
Precipitation and floodiness 
Article 

Accepted Version 

Creative Commons: Attribution-Noncommercial-No Derivative Works 4.0 

Stephens, E. ORCID: https://orcid.org/0000-0002-5439-7563, 
Day, J. J., Pappenberger, F. and Cloke, H. ORCID: 
https://orcid.org/0000-0002-1472-868X (2015) Precipitation 
and floodiness. Geophysical Research Letters, 42 (23). pp. 
10316-10323. ISSN 0094-8276 doi: 10.1002/2015GL066779 
Available at https://centaur.reading.ac.uk/48005/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .
Published version at: http://onlinelibrary.wiley.com/doi/10.1002/2015GL066779/abstract 
To link to this article DOI: http://dx.doi.org/10.1002/2015GL066779 

Publisher: American Geophysical Union 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

CentAUR 

Central Archive at the University of Reading 
Reading’s research outputs online

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


Precipitation and Floodiness 1 

E. Stephens
1*

, J. J. Day
2
,
 
F. Pappenberger

3
 and H. Cloke

12
 2 

*
Corresponding author: elisabeth.stephens@reading.ac.uk 3 

1
School of Archaeology, Geography and Environmental Sciences, University of Reading, 4 

Whiteknights, RG6 6AB 5 

2
School of Mathematics and Physical Sciences, University of Reading 6 

3
 European Centre for Medium-Range Weather Forecasts, Shinfield Park, Reading 7 

 8 

Key Points 9 

 Indices of floodiness are introduced to assess large-scale flood hazard 10 

 Precipitation anomalies do not correlate well with those for floodiness 11 

 A skilful seasonal precipitation forecast may not reflect flood hazard 12 

Abstract 13 

There are a number of factors that lead to non-linearity between precipitation anomalies and 14 

flood hazard; this non-linearity is a pertinent issue for applications that use a precipitation 15 

forecast as a proxy for imminent flood hazard. We assessed the degree of this non-linearity 16 

for the first time using a recently developed global-scale hydrological model driven by the 17 

ERA-Interim Land precipitation reanalysis (1980-2010). We introduced new indices to assess 18 

large-scale flood hazard, or floodiness, and quantified the link between monthly precipitation, 19 

river discharge and floodiness anomalies at the global and regional scales. The results show 20 

that monthly floodiness is not well correlated with precipitation, therefore demonstrating the 21 

value of hydrometeorological systems for providing floodiness forecasts for decision-makers. 22 



A method is described for forecasting floodiness using the Global Flood Awareness System, 23 

building a climatology of regional floodiness from which to forecast floodiness anomalies out 24 

to two weeks. 25 

1. Introduction 26 

An accurate forecast that informs as to whether the upcoming monsoon season is likely to see 27 

an anomaly in terms of flood frequency and magnitude could initiate valuable flood 28 

preparedness activities [Coughlan de Perez et al., 2015]. However, for decision-makers 29 

whose mandate is to respond to floods across regional scales rather than at single points in a 30 

catchment, there are no indices to reflect and therefore forecast the large-scale variability in 31 

flood hazard, termed here as floodiness. In contrast, indices do exist for assessing regional 32 

storminess (e.g. storm days [Webster et al., 2005]) or drought (e.g. average area covered by 33 

drought [Hisdal and Tallaksen, 2003]). Floodiness indices are required to determine the 34 

degree of non-linearity between precipitation, discharge and flood anomalies and therefore 35 

decide upon appropriate methods for forecasting floodiness; are meteorological systems 36 

sufficient to approximate floodiness at large-scales, or are hydrometerological forecasting 37 

systems required to forecast floodiness for end-users that operate at large-scales?   38 

There are numerous factors that lead to non-linearity between rainfall anomalies and the 39 

frequency and magnitude of floods. These factors include storage components such as the 40 

land surface and subsurface memory (groundwater, soil moisture, snow cover), and transfer 41 

components such as the interaction between the spatial and temporal rainfall patterns and the 42 

river network configuration and the catchment concentration time (the time it takes 43 

precipitation to reach the river mouth), as well as man-made interventions such as reservoirs. 44 

Accordingly, it follows that the most extreme amount of monthly precipitation ever recorded 45 

(for example) may not correlate with the most extreme flood. 46 



1.1. Indices for Floodiness 47 

Whereas flood magnitude, return period or duration can be easily assessed for a single point 48 

on a river, these do not provide a measure of the flood activity across an entire region, nor 49 

does the regional index introduced by Franks et al. [2002], the purpose of which is to account 50 

for spatial correlation in gauged data for regional flood frequency estimation. Therefore an 51 

index of floodiness is required to calculate a single value that expresses the frequency, 52 

variability and magnitude of floods across a specified region during a specified time period. 53 

While there is currently no literature examining how to measure floodiness across a region, 54 

there are obvious parallels with the literatures on storminess and drought.  55 

One of the main parallels is that the choice of such an index is not a simple one. A multitude 56 

of indices exist for both drought [Lloyd-Hughes, 2013] and storminess [Bärring and 57 

Fortuniak, 2009] in reflection of the quantity being assessed (e.g. meteorological / 58 

hydrological drought or pressure / wind speed) and also, for droughts in particular, to 59 

represent the range of different drought impacts [Fundel et al., 2013; Lloyd-Hughes, 2013]. 60 

Indices of storminess and drought also need to reflect intensity, duration, location and 61 

frequency [Bärring and Fortuniak, 2009; Lloyd-Hughes, 2013].  62 

Floods similarly exhibit different intensity, duration and frequency characteristics that will 63 

equate to ‘impact’ for different end-users. For example, the most intense floods (greater 64 

inundation extents and flood depths) will affect more people and property, but it is the longer 65 

duration floods that may lead to higher business interruption losses for the insurance industry 66 

(e.g. 2011 Thailand floods [Gale and Saunders, 2013]).  67 

For both storms and droughts a threshold is often used to define the event. Hydrological or 68 

streamflow droughts are usually characterised by indices that measure the duration, severity 69 

and magnitude (combination of severity and duration) for which an assigned runoff threshold 70 



has been exceeded [Fundel et al., 2013]. Some storminess indices also take threshold-based 71 

approaches, for example calculating the number of times that a pressure threshold has been 72 

exceeded in a given year [Bärring, 2004; Allan et al., 2009], or calculating the number of 73 

storm days, as defined by a wind speed threshold [Fischer-Bruns et al., 2005]. 74 

These thresholds can also be applied over areas rather than at just a single point. For storms, 75 

the occurrence within a defined region can be quantified, such as the number of tropical 76 

cyclones per year in the North Atlantic [Holland and Webster, 2007]. Areal Drought Indices 77 

can take into account whether the runoff of a grid cell has exceeded a given drought 78 

threshold; and using the value for each gridcell, the mean annual drought area can be 79 

calculated as the average daily total area in drought [Tallaksen and Stahl, 2014] or by 80 

assessing the volume deficit for each grid cell in a given time period [Hisdal and Tallaksen, 81 

2003]. 82 

In practice, different sectors will have different definitions of a flood, accordingly, different 83 

floodiness indices may eventually be required. This study provides a starting-point for a 84 

discussion on assessing floodiness, based on simulations of the Global Flood Awareness 85 

System [Alfieri et al., 2013], an operational global-scale flood forecasting system. 86 

The aim of this paper is to determine whether there is a requirement to forecast floodiness 87 

rather than using precipitation (e.g. total monthly or seasonal precipitation) or discharge 88 

variables as a proxy for potential flood activity. This aim will be met through the following 89 

objectives: 90 

1. Derivation of directly comparable precipitation and river flow time-series, so as not to 91 

introduce uncertainty into the analysis by using observations / modelled data from 92 

different sources. 93 

2. Discussion as to how floodiness should be assessed, and creation of such indices. 94 



3. Quantification of the link between the time series of precipitation, discharge and 95 

floodiness 96 

2. Methodology 97 

2.1. Model Set-Up 98 

The determination of the necessary forecasting systems to forecast floodiness requires an 99 

investigation into the relationship between precipitation, discharge and floodiness over time. 100 

For such an investigation it is important to isolate the effect of non-linearity in the hydro-101 

meteorological system from the uncertainties of using non-homogenous precipitation and 102 

river flow data. In particular, though global flood datasets exist [e.g. Adhikari et al., 2010], 103 

data on river flow, inundation and flood disasters are particularly sparse and also affected by 104 

reporting bias [Kron et al., 2012] as well as the flows themselves being influenced by human 105 

intervention such as dams and land-use change. Here, a hydro-meteorological model is driven 106 

with a precipitation dataset, therefore any variability in correlation between modelled 107 

(naturalised) flows and precipitation is driven solely by the influence of spatial patterns in 108 

precipitation and the hydrological system. 109 

A hydro-meteorological model covering a large spatial domain and able to run over a long 110 

time period is required to assess floodiness at scales larger than the (average) river catchment 111 

size. For this paper, the integrated hydro-meteorological forecasting chain of the operational 112 

Global Flood Awareness System [Alfieri et al., 2013] is used. This system’s structure links 113 

the HTESSEL land surface module [Balsamo et al., 2014] of the European Centre for 114 

Medium-Range Weather Forecasts’ Integrated Forecasting System (IFS) to a one-115 

dimensional channel routing model [Van Der Knijff et al., 2010]. This system therefore 116 

simulates hydrological and cryospheric processes in the land surface module, with the 117 

resultant runoff routed by the routing model to provide daily river discharge estimates at 0.1 118 

degree resolution, equivalent to ~10km at midlatitudes. 119 



 The precipitation dataset used to drive the hydro-meteorological model is the ERA-Interim 120 

dataset [Dee et al., 2011], bias-corrected using the Global Precipitation Climatology Project 121 

[Huffman et al., 2009] creating the so called ERA-Interim Land dataset [Balsamo et al., 122 

2015]. ERA-Interim uses the IFS forecast model to extrapolate to where observations are 123 

unavailable, giving a gridded precipitation product at approximately 80km horizontal 124 

resolution. Though the precipitation resolution is coarser than that of the runoff modelling, 125 

high resolution in runoff prediction is of great importance, even when the precipitation is of 126 

coarser scale [Wood et al., 2011]. The land surface is an integrator of precipitation, and also 127 

provides moderating processes of rainfall runoff partitioning based on land use and cover, 128 

soil and vegetation properties, slope and many other catchment factors. Here, the time period 129 

used from the ERA-Interim Land dataset is 1980 to 2010. The analyses have been performed 130 

at the global scale and within climatic regions as defined by Giorgi and Francisco [2000]: 131 

those used commonly in the climate literature and for seasonal forecasting [e.g. Weisheimer 132 

and Palmer, 2014], see Figure 1. 133 

 134 

Figure 1: The GloFAS model river network, divided by the 21 regions described by 135 

Giorgi and Francisco [2000] 136 



A comprehensive analysis of GloFAS capabilities is detailed in Alfieri et al. [2013]. A 21 137 

year time series of simulated river discharge was evaluated against daily observations at a 138 

number of stations included in the Global Runoff Data Centre database, an international 139 

archive operating under the auspices of the World Meteorological Organisation. Findings of 140 

this analysis show that current ensemble weather predictions can enable skilful detection of 141 

hazardous events with a forecast horizon as long as 1 month in large river basins, providing 142 

that the initial conditions are estimated correctly. GloFAS was found to be skilful at 71% of 143 

discharge stations, with a maximum Nash Sutcliffe value of 0.92, but with less skill in arid 144 

and semi-arid regions due to uncertainties arising from the modelling of some hydrological 145 

processes such as evapotransipiration, infiltration and lack of simulated water withdrawals for 146 

irrigation purposes. However, the early warning capability still has utility in demonstrating 147 

anomaly from climatology. 148 

It is important to note that the GloFAS has been designed for early warning purposes, rather 149 

than for quantitative streamflow forecasting, building on the success of continental scale 150 

early warning systems such as the European Flood Awareness System [Pappenberger et al., 151 

2008, 2015; Thielen et al., 2009; Alfieri et al., 2013]. Its value is the ability to assign each 152 

forecast value a correct probability of occurrence taken from its cumulative distribution 153 

function and thus identify extreme values in the upper tail of the distribution, which can 154 

possibly correspond to flooding conditions [Alfieri et al., 2013]. While no replacement for 155 

local forecasting based on local conditions, the reality is that in many areas of the world these 156 

systems simply do not exist. In addition, the added value of regional overviews for disaster 157 

preparedness and earlier warning provision means that this type of early warning system has 158 

repeatedly demonstrated utility [Pappenberger et al., 2015]. 159 

2.2. Derivation of precipitation and river discharge indices 160 



This paper defines floodiness and aims to quantify the link between precipitation and 161 

floodiness at large scales. As such, indices of these variables are required for comparison. For 162 

precipitation the average monthly precipitation is averaged across all land points.  163 

Both river discharge and floodiness are calculated for every major river pixel, here defined 164 

with a threshold of cells that have >1000km
2
 upstream area; they could be assessed for every 165 

gridcell, but this would simply be an assessment of runoff rather than give an indication of an 166 

impactful river level. Within the model structure chosen, this means that approximately 10 167 

gridcells flow into that cell, and there are 300808 river cells globally 168 

The discharge has been calculated two ways, firstly, as the monthly mean daily discharge 169 

averaged across all major river cells, secondly, as the mean of monthly daily maximum 170 

discharge across all river cells. The first was included as a ‘mass balance’ type of index, 171 

whereas the second provides an index that is more equated with flood magnitude. 172 

2.3.  Definition of floodiness indices  173 

In this paper a threshold approach is chosen to measure floodiness to reflect similar 174 

approaches described in the drought and storminess literature. The thresholds for each grid 175 

cell were calculated by fitting a Gumbel extreme value distribution to the Peaks-over-176 

Threshold of daily flows in each gridcell, as used for the operational GloFAS [See Alfieri et 177 

al., 2013].  178 

Two threshold approaches are used in this paper to define floodiness. The first is the 179 

Percentage Floodiness; the percentage of river cells, in a defined region, that exceed a 180 

defined flow threshold during a given time period. Mathematically, the percentage floodiness 181 

can be defined, for any given time period, using Equation 1: 182 



𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝐹𝑙𝑜𝑜𝑑𝑖𝑛𝑒𝑠𝑠 =
100

𝑛
∑ 𝟏{𝑧𝑖>𝑡𝑖}

𝑛

𝑖=1

 

𝑤ℎ𝑒𝑟𝑒:  𝟏{𝑧𝑖>𝑡𝑖} = {
1 if 𝑧𝑖 > 𝑡𝑖    (on at least one day during the time period) 
0 if 𝑧𝑖 ≤ 𝑡𝑖                (on all days in the time period)              

 

(1) 183 

n, number of river cells 184 

i, a given river cell  185 

ti, return period threshold for a given river cell (here defined by calculating the design 186 

flows using the full flow record)  187 

z, river discharge 188 

As with droughts, there will be spatial correlation in the pattern of floods (e.g. the flows in 189 

cells along the same river will be correlated), here the spatial correlation is not corrected to 190 

enable a flood along a longer river to have a higher weighting than one on a smaller river. 191 

Here the 20 year flood threshold is chosen as the return period threshold, ti, though other 192 

return period thresholds have been plotted in Figure S3(i).The 20 year event is chosen as this 193 

corresponds to the ‘Extreme’ flow in the GloFAS operational forecasts, and does not need to 194 

be extrapolated from the 31 year time series as would a more extreme flow.  The time period 195 

used in this study is a month for the global analysis (Figures 1, 2 and 3) and a week centred 196 

around each date for East Africa in Figure 4. 197 

Similarly for storms and droughts, the flood event duration is also important. In this study a 198 

‘storm days’ type of approach has also been assessed to provide a potentially contrasting 199 

index of floodiness; this second index is the Duration Floodiness; the percentage of days that 200 

a given threshold was exceeded in all major river cells in a defined region during the 201 



specified time period. Duration Floodiness can be defined, for any time period, using 202 

Equation 2: 203 

𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝐹𝑙𝑜𝑜𝑑𝑖𝑛𝑒𝑠𝑠 =
100

𝐷𝑛
∑ ∑ 𝟏{𝑑,𝑧𝑖>𝑡𝑖}

𝑑

𝑖=1

𝑛

𝑖=1

 

𝑤ℎ𝑒𝑟𝑒, 𝑜𝑛 𝑎𝑛𝑦 𝑑𝑎𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑, 𝑑:   𝟏{𝑑,𝑧𝑖>𝑡𝑖} = {
1 if 𝑧𝑖 > 𝑡𝑖  
0 if 𝑧𝑖 ≤ 𝑡𝑖

 

(2) 204 

D, number of days in a given time period 205 

The correlation between the variables has been assessed using the Spearman’s Rank 206 

Correlation Coefficient; a non-parametric test was required due to the nature of the floodiness 207 

data. 208 

3. Results and analysis 209 

3.1. Comparison between different indices of floodiness and discharge 210 

Figure S1 shows that the noisy relationship between the two floodiness indices, with the 211 

imperfect correlation indicating that they measure two contrasting properties of flood hazard 212 

(Figure S2 shows these relationships for three regions). Interestingly, the duration floodiness 213 

value is higher during the boreal autumn months, whereas the percentage floodiness index is 214 

highest during the boreal spring. This result therefore demonstrates the importance of 215 

choosing an index for floodiness that is specific to a particular application. For example, the 216 

percentage floodiness may be more important for emergency responders since it represents 217 

more people affected, but the duration index for insurers with business interruption losses 218 

directly related to the flood duration. 219 



In contrast the plot in Figure S1 for discharge shows that the global monthly mean discharge 220 

and the global monthly maximum discharge are very well correlated. As such, these indices 221 

can be used interchangeably as a different index offers no additional information. 222 

3.2. Comparison between floodiness, discharge and precipitation 223 

The anomalies of the two floodiness indices, the maximum monthly discharge and the mean 224 

precipitation are compared over a 31-year time series by calculating the difference between 225 

each month’s value compared to the long-term mean for that month (Figure 2, Figures S3(i-226 

iii) for regional scales). A two-year running mean of the anomaly is also plotted, and visual 227 

comparison of the running mean between the different time series shows that precipitation 228 

and discharge appear to be relatively well correlated (for example showing similar peaks for 229 

mid-1988 to mid-1990 and troughs between mid-1990 to mid-1993). However, though there 230 

is a 1999 to 2001 peak in all the time series, in general precipitation and floodiness are not as 231 

well correlated as precipitation and discharge. While the 2-year running mean of the two 232 

different floodiness indices appears visually similar, examination of the monthly data shows 233 

that the choice of a ‘floodiest’ month is different between the two; this is likely to be because 234 

the two floodiness measures reflect seasonal influences on flood characteristics. Figure S1 235 

shows the two floodiest months to be in the Boreal spring for the percentage floodiness, and 236 



the Boreal autumn for the duration floodiness.237 

 238 

Figure 2: Time series of anomalies in Monthly Percentage Floodiness, Monthly 239 

Duration Floodiness, Maximum Monthly Discharge, and Mean Monthly Precipitation 240 

from 1980-2010 for all global major river pixels at 0.1 degree resolution. Two year 241 

running mean displayed as red line. Annotations indicate the Spearman’s Rank 242 

Correlation Coefficient, with significance at 0.05 indicated by *. 243 

Further analysis at the regional scale in different climatic regions is needed to understand the 244 

mechanisms for the differences in these indices. Figure 3, for the East Africa Giorgi Region, 245 

shows that the precipitation-floodiness and precipitation-discharge relationships are month 246 

dependent, demonstrating that precipitation will be a better approximation for floodiness in 247 

August than May. Where river flow corresponds to the previous winter’s snowfall rather than 248 

spring precipitation, e.g. March to June in Western North America (Fig S4(i) and Table S1), 249 



the precipitation discharge relationship is particularly poor; further work may seek to 250 

implement snow into floodiness indices, as with drought research [Staudinger et al., 2014]. 251 

The implication of using precipitation values as a proxy for flood hazard is highlighted in 252 

Figure 3b, demonstrating that an observation of an extreme precipitation value would not 253 

necessarily lead to a high floodiness value. 254 

 255 

 256 

Figure 3: Correlation between precipitation and discharge (a) and the percentage 257 

floodiness index (b) for the East Africa Giorgi Region. Different months are represented 258 

by [capitalised] initials (e.g. March = M; May = m) and different seasons by colors. The 259 

legend indicates the Spearman’s Rank Correlation Coefficient, with significance at 0.05 260 

indicated by *. 261 

This study shows the relationship between precipitation, discharge and floodiness in major 262 

rivers at global and regional spatial scales and at monthly timescales. The results demonstrate 263 

that there is significant non-linearity between precipitation and floodiness; the largest 264 

anomalies in precipitation do not correspond to the largest anomalies in floodiness. The 265 

precise correlations between precipitation and floodiness are shown to be specific to the 266 

region and month (Table S2), as well as the monthly time interval addressed in this study. 267 

Further investigation is therefore needed to determine the degree of this non-linearity over 268 



different spatial or temporal scales, considering the influence of the role of different 269 

precipitation periods for flood generation in different regions [e.g. Froidevaux et al., 2015]. 270 

4. Applications of a floodiness index 271 

The results presented here are of particular relevance to the humanitarian community; in 272 

2008, a seasonal forecast of an augmented probability of above-normal rainfall in West 273 

Africa during the upcoming rainy season was interpreted as implying an above-normal flood 274 

risk, and subsequently led to early actions such as the pre-positioning of relief items [Braman 275 

et al., 2013]. In this case, these early actions were seen as successful, saving lives and 276 

resources, but the results of this paper show that further evidence of the link between 277 

precipitation and floodiness should be established to avoid any future false alarms. 278 

In this study two floodiness indices were used to represent the number of river cells that were 279 

flooded within a given time period, and the duration of flooding over that period. As such, a 280 

characteristic of floods that is not dealt with in this study is the number of separate flood 281 

events that occur within the specified time frame. In contrast to the counts of tropical 282 

cyclones per year, the difficulty in defining when a flood ends and another one begins makes 283 

such counts more difficult. One aspect of the duration index calculated in this study is that it 284 

does not distinguish between one flood of 10 days and 2 floods of 5 days; future studies 285 

might like to address this explicitly. Before moving onwards from this initial prescription of 286 

floodiness, scientists should initiate dialogue with different sectors; emergency response, 287 

humanitarian, insurance; to determine sector-appropriate indices of floodiness based on the 288 

relevance and importance of different flood characteristics (e.g. magnitude, duration), and to 289 

determine the region over which floodiness should be calculated / forecasted.  290 

One application of a floodiness index is for climate purposes, with there being potential for 291 

producing a reanalysis product for floods that would allow for a better understanding of the 292 



sources of variability in floodiness at large scales, such as links with the El Niño Southern 293 

Oscillation. This could provide a regional perspective to compliment studies that have looked 294 

at links from the point or grid cell perspective [Ward et al., 2010, 2014]. This information in 295 

turn could be used to provide a more robust estimation of flood frequency, allowing for flood 296 

risk decisions to be based on the current state of the climate system. A floodiness reanalysis 297 

would also act as an alternative dataset from which to determine the presence of an 298 

anthropogenic trend; trend identification from the limited observation data is difficult since 299 

these data are limited by inherent uncertainties due to the impact of improvements to flood 300 

defences and reporting biases. An analysis using the complex river network at 0.1 degrees 301 

spatial resolution represented by the Global Flood Awareness System (Figure 1), provides a 302 

valuable comparison to studies such as Dai and Trenberth [2002], which looked at only the 303 

world’s largest 921 rivers.  304 

Figure 4 provides an example application of a reanalysis dataset; here showing a daily 305 

floodiness climatology for the East Africa region. This figure clearly demonstrates the 306 

seasonality of floodiness in East Africa, with two distinct floodiness peaks, but also showing 307 

that sometimes floods of the scale seen during the main flood seasons also occur in the drier 308 

months (e.g. February). A dataset such as this can be used as a baseline climatology for 309 

forecasting; Figure 4 also displays a mock-up of a possible ensemble forecast to indicate 310 

whether floodiness is expected to be higher or lower than usual. Development of operational 311 

ensemble hydrometeorological forecasting systems, such as GloFAS, to include forecasts of 312 

regional floodiness could be of great value to decision-makers, especially where there is 313 

already useful skill in the seasonal forecasts of precipitation [Weisheimer and Palmer, 2014]. 314 



 315 

Figure 4: A climatology of 20 year Return Period percentage floodiness (1980-2010) for 316 

the East Africa (EAF) Giorgi region. Light purple = 5
th

 to 95
th

 percentile, Dark purple = 317 

33rd to 67
th

 percentiles, Light grey = full range. An mock-up weekly floodiness forecast 318 

is shown in red. 319 

 320 

Conclusion 321 

In this study indices of flood activity across large-scales (floodiness) have been derived, and 322 

a climatology of global-scale floodiness created for the first time by driving a precipitation 323 

reanalysis through a global-scale hydrological model. An analysis of the relationship between 324 

precipitation, river discharge and floodiness shows that global monthly floodiness is not well 325 

correlated with precipitation. For those applications that currently use a precipitation forecast 326 



as a proxy for imminent flood hazard, or for risk assessments that assume that precipitation 327 

and floodiness are driven by the same modes of climate variability, we provide evidence that 328 

demonstrates the importance of modelling the hydrological system. 329 

 330 
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