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Abstract

Multispectral iris recognition uses information from
multiple bands of the electromagnetic spectrum to bet-
ter represent certain physiological characteristics of the
iris texture and enhance obtained recognition accuracy.
This paper addresses the questions of single versus cross-
spectral performance and compares score-level fusion ac-
curacy for different feature types, combining different wave-
lengths to overcome limitations in less constrained record-
ing environments. Further it is investigated whether Dod-
dington’s “goats” (users who are particularly difficult to
recognize) in one spectrum also extend to other spectra.
Focusing on the question of feature stability at different
wavelengths, this work uses manual ground truth segmen-
tation, avoiding bias by segmentation impact. Experiments
on the public UTIRIS multispectral iris dataset using 4 fea-
ture extraction techniques reveal a significant enhancement
when combining NIR + Red for 2-channel and NIR + Red
+ Blue for 3-channel fusion, across different feature types.
Selective feature-level fusion is investigated and shown to
improve overall and especially cross-spectral performance
without increasing the overall length of the iris code.

1. Introduction

Traditional visual biometrics uses either monochrome or
3-channel RGB colour images for sensing biometric traits.
Emerging multispectral techniques exploit multiple bands
of the electro-magnetic spectrum in the recognition process,
aiming for enhanced accuracy when information is com-
bined [15], or predicting performance in unknown chan-
nels [21] for easier or cheaper recording of biometric sig-
nals. Especially in iris recognition due to the narrow depth
of field in optical setups and illumination problem in vis-
ible range (strong reflections) any means to enhance the
entropy of biometric source signals is highly appreciated.
Further, benefits of multispectral imaging comprise the effi-
cient encoding of complementary information for counter-
spoofing [4], combination of the iris biometric with con-
junctival vasculature, and potential cross-spectral applica-
tions with quantum photography in the future [12].

Most of the commercial implementations of iris recog-
nition systems use iris images acquired in the near infrared
(NIR) spectrum in the 700nm to 900nm range. With the
recent challenge evaluations on noisy iris images (NICE),
considerable focus of research groups has also been put on
the visible wavelength (VW) spectrum at 390nm to 700nm,
especially for the purpose of robust iris segmentation. This
task turns out to be particularly challenging for dark (highly
pigmented) iris images, due to very low contrast between
pupil and sclera, and certainly due to the presence of strong
reflections which can hardly be controlled in this band. The
former reason, more specifically the presence of Eume-
lanin (brown-black melanin) and Pheomelanin (yellow-red
melanin) in dark eyes, make recognition in the visible spec-
trum particularly difficult for this type of eyes. On the other
hand, for less pigmented iris images, visible range images
show incredibly rich texture, see Fig. 1 comparing a hazel
and brown iris in both spectra.

While iris multispectral fusion has attracted researchers
to look into far NIR (greater than 900nm) bands [19] and
NIR+VW bands [15], it is especially the combination of
NIR images with images captured in VW (in particular the
red channel being highly discriminative [1]) which is of par-
ticular interest due to cheap available sensors and illumi-
nators for this type of imagery. As a contribution to ex-
isting multispectral evaluations, this paper presents an ef-
ficient feature-level fusion using random selected bits [17]
and thoroughly addresses the following questions: (1) How
is intra and inter-channel performance affected for different
types of features? (2) Are difficult subjects in one spectrum
also difficult in another? (3) Which features and combi-
nations thereof are most discriminatory for different wave-
lengths?

Section 2 gives a short survey on multispectral iris recog-
nition, highlighting the most relevant related works. Em-
ployed baseline algorithms, the multispectral database and
tested fusion approaches are introduced in Section 3. Sec-
tion 4 analyses experimental results with regards to ques-
tions outlined above. Finally, the conclusion and wrap-up
of main insights with regards to our multispectral fusion ex-
periments is outlined in Section 5.
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(a) hazel eye #28R 3 in NIR (b) hazel eye #28R 2 in VW (c) brown eye #27R 1 in NIR (d) brown eye #27R 1 in VW

(e) normalised texture of hazel eye #28R 3 in NIR (f) normalised texture of brown eye #27R 1 in NIR

(g) normalised texture of hazel eye #28R 2 in VW (h) normalised texture of brown eye #27R 1 in VW

Figure 1: Iris texture in VW can reveal even richer texture (high-frequency patterns) than in NIR for light irises (e.g., hazel
eyes), whereas for heavily pigmented dark (brown) irises clear patterns are revealed in NIR (samples from UTIRIS database).

2. Related Work

Joint NIR and VW iris acquisition is patented by Burge
and Monaco [3], combining 460nm, 555nm, 670nm and
800 nm unwrapped bands and clustering the image at pixel-
level. The patent lists claims for methods to compare the
enhanced iris image against the VW or NIR image only,
as well as transformations to generate a NIR representation
from the VW image, and vice-versa, and the generation of
3D depth maps generated from stereo images. Their single-
lens spatially-registered 4-camera (2x NIR, 2x VW) system
is further described in [2], introducing the notion of Mul-
tispectral Enhanced IrisCode using pixel-level fusion com-
bining the richest texture information per wavelength for
each textural region. Further descriptions of simultaneous
NIR+VW iris acquisition systems can be found in Chou et
al. [5] and Gong et al. [7], with the latter giving a good a
summary of available multi-spectral iris databases.

Fusion of multispectral information has been the major
focus in efforts to capture information from multiple wave-
lengths: Boyce et al. [1] investigated NIR+VW iris fusion
for recognition and cross-spectral applications using a col-
lected multispectral (red at 670nm, green at 540 nm, blue at
475 nm and near infrared at 800 nm) iris images database
with 24 users reporting higher accuracy for the red channel
compared to green and blue channels for Daugmans 2D-
Gabor features [6]. ROC curves on cross-spectral match-
ing (matching iris images across different wavelengths) re-
vealed decreasing performance with increasing differences
between wavelengths. Fusion tests were limited to score-
level (sum rule) combination, revealing highest accuracy for
the fusion between the NIR, red and green channels. Wave-
lengths beyond 900 nm, examining 8 bands (100nm) within

the 950-1650nm spectrum were further investigated by Ross
et al. [19]. Facing the challenges of illumination (using a
tungsten-krypton light) and segmentation (high variance in
contrast between sclera and iris), experiments on a database
of 25 users confirmed the possibility of performing cross-
spectral matching beyond 900 nm and well separation in
5-wavelength fusion configuration. In Ngo et al. [15] the
design and implementation of a multispectral iris images ac-
quisition system is given, employing 8 wavelengths in the
405nm to 1070nm range. It is claimed that true matches
degrade with wavelength difference and experiments illus-
trate the best accuracy around 800nm on the initial pro-
vided dataset of 392 images from 6 subjects. Cross-spectral
application severely shifted genuine distributions towards
(zero-effort) impostors. Ives et al. [10] present their multi-
spectral acquisition system and database of 16 users (1859
images) in the 405-1070nm range. Results confirm a sys-
tematic bias if automatic segmentation is used in contrast
to hand-segmented data and they report 0.237 vs. 0.193
best average genuine Hamming Distance (HD) comparing
590nm with 910nm. Further cross-spectral genuine HD per-
formance confirms claims on an increase by wavelength dif-
ference by previous authors. In Gong et al. [8] the question
on the most important multispectral bands in the range of
420 to 940 nm is addressed using a dataset of 30 subjects,
using agglomerative clustering on 2D PCA. Results indi-
cated three wavelength bands were enough to encode the
features, however the database was limited to Asian partic-
ipants only. Zuo et al. [21] predict the NIR image based
on the colour image and report slightly enhanced accuracy
compared to matching the red channel only. In their work
using 1D Log-Gabor features a feed forward neural network
and the database in [1] is used. Shamsafar et al. [20] sug-
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Figure 2: Investigated Multispectral Iris Fusion Setup.

gested a Log-Gabor and Haar-based NIR and VW iris fu-
sion method on the same UTIRIS database used in this pa-
per.

It is worth noticing that employed test databases in the
studies above have been limited in the number of tested
users and public availability. Hosseini et al. [9] present
a collected multispectral database (UTIRIS), consisting of
NIR and VW images of 158 eyes from 79 individuals, for
which they propose a combination of shape-based features
with an overall fusion accuracy of 90% Genuine Accep-
tance Rate (1 training, 4 testing images) to 99% (4 training,
1 testing) at 1% False Acceptance Rate. In our work we use
UTIRIS and obtain higher accuracy, but without the need
for any training. Many researchers (as in [15, 10]) highlight,
that more research is necessary to obtain further insight in
the coherence between irises at different wavelengths.

3. System Setup
This paper focuses on the problem of score and feature-

level NIR + VW fusion and cross-spectral performance, fol-
lowing the traditional iris processing chain outlined in [6]
with Rubbersheet normalisation of obtained inner pupillary
and outer limbic boundaries and generation of a noise mask
taking eyelids into account, but with several different fea-
ture extraction methods tested in NIR and VW. Fig. 2 illus-
trates the setup conducting evaluations in verification mode.

For evaluation purposes the open University of Teheran
multispectral iris dataset UTIRIS [9] of 1540 images is em-
ployed, with VW and NIR images taken from the same in-
dividuals in 2 separate sessions. Approximately 5 full-eye
images of high quality with 2048 x 1360 pixels resolution
for VW and 5 images with 1000 x 776 pixels resolution for
NIR per eye are available for each of the 79 users. VW and
NIR images of the same user are paired to form a dataset of
768 templates of 158 classes (removing unpaired samples).

For accurate segmentation and in order not to bias the re-
sults (segmentation performance is reported to be strongly
affected by the spectral acquisition band [19]), all input im-
ages were manually segmented based on an elliptical model.

(a) NIR sample (b) VW sample

Figure 3: Manual UTIRIS segmentation samples.

For this purpose, human segmenters selected a minimum of
5 data points for each of the inner and outer iris boundaries
and were shown the (least squares using Fitzgibbion’s algo-
rithm) fitted circumference next to the input image. Further,
upper and lower eyelids were modelled using 2nd order
polynomials (using least-squares fitting) to fit a minimum of
3 labelled datapoints. Fig. 3 illustrates the resulting bound-
ary ellipses and polynomials for two samples. Iris textures
are mapped into a normalised polar-unwrapped representa-
tion employing Daugman’s rubbersheet transform [6] and
using a feature-specific target size (see Fig. 2). Contrast-
limited adaptive histogram equalisation (CLAHE) is em-
ployed to enhance textures.

3.1. Employed Features

As feature extractors we employed the publicly available
USIT [18] software for LG, QSW and DCT, and our reim-
plementation of Daugman’s [6] approach, 2DG. The latter
2DG feature is the feature of choice in most commercial
implementations, using the spatial-frequency information at
pixels (x, y) encoded by 2G Gabor filters:

G(x, y) = e

�⇡

x

2+y

2

�

2
e

2⇡fi

�
x cos ✓+y sin ✓

�
(1)

By choosing appropriate filter parameters, they have similar
behaviour to multi-resolution analysis [11], such as wavelet
transform. In the present investigation the 2D Gabor filter
parameters were found by performing a direct search in the
two-dimensional space defined by the size and frequency
parameters, for a fixed orientation of the filter. However,
in contrast to QSW and LG, parameters were optimised for
VW instead of NIR data to reflect this impact on multispec-
tral performance. The algorithm uses a 160 ⇥ 100 pixels
sized normalised input and produces a 3, 000 bits code.

The QSW feature was proposed by Ma et al. [13] and
encodes minima and maxima (alternating a binary sequence
whenever a new extremal value is found) from two specific
subbands of the iris texture. Subbands are obtained from di-
viding the texture into ten 1D signals and applying wavelet
transform. The algorithm uses a 512 ⇥ 64 pixels sized nor-
malised input and produces a 10, 240 bits code.

The LG feature is an adapted version of Masek’s 1D
Log-Gabor convolution of the 512⇥64 texture encoding the
phase angle with 2 bits, yielding again 10, 240 bits.
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As an alternative, DCT (following Monro et al. [14])
computes the 1D discrete cosine transform on overlapping
diamond-shaped image patches. The feature uses the 512⇥
64 pixels sized normalised input and produces a 7 ⇥ 3, 072

bits code (for each of 7 pixel shifts).
As comparators, for QSW, LG and 2DG we use the min-

imum fractional HD (using ±4 shifts in either direction) as
a measure of (dis-)similarity between feature vectors codeA
and codeB, and corresponding code masks (maskA, maskB
identifying out-of-iris bits using ground-truth) [6]:

HD =
||(codeA � codeB) \ maskA \ maskB||

||maskA \ maskB|| . (2)

For the DCT feature, the comparator defined in [14] is
employed.

3.2. Investigated Fusion Methods

Comparison in multispectral systems may refer to ei-
ther gallery or probe samples available in multiple chan-
nels, or both. Let w, x, y, z 2 {NIR,R,G,B} denote chan-
nels, when assessing cross-channel performance we inves-
tigate scores s

x,y

for comparing a probe image channel y

with gallery image channel x, or short s
x

:= s

x,x

for intra-
channel. Note, that in general even for symmetric matchers
s

x,y

6= s

y,x

as different images are involved (but distribu-
tions in our experimental setup are similar). In score-level
fusion, any subset of the 42 scores could be combined, but
usually, focus is on combining intra-channel scores: in ex-
periments, we focus on 2-channel fusion combining score
vectors ~s

x,y

:= {s
x

, s

y

}, 3-channel ~s

x,y,z

and 4-channel
~s

w,x,y,z

vectors. As combination technique we employ

sum-rule fusion: Csum (~s) := 1

n

nP
i=1

s[i], where s[i] denotes

the i-th element in the score vector of n elements.
The paper aims to consider feature-level approaches,

however, simple concatenation of features in case of em-
ploying the fractional HD as feature should (neglecting the
presence of bit-shifts to optimise the alignment) yield sim-
ilar resuls as for score-level fusion. Further, concatena-
tion generally increases the length of the feature vector ~

f ,
whereas the approach studied in this work selects bits from
n channels ~

F = (~f
x

,

~

f

y

, . . . ,

~

f

z

) keeping the length m of the
feature vector: Cbitsel (~F )[i] := ~

F [sel(1, n)][i] for all i with
1  i  m. This approach follows [17], but applied to mul-
tiple spectra and instead of training uses a random selection
of bits (sel is the random function returning equally dis-
tributed natural numbers between 1 and n), reported to per-
form remarkably well in incremental iris recognition [18]
without any training.

4. Experimental Results
Investigating a series of questions related to multispec-

tral fusion performance, we employ Receiver Operating
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Figure 4: Single vs. cross-spectral ROCs for different fea-
tures (a) LG, (b) QSW, (c) DCT and (d) 2DG on UTIRIS.
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Table 1: Obtained Equal error rates [%] per feature type when comparing different channels on UTIRIS.

LG QSW DCT 2DG
NIR Red Green Blue NIR Red Green Blue NIR Red Green Blue NIR Red Green Blue

NIR 3.76 39.05 47.79 55.15 3.14 33.26 43.84 46.97 2.95 44.97 47.57 48.12 3.29 44.85 47.60 49.43
Red 5.56 6.38 22.28 6.16 7.14 25.11 7.63 12.32 40.36 3.42 6.56 26.55

Green 6.36 12.76 6.36 13.98 10.62 30.26 5.08 13.56
Blue 9.63 11.24 21.73 9.40
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Figure 5: LG on UTIRIS: NIR goats (high average genuine HD) generally do not automatically become VW (red) goats.

Characteristics (ROC) illustrating pairs of Genuine Accep-
tance Rate (GAR, the rate of genuine users being accepted)
and (zero-effort) False Acceptance Rate (FAR, rate of im-
postors being accepted). As main performance indicator
we refer to Equal Error Rate (EER, the rate where 1-GAR
equals FAR).

4.1. Intra versus Cross-spectral Performance

In a first experiment we focused on the question: How is
intra and inter-channel performance affected for different
types of features? ROCs in Fig. 4 illustrate all tested intra-
channel and cross-channel applications per feature type on
the UTIRIS database and Table 1 summarises EERs for a
better overview, with entries along the diagonal being intra-
channel comparisons (best results in bold).

At first, we see that all algorithms, LG, QSW, DCT and
2DG perform in a rather narrow band for the NIR channel
(2.95-3.76% EER), however there are clear differences for
other channels: the VW-optimised 2DG implementation re-
vealed the best intra VW-channel performance for all chan-
nels (3.42% Red, 5.08% Green, 9.40% Blue EERs), which
suggests training on VW data is beneficial, as it had no neg-
ative impact on NIR performance (compare 2DG with LG).
The long-bitcode implementations LG and QSW performed
quite comparable for intra-channel (5.56-6.16% Red, 6.36%
Green and 9.63-11.24% Blue EERs). DCT performed sig-
nificantly worse, especially for the Blue channel (21.73%
EER). As a reason for this behaviour the higher variation in
gradient orientation in VW channels (as identified in [16])
impacting on features could be argued.

Cross-spectral performance is very low across the board
and especially between NIR and RGB channels (33.26-
55.15% EER), certainly also attributable to the pairing of
images in non-synchronous acquisition. However, this un-
derlines the needs for efficient transformation mappings be-
fore feature extraction in cross-spectral application and sug-
gests that complementary information is present in differ-
ent channels. Results support the assumption of increas-
ing error rates with increasing difference in channel wave-
length. However, we found that the difference between Red
and Green was much less pronounced (factors 1.1-1.6 be-
tween cross-spectral Red vs. Green and intra-spectral Red
and Green only performance, depending on feature) than
between Green and Blue (observed factors 1.7-2.1), despite
comparable difference in wavelength (typical peak sensitiv-
ity Blue at 460nm, Green at 540nm, and Red at 620nm).

4.2. On Doddington’s Goats in Multiple Channels

The inferior cross-spectral performance and presumably
augmenting information in the VW and NIR channels as il-
lustrated in Fig. 1 suggests to investigate the question: Are
difficult subjects in one spectrum also difficult in another?
We analysed average genuine HD for individual users and
investigated the corresponding user rank with regards to this
metric (see Fig. 5 plotting LG scores in both spectra). Re-
sults indicated, however, that a low average genuine HD
score for NIR does not necessarily indicate a high or low
score in VW (Pearson correlation coeff. 0.19). Similar be-
haviour is observed for the DCT and Gabor-based features.
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Table 2: Score-level Fusion performance on UTIRIS.

Equal-error rate [%]
Combined Channels LG QSW DCT 2DG

NIR + R 0.93 0.60 0.82 0.74
NIR + G 0.87 0.67 1.33 0.94
NIR + B 1.27 1.26 2.52 1.35

R + G 5.64 5.61 8.04 3.49
R + B 5.34 5.96 9.29 4.21
G + B 6.66 6.71 12.51 6.11

R + G + B 5.49 5.78 9.23 4.29
NIR + R + G 0.88 0.64 1.20 1.56
NIR + R + B 0.70 0.59 1.46 1.34
NIR + G + B 0.79 0.73 1.75 1.61

NIR + R + G + B 1.04 0.63 1.76 1.95

4.3. Multispectral Score-level Fusion

We further investigate the question: Which features and
combinations thereof are most discriminatory for different
wavelengths? A test of all possible channel combinations
(see Table 2, best results in bold) for each of the features
LG, QSW, DCT and 2DG revealed the following results:
Among all tested 2-channel combinations, the best overall
performance was provided by the combination of the NIR
and Red channels (LG provided slightly better results for
NIR and Green with 0.87% vs. 0.93% EER) with EERs
in the range 0.6-0.93%, corresponding to a significant im-
provement (factors of 3.6-4.4) compared to single-channel
NIR performance. Improvement was most imminent for the
QSW feature, followed by 2DG, LG and DCT, but despite
their different nature (especially DCT), revealed a similar
level of improvement. Combinations of the color channels
were not as successful and mostly did not improve the result
of single channels (DCT and 2DG), only marginal improve-
ment in case of R+G (QSW) and R+B (QSW and LG) could
be observed. Consequently, 3-channel fusion delivered bet-
ter results for only these two features, LG and QSW (0.7%
EER for LG and 0.59% EER for QSW, both when combin-
ing NIR+R+B). Especially the lower performance of 2DG
for 3-channel fusion (1.34% EER for NIR+R+B) is surpris-
ing, given that this algorithm was tuned for VW and showed
better performance on individual color channels. Best 2-
channel and 3-channel performance ROCs on UTIRIS are
illustrated in Fig. 6. While possibilities in score-level com-
bination are limited compared to feature-level fusion, in this
configuration it is advisable to aim for NIR+Red channel fu-
sion taking the additional processing and storage overhead
for additional channels into account.

4.4. Multispectral Selective Bits Fusion

Finally, we evaluated the approach of multispectral se-
lective bits fusion on the LG and QSW features. As the
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Figure 6: ROC for score-level multispectral fusion.

combination of NIR and Red turned out to be the most ef-
fective combination of channels we also selected bits ran-
domly from these two channels. In both cases, results out-
performed single-channel codes (2.25% vs. 3.14% EER for
QSW, 1.52% vs. 3.76% EER for LG) without increasing
overall length. A caveat in the bits fusion process is the abil-
ity to keep rotation invariance. The possibility of alignment
using shifts would be lost in case of bitwise merger and can
be avoided in merging batchwise (we used 8 bit), which
keeps up the possibility to a limited number of shifts. Espe-
cially for cross-spectral application, multispectral selective
bits fusion delivers much better results than unmerged fea-
tures, with EERs of 8.89% NIR+R vs. R and 5.16% NIR+R
vs. NIR (compare with 33.26% NIR vs. R) for LG and
9.8% NIR+R vs. R and 4.55% NIR+R vs. NIR (compare
with 39.05% NIR vs. R) for QSW. Figure 7 illustrates cor-
responding ROCs. Partial matching of concatenated codes
without reordering (first 50% R + last 50% NIR) resulted in
3.13% EER for QSW and 2.08% EER for LG.
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5. Conclusion and Future Work
In this work we studied the impact of score-level fusion

and cross-spectral performance in multispectral iris recog-
nition systems, investigating Log Gabor (LG), Wavelet-
based (QSW), Discrete Cosine Transform (DCT) and 2D
Gabor (2DG) feature types. Results on the public UTIRIS
multispectral database indicated, that features can be rather
susceptible to spectral channels (such as DCT delivering
best NIR but worst RGB performance). Cross-spectral per-
formance turned out to be highly challenging (EERs > 33%
for comparing NIR against RGB channels across feature
types), confirming increases in EERs as the difference in
wavelength increases, but further also indicating a more
pronounced degradation for Green versus Blue compared
with Red versus Green intra-color cross-spectral applica-
tion. Score-level fusion delivered best results for NIR+R+B
for 3-channel (0.59% EER, 99% GAR at 0.1% FAR with
QSW), closely followed by NIR+R in 2-channel config-
uration with the latter providing most stable rates across
all feature types (0.6 - 0.93% EER, 97-99% GAR at 0.1%
FAR). Sensitivity to channel improvement was found to be
severely affected by the feature type. The suggested multi-
spectral random selective bits fusion technique was able to
improve accuracy (1.52% vs. 3.76% EER, 97% vs. 91%
GAR at 0.1% FAR for LG) with the benefit of unmodified
feature length. In the future, we plan to investigate learning-
based methods to select bits from multiple channels.
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