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REMARKS ON THE MAXIMUM PRINCIPLE FOR THE
∞-LAPLACIAN

NIKOS KATZOURAKIS - JUAN MANFREDI

In this note we give three counter-examples which show that the Max-
imum Principle generally fails for classical solutions of a system and a
single equation related to the ∞-Laplacian. The first is the tangential part
of the ∞-Laplace system and the second is the scalar ∞-Laplace equation
perturbed by a linear gradient term. The interpretations of the Maximum
Principle for the system are that of the Convex Hull Property and also of
the Maximum Principle of the modulus of the solution.

1. Introduction

Given a smooth map u : Ω⊆ Rn−→ RN , the ∞-Laplacian is the PDE system

∆∞u :=
(

Du⊗Du+ |Du|2[Du]⊥⊗ I
)

: D2u = 0. (1)

In the above, u = (u1, . . . ,uN)
>, Di ≡ ∂

∂xi
and the gradient matrix is understood

as
Du(x) = (Diuα(x))

α=1,...,N
i=1,...,n ,
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for n,N ≥ 1. The system in index form reads

Diuα D juβ D2
i juβ + |Du|2[Du]⊥

αβ
D2

iiuβ = 0,

where triple summation in i, j ∈ {1, . . . ,n} and β ∈ {1, . . . ,N} is implied al-
though it is not explicitely written. The symbol | · | denotes the Euclidean norm
on RN×n, that is

|Du|2 = DiuαDiuα = Du : Du

and [Du(x)]⊥ denotes the orthogonal projection in RN on the nullspace of the
transpose of the linear map

Du(x) : Rn −→ RN , x ∈Ω.

Geometrically, [Du(x)]⊥ defines the projection on the normal space of the image
of the solution at u(x). The hessian of u is viewed as a map D2u : Ω ⊆ Rn −→
RNn2

and
D2u(x) = (D2

i juα(x))
α=1,...,N
i, j=1,...,n.

Because of mutual perpendicularity of the two summands comprising the ∞-
Laplace system, the system actually consists of a pair of two independent sys-
tems: {

Du⊗Du : D2u = 0,

|Du|2[Du]⊥∆u = 0.

The ∞-Laplace system arises as the analogue of the Euler-Lagrange equation of
the supremal functional

E∞(u,Ω) := ‖Du‖L∞(Ω),

where the L∞ norm above is interpreted as the essential supremum of the Eu-
clidean norm of the gradient. The scalar case of ∆∞ and E∞ have a long history
and first arose in the papers of Aronsson [1, 2]. Both the functional and the sin-
gle equation have been extensively studied ever since, see for instance [4], [3],
[6], [5] and for a pedagogical introduction see [7]. When N = 1, the ∞-Laplacian
simplifies to

Du⊗Du : D2u = DiuD juD2
i ju = 0

and the perpendicular term |Du|2[Du]⊥∆u = 0 vanishes identically. The devel-
opment of the vectorial case of N ≥ 2 is much more recent and is due to the
first author (see [9]-[14]). The derivation of the ∞-Laplace system from the L∞

functional and other analytical results have first been established in [9]. Al-
most simultaneously to [9], Sheffield and Smart studied in [18] the problem of
vectorial Lipschitz extensions which amounts to changing from the Euclidean
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norm we are using herein to the operator norm on the matrix space of the gradi-
ents (this leads to a much more complicated version of “∞-Laplacian” than ours
which may have even multi-valued coefficients).

The vectorial case is largely under development and still not fully under-
stood. Particular difficulties in the study of the system (1) are the emergence
of highly singular solutions and that the operator definining ∆∞ may have dis-
continuous coefficients even when it is applied to smooth maps (see [9, 13]).
The analysis of classical solutions of the system has been done mostly in [10],
where there is also a maximum principle proved for ∞-Harmonic maps in 2×2
dimensions, namely for solutions u : Ω⊆ R2 −→ R2 of ∆∞u = 0.

In this note we consider the question of satisfaction of the Maximum Prin-
ciple for smooth solutions of the tangential part of the ∞-Laplace system when
N ≥ 2 and n≥ 1

Du⊗Du : D2u = 0, u : Ω⊆ Rn −→ RN , (2)

and also for smooth solutions of the single ∞-Laplace equation, perturbed by a
linear smooth first order term

Dv⊗Dv : D2v + Dv ·DF = 0, v : Ω⊆ Rn −→ R. (3)

For the case of the system, the Maximum Principle for the vectorial solution
is considered in the sense of the standard Maximum Principle for either the
projections along lines, or for the modulus of the solution. We show that in
both cases, the Maximum Principle in general fails. The case of projections has
an elegant restatement called the Convex Hull Property and is well-known in
Calculus of Variations (see e.g. [8]):

u(Ω) ⊆ co
(
u(∂Ω)

)
.

This inclusion says that the image is contained in the closed convex hull of the
boundary values. The equivalence of this form with the form

sup
Ω

ξ ·u ≤ max
∂Ω

ξ ·u, ∀ξ ∈ RN ,

can be seen by writting the convex hull as the intersections of all affine halfs-
paces containing it. The case of the single equation is very interesting because is
in direct constrast to the case of uniformly elliptic operators, where perturbation
by a first order term does not violate the Maximum Principle.

Our examples are the following:

Example 1.1 (Failure of the Convex Hull Property for u when Du⊗Du : D2u
= 0). Let N ≥ 2,n≥ 1.
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a) There exists ξ ∈ RN and u1 : Rn −→ RN in C∞(Rn)N such that u1 solves the
same system on Rn but the projection ξ · u1 along the line spanned by ξ does
not satisfy neither the Maximum nor the Minimum Principle:

∃ Ω
± ⊆ Rn :

sup
Ω+

ξ ·u1 6≤ max
∂Ω+

ξ ·u1

inf
Ω−

ξ ·u1 6≥ min
∂Ω−

ξ ·u1.

b) There exists u2 : Rn \{0} −→ RN in C∞(Rn \{0})N which solves

Du⊗Du : D2u = 0, on Rn \{0},

such that u2 does not satisfy the Convex Hull Property over a bounded domain:

∃ Ω b Rn \{0} : u2(Ω) 6⊆ co
(
u2(∂Ω)

)
.

Example 1.2 (Failure of the Maximum Principle for |u| when Du⊗Du : D2u
= 0). Let N ≥ 2,n≥ 1. There exists u3 : Rn −→ RN in C∞(Rn)N which solves

Du⊗Du : D2u = 0, on Rn,

such that |u3| does not satisfy the Maximum Principle:

∃ Ω⊆ Rn : sup
Ω

|u3| 6≤ max
∂Ω

|u3|.

The construction of this last example can be modified in order to provide a
bounded domain (along the lines of the constructions that will be made for b)
of Example 1.1), but we will refrain from providing all the details in this case.
The same comment applies to the Example 1.4 that follows.

Corollary 1.3. The above two examples show that in general it is not possible
the Maximum Principle to be true for the tangential part (2) of ∆∞ in positive
codimension N− n > 0, without utilising the complete ∞-Laplace PDE system
(1).

In particular, it was shown in [9] that when n = 1≤N, the tangential system
(2) is (for classical solutions) equivalent to the poperty that the solution has
constant speed. On the other hand, it was shown that the full system (1) is
equivalent to that the solution is affine.

Example 1.4 (Failure of the Maximum Principle for v for the single equation
Dv⊗Dv : D2v+Dv ·DF = 0). Let n≥ 1. There exist F ∈C∞(Rn) such that the
solution v ∈C∞(Rn) to

Dv⊗Dv : D2v + Dv ·DF = 0, on Rn,
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does not satisfy neither the Maximum nor the Minimum Principle:

∃ Ω
± ⊆ Rn :

sup
Ω+

v 6≤ max
∂Ω+

v,

inf
Ω−

v 6≥ min
∂Ω−

v.

By taking n= 1 in the above examples, all the domains that will be exhibited
become by construction bounded.

Remark 1.5. We note that in the above examples the non-homogenous single
∞-Laplace equation (3) and the tangential ∞-Laplace system (2) are closely re-
lated and this fact is heavily used in our constructions: for any vector solution
u of (2), after a calculation it can be seen that both the projection ξ · u along a
fixed direction ξ and also the modulus |u| satisfy a non-homogeneous equation
of the form (3).

We conclude this introduction by noting that very recently in [15] the first
author introduced a new theory of generalised solutions and proved existence to
the Dirichet problem for the ∞-Laplacian. See also [16, 17].

2. Constructions

Example 1.1. a) Let w1 ∈C∞
c (R) be the function

w1(t) :=



−e

1
(1− t)2−1 , 0 < t < 2,

+e

1
(1+ t)2−1 , −2 < t < 0,

0, otherwise.

Figure 1. Illustration of the function w1.

Fix also
M > sup

R
|w′1|
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and define w2 ∈C∞(R) by taking

w2(t) :=
∫ t

0

√
M2 − |w′1(s)|2 ds.

Then, the map γ : R−→ R2 given by

γ(t) :=
(
w1(t),w2(t)

)>
is a constant speed curve and in C∞(R)2:

|γ ′(t)|2 = |w′1(t)|2 + |w′2(t)|2 = M2, t ∈ R.

Then, we define u1 : Rn −→ R2 by

u1(x) := γ(x1), x = (x1, . . . ,xn)
> ∈ Rn, n≥ 1.

The smooth map u1 is a classical global solution of the tangential part of the
∞-Laplacian: since

Du1(x) =
(
γ
′(x1),0, . . . ,0

)>
, |Du1(x)|2 = |γ ′(x1)|2,

we have

Du1(x)⊗Du1(x) : D2u1(x) = Du1(x)D
(

1
2
|Du1|2

)
(x)

= γ
′(x1)

(
1
2
|γ ′|2

)′
(x1)

= 0,

for all x ∈ Rn. However, for

Ω
− = (−2,0)×R, Ω

+ = (0,2)×R,

and for
ξ = e1 = (1,0)>,

we have
sup
Ω+

ξ ·u1 > max
∂Ω+

ξ ·u1 = 0 = min
∂Ω−

ξ ·u1 > inf
Ω−

ξ ·u1.

Hence, ξ ·u1 does not satisfy neither the maximum nor the minimum principle.
By writing a convex set as the intersection of all halfspaces containing it, it
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follows that u1 can not satisfy the convex hull property either.

Figure 2. Illustration of the Convex Hull Property.

b) We can also modify the previous construction of a) in order to have
bounded domains Ω±. Indeed, define

z1(t) :=

 e

1
(2− t)2−1 , 1 < t < 3,

0, otherwise,

and choose as before
M > sup

R
|z′1|,

z2(t) :=
∫ t

0

√
M2 − |z′1(s)|2 ds.

Then, we define
u2 : Rn \{0} −→ R2

in C∞(Rn \{0})2 by taking

u2(x) :=
(
z1(|x|),z2(|x|)

)>
, x ∈ Rn \{0}, n≥ 1.

Then, u2 is a smooth solution of the vectorial Eikonal equation: indeed, since

Du2(x) =
(
z′1(|x|),z′2(|x|))>⊗

x
|x|

, x 6= 0,

we have ∣∣Du2(x)
∣∣2 =

∣∣∣z′1(|x|) x
|x|

∣∣∣2 + ∣∣∣z′2(|x|) x
|x|

∣∣∣2
=
∣∣z′1(|x|)∣∣2 + ∣∣z′2(|x|)∣∣2

=
∣∣z′1(|x|)∣∣2 + (M2 −

∣∣z′1(|x|)∣∣2)
= M2,
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for any x ∈ Rn \ {0}. Hence, u2 is a classical solution of the tangential part of
the ∞-Laplacian:

Du2⊗Du2 : D2u2 = Du2 D
(

1
2

∣∣Du2∣∣2) = 0.

However, for
Ω := {x ∈ Rn : 1 < |x|< 3}

and
ξ := e1 = (1,0)>,

we have
sup

Ω

ξ ·u2 > max
∂Ω

ξ ·u2 = 0.

Hence, the Convex Hull Property fails for u2 on Ω.

Example 1.2. Suppose u : Rn −→RN is in C∞(Rn)N and satisfies |u|> 0. Then,
we write in polar coordinates

u = ρ n, ρ := |u|, n :=
u
|u|

,

and calculate
Du = n⊗Dρ + ρDn.

Since |n|2 = 1, we have by differentation n>Dn = 0, that is n⊥Din, i = 1, . . . ,n.
Hence, by perpendicularity

|Du|2 = |Dρ|2 + ρ
2|Dn|2.

Then, we may also calculate

Du⊗Du : D2u = DuD
(

1
2
|Du|2

)
=

1
2

(
n⊗Dρ + ρDn

)
D
(
|Dρ|2 + ρ

2|Dn|2
)
.

We now define functions

ρ
∗ ∈C∞(Rn), n∗ ∈C∞(Rn)N

with
ρ
∗ > 0 on Rn, |n∗|2 ≡ 1 on Rn,
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and show that if we define u3 by taking ρ∗ and n∗ as its polar and radial co-
ordinates, then u3 is a global solution of (2) on Rn, but |u3| fails to satisfy the
Maximum Principle. Indeed, we define

ρ
∗(t) := e−|t|

2

Figure 3. Illustration of the function ρ∗.

and fix a constant
M > sup

R
|(ρ∗)′|.

Let now γ : R −→ R2 be a smooth unit speed curve parameterising the circle,
e.g. we can take

γ(t) := (cos t,sin t)>.

Then, we define

K(t) :=
∫ t

0

√
M2 −

∣∣(ρ∗)′(s)∣∣2
(ρ∗)2(s)

ds

and
n∗(t) := γ

(
K(t)

)
.

The previous definitions imply that ρ∗,n∗ satisfy

(n∗)′(t) = γ
′(K(t)

)
K′(t)

and hence
|(n∗)′(t)| =

∣∣γ ′(K(t)
)

K′(t)
∣∣ = ∣∣K′(t)∣∣,

while, ∣∣K′(t)∣∣2 =
M2 −

∣∣(ρ∗)′(t)∣∣2
(ρ∗)2(t)

which (by combining the previous two equalities) implies

(ρ∗)2(t)
∣∣(n∗)′(t)∣∣2 + ∣∣(ρ∗)′(t)∣∣2 = M2,

for all t ∈ R. Hence, if
u3 : Rn −→ R2



72 NIKOS KATZOURAKIS - JUAN MANFREDI

is given by

u3(x) := ρ
∗(x1)n∗(x1), x = (x1, . . . ,xn)

> ∈ Rn,

we have that u3 is smooth and since |Du3| ≡M, it solves

Du3⊗Du3 : D2u3 = 0, on Rn.

However, for
Ω :=

{
x ∈ Rn : |x1|< 1

}
,

we have that |u3|= ρ∗ does not satisfy the maximum principle:

sup
Ω

|u3| = 1 >
1
e
= max

∂Ω

|u3|.

Example 1.4. In the setting of Example 1.1, consider again the function w1 ∈
C∞

c (R) given by

w1(t) :=



−e

1
(1− t)2−1 , 0 < t < 2,

+e

1
(1+ t)2−1 , −2 < t < 0,

0, otherwise.

Fix
M > sup

R
|w′1|

and define w2 ∈C∞(R) by taking

w2(t) :=
∫ t

0

√
M2 − |w′1(s)|2 ds.

Then, the map γ : R−→ R2 given by

γ(t) :=
(
w1(t),w2(t)

)>
is a constant speed curve and in C∞(R)2:

|γ ′(t)|2 = |w′1(t)|2 + |w′2(t)|2 = M2, t ∈ R.

Then, we define v : Rn −→ R in C∞(Rn) by

v(x) := w1(x1), x = (x1, . . . ,xn)
> ∈ Rn, n≥ 1.
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We also define F : Rn −→ R in C∞(Rn) by

F(x) :=
1
2

∣∣w′2(x1)
∣∣2, x = (x1, . . . ,xn) ∈ Rn, n≥ 1.

Given v,F as above, we calculate

Dv⊗Dv : D2v + Dv ·DF = w′1w′1w′′1 + w′1

(
1
2

∣∣w′2∣∣2)′
=

1
2

w′1
(∣∣w′1∣∣2)′ + 1

2
w′1
(

M2 −
∣∣w′1∣∣2)′

= 0,

on Rn. Hence, v is a global smooth solution of

Dv⊗Dv : D2v + Dv ·DF = 0,

on Rn. However, for

Ω
− := (−2,0)×R, Ω

+ := (0,2)×R,

we have
sup
Ω+

v > max
∂Ω+

v = 0 = min
∂Ω−

v > inf
Ω−

v.

Hence, v does not satisfy neither the Maximum nor the Minimum Principle.
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