2.331] it is proved that

Theorem 6.9. For δ → +∞ and n ∈ N0, the eigenvalues λ±n of the Mathieu equation
written in the form −y′′(x) + (2δ cos(2x)− λ)y(z) = 0 are

λ+
n (δ) = −2δ + (4n+ 2)

√
δ +O(1) , λ−n+1(δ) = −2δ + (4n+ 2)

√
δ +O(1).

Thus we have as a direct consequence the following theorem.

Corollary 6.10. In the limit h↘ 0 and for every E > 0 we have

µ+
n (h,E, 0) = (2n+ 1)

√
E h+O(h2) , µ−n (h,E, 0) = (2n+ 1)

√
E h+O(h2).

where µ±n are the eigenvalues described in Section 5 reindexed using the parity separation
described by item 5. of our ’fact sheet’ in Section 3 on page 11.

We can use this result in combination with (6.7) to obtain the following proposition.

Proposition 6.11. The resonances in the set Rn (see (6.2)) are given asymptotically as
h→ 0 by the solutions of the following equation

−An(h,E, Z+, µ
+
m(h,E, 0)) = 0.

Neglecting the error terms and writing E = k2 we have

k2 + Z+ − (2n+ 1)kh+ ih(2m+ 1)

√
(2n+ 1)kh+

5h2

4
− Z+

2
= 0. (6.9)

6.4. Eigenvalues asymptotics and resonant regions for Z− > 0 near the
bottom of the spectrum

Notice that we can always define Z− in such a way that it is non-negative. In presence of
the Z− term the equation Kηψ(η) = 0 assumes the form

0 = −h2∂2
ηψ(η) +

(
−µ+ Z− cos(η) + E cos2(η)

)
ψ(η), (6.10)

with periodic boundary conditions on [−π, π].
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Remark 6.12. In view of (6.10), we have, for all normalized ψ in the domain of Kη,

(ψ,K0
ηψ)− Z− ≤ (ψ,Kηψ) ≤ (ψ,K0

ηψ) + Z−.

By the min-max principle (see [42, p. 75]), we get, for all n,

|µn(h,E, Z−)− µn(h,E, 0)| ≤ Z−,

where the behaviour of µn(h,E, 0) is given by Corollary 6.10. ♦

To obtain better estimates for the spectrum in orders of small h we use the ε-quasimodes
[4, 31]. If A is a self-adjoint operator on D(A) in a Hilbert space H, then for ε > 0 one
calls a pair (

ψ̃, Ẽ
)
∈ D(A)× R, with

∥∥ψ̃∥∥ = 1 and
∥∥(A− Ẽ)ψ̃∥∥ ≤ ε

an ε-quasimode (so with this notation an eigenfunction ψ with eigenvalue E is a 0-quasimode).
The existence of an ε-quasimode

(
ψ̃, Ẽ

)
implies that the distance between Ẽ and the

spectrum of A fulfils

dist
(
σ(A), Ẽ

)
≤ ε. (6.11)

In particular there exists an eigenvalue E of A in the interval [Ẽ − ε, Ẽ + ε] if we know that
in that interval the spectrum is discrete.

In our case we want to replace A with an operator of the form

Ph := −h2 d
2

dx2
+ V (x) (6.12)

with periodic boundary conditions on L2([−π, π]) with 2π-periodic V ∈ C
(
[−π, π],R+

)
, so

that

V (x) =
x2

4
+W (x) and W (x) = O(xm0) for m0 ∈ N \ {1, 2}.

Let χ ∈ C2
0 (R, [0, 1]) have support in [−π, π] and equal one on [−π/2, π/2]. We choose the

positive constant chn so that

ψhn ∈ L2
(
[−π, π]

)
⊆ L2(R) , ψhn(x) := chn χ(x)Dh

n(x) exp
(
− x2/(2h)

)
is of L2 norm one.
It is a well-known fact that on L2(R) for P̃h := −h2 d2

dx2
+ x2/4

P̃1D̃
1
n = E1

nD̃
1
n

with E1
n := n+ 1

2 , D1
n the normalised Hermite Polynomials

D1
n(x) :=

(−1)n

n!
√

2π
e
x2

4
dn

dxn
e−

x2

2 , n ∈ N0, (6.13)

and the Hermite functions D̃1
n(x) := D1

n(x)e−
x2

2 . It thus follows from L2 dilation that

P̃hD̃
h
n = EhnD̃

h
n with Ehn := hE1

n and D̃h
n := h−

1
4 D̃1

n

(
h−

1
2x
)
. (6.14)
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Lemma 6.13. (ψhn, E
h
n) (n ∈ N0) are O(hm0/2)–quasimodes for Ph.

Proof. • For any polynomial p ∈ C[x] the function x 7→ p(x) exp(−x2/h) is of order
O
(

exp(−x2/(2h)
)

for h↘ 0, uniformly in |x| ∈ [π/2,∞). Thus∫ ∞
π/2
|p(x)| exp(−x2/h) dx = O(h`) and

∫ −π/2
−∞
|p(x)| exp(−x2/h) dx = O(h`) (` ∈ N).

• By compactness of the support of χ ∈ C2
0 (R, [0, 1]), χ, χ′ and χ′′ are bounded.

• The first two remarks imply that ‖ψhn − D̃h
n‖ = O(h`) (` ∈ N). Since the scaled Hermite

function has norm ‖D̃h
n‖ = 1, the normalisation constant equals chn = 1 + O(h`) (` ∈ N).

More generally, regarding that the derivatives of D̃h
n are of the form x 7→ p(x) exp(−x2/h),∥∥ dr

dxr (ψhn − D̃h
n)
∥∥ = O(h`) (r, ` ∈ N0).

• So for the case W = 0 in (6.12), (ψhn, E
h
n) are O(h`)-quasimodes for Ph (n, ` ∈ N0).

• We are thus left to prove that ‖W ψhn‖ = O
(
h
m0
2

)
. This, however, follows by a splitting

of the L2 integral, regarding that W (x) = O(xm0) uniformly on the interval [−π/2, π/2],
where ψhn = chnD̃

h
n, and that W is bounded on [−π, π]. �

The potential η 7→ Z− cos(η) + E cos2(η) has in general two non-degenerate minima at
the points ±η∗ with

η∗ := arccos

(
−Z−

2E

)
∈ [π/2, π],

where the potential reaches the value −Z2
−

4E (see Figure 6.1).

Figure 6.1: Shape of Z− cos(η) + E cos2(η) in [−π, π].

We construct our quasimodes to be concentrated near one of the minima. Let the intervals

∆+
o and ∆+

i be two open neighborhoods of the rightmost minima such that ∆+
i ⊂ ∆+

o and
∆+
o is contained in the positive axis and is strictly separated from 0. Fix χ+ ∈ C∞0 (R) such

that χ+ = 1 in ∆+
i and χ+ = 0 in R \∆+

o .

Lemma 6.14. Let Ph be as in (6.12) but with V (x) := (x−x∗)2
4 + W (x) and W (x) :=∑∞

m=m0
am(x− x∗)m (m0 > 2) entire of order 1 and finite type. Define

ψhn(x) := h−
1
4Dn

(
h−

1
2 (x− x∗)

)
χ+(x) = Dh

n(x− x∗)χ+(x),
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where χ+ is the characteristic function defined in the previous paragraph. Then (ψhn(x), Ehn)
is an O

(
h3/2

)
-quasimode for Ph.

Proof. Applying the operator to ψhn we have

Phψ
h
n = − h2ψhn

′′
+

(x− x∗)2

4
ψhn +W ψhn

=

(
−h2Dh

n
′′

+
(x− x∗)2

4
Dh
n +W Dh

n

)
χ+ − h2

(
2h−

1
2Dh

n
′
χ′+ +Dh

nχ
′′
)

(6.12)
= Ehnψ

h
n +W ψhn − h2

(
2h−

1
2Dh

n
′
χ′+ +Dh

nχ
′′
)
.

For what concerns W ψhn we can apply Lemma 6.13, obtaining

‖W · ψhn‖ = O
(
h
m0
2

)
.

We need now to take care of the last error term. For this last term the inequality∣∣∣h2
(

2h−
1
2Dh

n
′
χ′+ +Dh

nχ
′′
)∣∣∣ ≤ hc1e

− c2
h

holds with proper c1, c2 > 0 (that depend only on n and χ+). Thus this term integrated on
[a, b] will give an error that can be bounded with any polynomial order of decay, in particular
we can choose it to be ∥∥∥h2

(
2h−

1
2Dh

n
′
χ′+ +Dh

nχ
′′
)∥∥∥ = O

(
h
m0
2

)
. �

We need now to transform our equation into something like V (x) in the previous theorem.
We already know the two minima ±η∗. If we expand V (η) := Z− cos(η) +E cos2(η) in the
neighborhood of those minima we obtain

V (x) = −
Z2
−

4E
+ E

(
1−

Z2
−

4E2

)
(η ± η∗)2 +W (η ± η∗) (6.15)

for a suitable entire W with m0 = 3 and of order 1 and finite type.
To simplify a bit the notation let us call

A := −
Z2
−

4E
, B :=

√
E

(
1−

Z2
−

4E2

)
.

We focus for the moment only the localisation near the rightmost minima, i.e. we choose
(η − η∗). With the unitary transformation Z defined by change of variable

z(η) :=
√

2B(η − η∗),

the eigenvalue equation (6.10) is transformed into

0 = Kzψ(z) := 2B

(
−h2∂2

ηψ(z) +

(
µ̃+

z2

4
+ W̃ (z)

)
ψ(z)

)
, (6.16)
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where µ̃ = 1
2B (−µ + A) and W̃ is entire with m0 = 3 and of order 1 and finite type. If in

the spirit of the previous lemmas we define

ψ̃hn(z) := Dh
n(z)χ(z), µ̃hn := A+ 2B

(
n+ 1

2

)
h,

where χ(z) is the transformed of the cut-off localised in the neighborhood of η∗, then the
couple (ψ̃hn, µ̃

h
n) is an O(h3/2)-quasimode for Kz and thus if

ψhn(η) :=
(
Z−1ψ̃hnZ

)
(η),

the couple (ψhn±, µ̃
h
n) defines an O(h3/2)-quasimode for Kη.

Exactly the same happens if we look near the other minimum, i.e. if we choose (η + η∗).
In other words in the limit of h↘ 0 the spectrum of Kη consists of pairs µ−n (h), µ+

n (h) with
the same asymptotics µ̃hn in the limit. We have proved the following.

Theorem 6.15. Let E > Z−
2 > 0. Define

µ̃hn := −
Z2
−

4E
+

√
E

(
1−

Z2
−

4E2

)
(2n+ 1)h. (6.17)

There exists an eigenvalue µhn of Kη and a constant c such that
∣∣µ̃hn − µhn∣∣ = O(h3/2).

Moreover, the interval
[
µ̃hn − 2ch3/2, µ̃hn + 2ch3/2

]
contains at least two eigenvalues of Kη.

Remark 6.16. It can be proved by standard methods involving the IMS formula [13, Chapter
3.1] and Agmon estimates [2] that the distance between the eigenvalues in each pair is of
the order exp(−C/h) with C ∈ (0,∞). ♦

We can use this result in combination with (6.7).

Proposition 6.17. The resonances in the set Rn ∩ {<E > Z−
2 > 0} (see (6.2)) are given

asymptotically as h→ 0 by the solutions of the following equation

An(h,E, Z+, µ
+
m(h,E)) = 0. (6.18)

Neglecting the error terms, the resonances for <E > Z−
2 > 0 are given by the solutions of

−E−Z+−
Z2
−

4E +

√
E − Z2

−
4E (2m+ 1)h+ih(2n+1)

√√
E − Z2

−
4E (2m+ 1)h− Z2

−
4E −

Z+

2 = 0.

Remark 6.18. For Z− = 0 we recover (6.9) of the previous section. On the other hand, in
Section 6.3 the approximation error is of order O(h2) instead of O(h3/2). ♦

For 0 < E < Z−
2 the bottom of the potential is reached at π and thus we have to expand

the potential around this other point. It turns out that in this case the eigenvalues are
approximated by

µ̂hn := E − Z− +

√
Z−
2 − E (2n+ 1)h. (6.19)
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Proposition 6.19. The resonances in the set Rn ∩ {0 < <E < Z−
2 } (see (6.2)) are given

asymptotically as h→ 0 by the solutions of the following equation

An(h,E, Z+, µ̂
+
m(h,E)) = 0.

Remark 6.20. This approach gives good results if we stay localised near the bottom of the
potential: in this case we can find an approximation for the eigenvalue up to an order of any
integer power of h.

The deficiency of this approach lies in the fact that we have no control on the relative
error between n and h. We need therefore to find a different approximation scheme that
keeps track of the mutual relation between the parameters. ♦

6.5. High energy estimates

We consider the potential in the form V (x) = E cos2(x) + Z− cos(x). Substituting this
value in the formulae given in Theorem A.4 we have∫ π

−π
V (x) dx = Eπ and

∫ π

−π
V 2(x) dx =

3E2π

4
+ πZ2

−

and thus the eigenvalues µ2m+1 and µ2m+2 can be represented as

√
µ = (m+ 1)h+

E

4(m+ 1)h
+

Z2
− − E2

4

16(m+ 1)3h3
+O

(
1

m5h5

)
+ o

(
1

m3h

)
. (6.20)

Therefore we can estimate µ2m+1 and µ2m+2 with

µ = (m+ 1)2h2 +
E

2
+

(
Z2
− +

E2

4

)
1

8(m+ 1)2h2
+O

(
1

m4h4

)
+ o

(
1

m2

)
. (6.21)

With this result, we can compute the resonances En,2m+1 and En,2m+2.

Proposition 6.21. The resonances in the set Rn (see (6.2)) are given by the solutions of
the following equation

An(h,E, Z+, µ2m+1(h,E)) = 0, (6.22)

asymptotically as h→ 0 and m→∞ with mh large.

More explicitly, for fixed n and up to errors of orders

h
3
2 , (mh)−4 and m−2,

we can approximate the resonant energies as solutions of

−E
2
−Z+ +(m+1)2h2 +

Z2
− + E2

4

8(m+ 1)2h2
+i(2n+1)h

√
(m+ 1)2h2 + E−Z+

2 +
Z2
−+E2

4

8(m+1)2h2
= 0.

Remark 6.22. We cannot hide the term (m + 1)2h2 inside the error term of order h3/2

because we want to analyze the asymptotic behaviour for m ≥ C/h (C ∈ (0,∞)) and that
term is rather big compared with h. ♦
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7. Numerical investigations

In the previous sections we have explicitly written three implicit equations to approximate
the value of the resonances in terms of the atomic numbers n and m (and of course of the
parameters h, Z+ and Z−). In this section we investigate the qualitative structure of the
resonances using the approximations given by (6.18) and (6.22).

In view of Remarks 6.7 and 6.8 we know that at least for certain values of the charges Zi
we are not describing all the resonances of the system. On the other hand the additional
resonances should appear only for small <(E). Therefore we are going to consider <(E) big
enough to be sure that we are analysing an energy region in which all the resonances should
be generated by the classical closed hyperbolic trajectory between the centers.

In this case equation (6.8) implies that <(µm) must be big and thus it is evident from
(6.17), (6.19) and (6.21) that m must be big. The quasimode approximation obtained in
Section 6.3 and 6.4 is valid only for small values of m and h, therefore these resonances are
automatically excluded from the analysis.

Figure 7.1(a) and 7.1(b) show all the approximated resonances obtained from (6.18) setting
Z− = 0. We plotted all the values including the one in regions of energies where we have no
control on the error. In these pictures we can observe an interesting behaviour. In particular
for big values of m we recover the structure shown by the resonances approximated with
(6.22): see Figure 7.2(a) and Figure 7.2(b).

The physically interesting resonances are the ones close to the real axis, this because they
can be measured in experiments. Thus to keep =(E) as small as possible we will consider
small values of n (see (6.8)).

Remark 7.1. Unless differently specified, in the plots we consider n = 0, 1, 2, 3 and m ∈
{dC/he+ k | k = 0, 1, 2, . . . , 20}. The values of Z+, Z−, h and C will be specified in the
title or in the caption of the plots. For practical reasons we plot the resonances in the plane
(<(E),−=(E)). ♦

Equation (6.22) has two couples of solutions (S+, L+) and (S−, L−), specular w.r.t.
the real axis. They correspond respectively to the resonances and the anti-resonances, i.e.
the resonances defined inverting the roles of the incoming and outgoing waves v± in the
construction of Section 4.3.

We restrict our analysis to the resonances (S+, L+). The two sets S+, L+ ∈ C− charac-
terise two different energy regions, this meaning that the resonances in S+ have relatively
small real part if compared to the resonances in L+ (see Figure 7.2(a) and Figure 7.2(b)).

The structure that we find is extremely regular. The first question that arises is if we
are really computing the resonances associated with energy values on the critical line L2

+,
associated to the hyperbolic closed orbits described in [29, 46] and summarised in Section 2.3.

For each computed resonance En,m we can use the approximation obtained in (6.21) to
estimate the associated constant of motion Kn,m. We can thus superimpose the points
(<(E),<(K)) to the bifurcation diagram and visualize how they are related. As shown in
Figure 7.3, the energy parameters appear to lay exactly upon L2

+, giving a strong hint on
the correctness of the result.
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A related question regards the order of growth of the resonances En,m in n and m. For
large energies there is only one bounded trajectory, which is closed and hyperbolic. In the
corresponding case for pseudo-differential operators the real respectively imaginary parts of
the resonances in the complex plane are known to be related to the action resp. Lyapunov
spectrum of the the closed trajectory (see [17] for the physics perspective and [18] for a
mathematical proof).
For a two-centers system it is known that the Lyapunov exponent of the bounded orbit
of energy E diverges like `(E) =

√
E ln(E) (see [29, Proposition 5.6]). As these closed

trajectories collide with the two centers, where the Coulombic potential diverges, these
results are not applicable. However it is reasonable to normalize the real and imaginary part
of the resonances in L+ (or S+) dividing them by `(<(E)). In this way it is possible to
investigate, at least qualitatively, the above prediction.

The numerics confirm the expected behaviour. It is evident from Figure 7.4(a) and 7.4(b)
that the renormalised resonances look like distributed on a regular lattice of points with
(almost perfectly) aligned and equispaced real and imaginary parts.

Notice moreover that the vertical spacing of the imaginary parts is d = O(h) and the
distance between the real axis and the resonances with smaller imaginary part is approxi-
mately d/2, as expected from the harmonic oscillator perturbation used to approximate the
resonances.

8. The two-center problem in 3D and the n-center problem

In [45, Chapters 3 and 5] it is shown that the three-dimensional two-centers system is not
essentially different from the planar one. In particular all the results obtained for the planar
problem and presented in this paper can be carried almost identical.

However two major difficulties arises. There is a non-trivial effect coming from the angular
momentum that makes the resonances set more complex and potentially more degenerate.
And the numerical approximations that we get in the planar setting fail to hold due to the
presence of singularities produced by the angular momentum.

Another important related problem is the study of resonances for the n-centers system.
The classical model for n ≥ 3 still presents hyperbolic bounded trajectories [29, 30]. In this
case however they form a Cantor set in the phase space. Moreover the non-trapping condition
fails to hold, thus in the quantum case one expects the resonances to be present and to be
distributed in some complicated way. There are only few known examples presenting a similar
structure that have been investigated rigorously (see [39] and [48]). They suggests that the
resonances are present and their density near the real energy axis scales with a fractal power
of h. The results obtained in this paper strongly support the idea that the resonances should
be present and be strictly related with the underlying classical hyperbolic structure.

Anyhow for n ≥ 3, mainly due to the lack of separability, the singularities of the potential
have to be treated by semiclassical techniques, as in [10]. A lot of work and new ideas are
required to properly extend results like [39, 48] to the n-center problem.

40



Acknowledgements

The authors are grateful to Hermann Schulz-Baldes for the interesting and useful discussions.
We thank the anonymous referee for the detailed suggestions.

We acknowledge partial support by the FIRB-project RBFR08UH60 (MIUR, Italy). M.
Seri was partially supported by the EPSRC grant EP/J016829/1.

A. Generalised Prüfer transformation in the semi-classical limit

The method for establishing estimates is based on a modification of the Prüfer variables
described in [14, Chapter 4.1]. Consider a Sturm-Liouville differential equation on [x1, x2]
of the form

(C(x)y′(x))′ +D(x)y(x) = 0 (A.1)

in which C and D are real-valued, not necessarily periodic, differentiable and with piecewise
continuous derivatives. Suppose also that C(x) and D(x) are positive and define R(x) :=√
C(x)D(x). If y is a non-trivial real-valued solution of (A.1), we can write

R(x)y(x) = ρ(x) sin(θ(x)), C(x)y′(x) = ρ(x) cos(θ(x)), (A.2)

where

ρ(x) :=
√
R2(x)y2(x) + C2(x)y′2(x) , θ(x) := arctan

(
R(x)y(x)

C(x)y′(x)

)
.

Up to now θ(x) is defined as a continuous function of x only up to a multiple of 2π. To
solve this problem we select a point a0 ∈ [x1, x2] and we stipulate that −π ≤ θ(a0) < π.
Moreover, if y(a0) ≥ 0, we have by (A.1) that

0 ≤ θ(a0) < π. (A.3)

Lemma A.1. With the above definitions

θ′(x) =

(
D(x)

C(x)

)1/2

+
1

4

(C(x)D(x))′

C(x)D(x)
sin(2θ(x)). (A.4)

Let a1 ∈ (a0, x2]. If y(x) has N zeroes in (a0, a1] and y(a0) ≥ 0, then

Nπ ≤ θ(a1) < (N + 1)π. (A.5)

Proof. The theorem is proved in [14, Chapter 4.1].
We want to apply (A.2) to equation (6.10). In particular we apply the transform to

h2
(
p(x)y′(x)

)′
+
(
µ− V1(x)

)
y(x) = 0 (A.6)

where p and V1 have period 2π. Since we are concerned with the limit µ→∞ (parametrically
depending on h), we can consider µ large enough to have µ− V1(x) > 0 in [−π, π]. In the
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new case (A.6) the two functions θ and ρ depend on µ and h as well as x, and we write
θh(x, µ). Then (A.4) becomes

θ′h(x, µ) =
1

h

√
µ− V1(x)

p(x)
+

1

4

µ p′(x)− (p(x)V1(x))′

(µ− V1(x))p(x)
sin(2θh(x, µ)). (A.7)

A first consequence of (A.7) is that as µ→∞

θ′h(x, µ) =
µ

1
2

h

√
1− Ṽ1(x)

p(x)
+O(1), (A.8)

where Ṽ1(x) := V1(x)/µ. Moreover, if y(x) has period 2π we have

θh(π, µ)− θh(−π, µ) = 2kπ (A.9)

for an integer k.

Lemma A.2. For f ∈ L1([−π, π]) and c ∈ R \ {0} let θh(x, µ) satisfy (A.7). Then∫ π

−π
f(x) sin (c θh(x, µ)) dx −→ 0

as µ → ∞ (and/or h↘ 0). The same result holds with sin (c θh(x, µ)) replaced by
cos (c θh(x, µ)).

Proof. To keep the equations compact we drop the µ dependence of θh(x, µ) in the rest of
the proof. Fix any ε > 0. Let g : [−π, π]→ R be a continuously differentiable function such
that ∫ π

−π
|f(x)− g(x)| dx < ε.

Then ∣∣∣∣∫ π

−π
f(x) sin (c θh(x)) dx

∣∣∣∣ < ε+

∣∣∣∣∫ π

−π
g(x) sin (c θh(x)) dx

∣∣∣∣ . (A.10)

Define

G(x) := g(x)

√
p(x)

1− Ṽ1(x)
.

Then by (A.8)∫ π

−π
g(x) sin (c θh(x)) dx =

h

µ
1
2

∫ π

−π
G(x) sin (c θh(x)) θ′h(x) dx+O

(
h

µ
1
2

)

= h

c µ
1
2

(
[G(x) cos (c θh(x))]π−π −

∫ π
−π G

′(x) cos (c θh(x)) dx
)

+O
(

h

µ
1
2

)
.

Hence ∣∣∣∣∫ π

−π
g(x) sin (c θh(x)) dx

∣∣∣∣ ≤ h

µ
1
2

K(g) < ε
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if µ is large enough, K(g) being a number independent of µ. The lemma follows by the
genericity of ε and (A.10).

For µ→∞, the first term on the right hand side of (A.7) can be rewritten expanding the
square root as

1
h

√
µ−V1(x)
p(x) = µ

1
2

h
√
p(x)

(
1− V1(x)

2µ +O
(
µ−2

))
= µ

1
2

h
√
p(x)
− V1(x)

2hµ
1
2
√
p(x)

+O
(

1

hµ
3
2

)
.

Then, in the case p(x) = 1,

θ′h(x, µ) =
1

h

√
µ− V1(x)− 1

4

V ′1(x)

µ− V1(x)
sin(2θh(x, µ)), (A.11)

and asymptotically as µ→∞ the first term on the right hand side becomes

1

h

√
µ− V1(x) =

µ
1
2

h
− V1(x)

2hµ
1
2

+O

(
1

hµ
3
2

)
. (A.12)

Let µn (n ∈ N) denote the eigenvalues of the Sturm-Liouville periodic problem (A.6) in
ascending order (the potential being denoted by V instead of V1). By standard theory of
Sturm-Liouville problems (see [14, Theorems 2.3.1 and 3.1.2]) the spectrum is pure point,
and the µn are at most doubly degenerate and accumulate at infinity.

Theorem A.3. Let p(x) = 1. Then as m→∞, µ2m+1 and µ2m+2 both satisfy

√
µ = (m+ 1)h+

∫ π
−π V (x) dx

4π(m+ 1)h
+ o

(
1

mh

)
.

Proof. Fix an ε > 0. Let V1 be a continuously differentiable function with period 2π such
that

V1(x) ≥ V (x) and

∫ π

−π
V1(x) dx ≤ ε+

∫ π

−π
V (x) dx. (A.13)

Let µ1,n denote the eigenvalue in the periodic problem associated with V1(x) (and with
p(x) = 1) and ψ1,n its eigenfunction. Then by [14, Theorem 2.2.2] and the first eq. in (A.13)
we have

µ1,n ≥ µn.

We can assume that ψ1,n(−π) ≥ 0 and we apply the modified Prüfer transformation to
y(x) = ψ1,2m+1(x) with a0 = −π in (A.3). Now, from (A.3) and (A.9) we have

2kπ ≤ θ(π, µ1,2m+1) < (2k + 1)π

for some integer k. From the standard theory of Sturm-Liouville problems (see aforemen-
tioned reference) we know that ψ1,2m+1 has 2(m+1) zeroes in (−π, π], hence by (A.5) with
a1 = π we have 2k = 2(m+ 1) and thus

θh(π, µ1,2m+1)− θ(−π, µ1,2m+1) = 2(m+ 1)π. (A.14)
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Integrating (A.11) with µ = µ1,2m+1 over [−π, π] we obtain

2(m+ 1)π =

∫ π

−π

1

h

√
µ− V1(x) dx− 1

4

∫ π

−π

V ′1(x)

µ− V1(x)
sin(2θh(x, µ)) dx. (A.15)

By Lemma A.2 the rightmost term is o(µ−1) as m→∞ (becoming o(h/m2) in (A.16) and
thus being suppressed from the equation). For the first integral on the right we can use the
binomial expansion as in (A.12). Thus (A.15) gives

2(m+ 1)π =
µ

1
2

h
2π −

∫ π
−π V1(x) dx

2hµ
1
2

+O

(
1

hµ
3
2

)

that is

µ− (m+ 1)h
√
µ− 1

4π

∫ π

−π
V1(x) dx+O

(
1

µ

)
= 0.

Solving for µ one gets

√
µ =

1

2

(
(m+ 1)h+

√
(m+ 1)2h2 +

1

π

∫ π

−π
V1(x) dx+O(µ−1)

)
.

Extracting (m+ 1)h and using once more the binomial expansion one gets

√
µ2m+1 = (m+ 1)h+

∫ π
−π V1(x) dx

4π(m+ 1)h
+O

(
1

m2h2

)
. (A.16)

Hence by (A.13) and by the fact that ε is arbitrarily small

√
µ2m+1 ≤ (m+ 1)h+

∫ π
−π V (x) dx

4π(m+ 1)h
+ o

(
1

mh

)
.

The opposite inequality can be proved in the same way. The result for µ2m+1 holds in the
same form using the fact that its eigenfunction must have 2(m+ 1) zeroes.

So far we have not used any differentiability-related property of V . Using the differentia-
bility, we can make the previous estimate much more precise for m large.

Theorem A.4. Let p(x) = 1, let r ∈ N, and let dr

dxrV (x) exist and be piecewise continuous.
Then µ2m+1 and µ2m+2 both satisfy

√
µ = (m+ 1)h+

r+1∑
k=1

Ak
(m+ 1)khk

+O
(

1

mr+2hr+2

)
+ o

(
1

mr+1hr−2

)
where the Ak are independent of m and involve q(x) and its derivatives up to order r − 1.
In particular,

A1 =
1

4π

∫ π

−π
V (x) dx , A2 = 0 and A3 =

1

16π

∫ π

−π
V 2(x) dx−A2

1. (A.17)
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Proof. We consider V1 = V in (A.11). Then µ1,n = µn and the case r = 1 corresponds
simply to (A.16). To deal with r ≥ 2 we reconsider (A.15), which is now

2(m+ 1)π =

∫ π

−π

1

h

√
µ− V (x) dx− 1

4

∫ π

−π

V ′(x)

µ− V (x)
sin(2θh(x, µ)) dx (A.18)

and µ is µ2m+1 or µ2m+2. By (A.11), with V1 = V , the second integral on the right in
(A.18) is∫ π

π

hV ′(x)

(µ− V (x))
3
2

(
θ′h(x, µ) +

1

4

V ′1(x)

µ− V1(x)
sin(2θh(x, µ))

)
sin(2θh(x, µ)) dx

=
h

2

∫ π

−π

(
d

dx

V ′(x)

(µ− V (x))
3
2

)
cos(2θh(x, µ)) dx (A.19)

+
h

8

∫ π

−π

V ′2(x)

(µ− V (x))
5
2

dx− h

8

∫ π

−π

V ′2(x)

(µ− V (x))
5
2

cos(4θh(x, µ)) dx

after integrating by parts. The first term on the right here is o
(
hµ−

3
2

)
by Lemma A.2, the

last is o
(
hµ−

5
2

)
for the same reason and the central one is O

(
hµ−

5
2

)
. This, together with

the binomial expansion of
√
µ− V (x) in the first term on the right of (A.18) gives

2(m+ 1)π =
µ

1
2

h
2π −

∫ π
−π V (x) dx

2hµ
1
2

−
∫ π
−π V

2(x) dx

8hµ
3
2

+O

(
1

hµ
5
2

)
+ o

(
h

µ
3
2

)
(A.20)

To solve (A.20) for µ
1
2 in terms of m, we write it as

µ
1
2 = M + µ−

1
2A1 + µ−

3
2 (A3 −A2

1) +O
(

1

m5h5

)
+ o

(
1

m3h

)
(A.21)

where M = h(m+ 1). Then, taking the reciprocals we obtain

µ−
1
2 = M−1

(
1− µ−

1
2A1M

−1 +O(h−4m−4)
)

= M−1 −M−3A1 +O(h−5m−5). (A.22)

And thus,
µ−

3
2 = M−3 +O(h−5m−5). (A.23)

Substituting (A.22) and (A.23) into (A.21) give the result for r = 2.
To deal with r = 3, we introduce θ′(x, µ) into the integrals in (A.19) involving cos(2θh(x, µ))

and cos(4θh(x, µ)), exactly as we did for (A.18). Then, if d3

dx3
V (x) exists and is piecewise

continuous, we can integrate by parts as before. The binomial expansions of 1
h

√
µ− V (x)

and (µ− V (x))−
3
2 extend (A.20) to o

(
h2µ−

5
2

)
+O

(
h−1µ−

7
2

)
giving the result for r = 3.

The process can be continued as long as q(x) is sufficiently differentiable for the integration
by parts to be carried out, and the theorem is proved.
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Remark A.5. We can intend Theorem A.4 as the result of analytic perturbation theory of

h2(p(x)y′(x))′ + y(x) = 0

(derived from (A.6)) in terms of the parameter V1(x)/µ. As a consequence we get A2k = 0
for all k ∈ N. ♦
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Figure 7.1: Solutions of (6.18) with Z− = 0, h = 0.01, n = 0, . . . , 4, m = 1, . . . , 250.
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(Z+, Z−) = (2, 4) (Z+, Z−) = (−2, 4)

(Z+, Z−) = (4, 2) (Z+, Z−) = (−4, 2)

(a) Resonances in L+.

(Z+, Z−) = (2, 4) (Z+, Z−) = (−2, 4)

(Z+, Z−) = (4, 2) (Z+, Z−) = (−4, 2)

(b) Resonances in S+.

Figure 7.2: Resonances for h = 0.05 and C = 10.
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(d) (Z+, Z−) = (−4, 2), C = 7, m = 700, . . . , 730.

Figure 7.3: Comparison of the resonances in L+ for h = 0.001 (plot above) and their projection on
the bifurcation diagram (plot below).
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Figure 7.4: Renormalised resonances E/`(<(E)) with parameters h = 0.001, C = 9 and m =
9000, . . . , 9010.
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