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Abstract

This paper recovers the distribution of wages for Mexican-born workers living in the U.S.

if no return migration of Mexican-born workers occurred. Because migrants self-select in the

decision to return, the overarching problem addressed by this study is the use of an estimator

that also accounts for selection on unobservables. I find that Mexican returnees are middle- to

high-wage earners at all levels of educational attainment. Taking into account self-selection in

return migration, wages would be approximately 7.7% higher at the median and 4.5% higher

at the mean. Owing to positive self-selection, the immigrant-native wage gap would, therefore,

partially close if there was no return migration.

JEL Classification Codes: J61, F22
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1 Introduction

Migrants’ self-selection is a core issue in labor economics. If migrants are rational actors optimally

choosing their residence location, any observed outcome for this group will be endogenous to the

original migration decision. Hence, to understand migrants’ outcomes it is necessary to understand

the nature of their selection. Yet, the literature has primarily viewed migration as permanent,

when in fact individual migration is often of a temporary nature.

The recognition that migration is a dynamic process has more recently encouraged scholars to

understand its drivers (Dustmann, 2003) and its consequences in terms of migrant selectivity (Borjas

and Bratsberg, 1996; Dustmann and Weiss, 2007). How do returnees compare with those who
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Skyt Nielsen, two anonymous reviewers as well as conference and seminar participants at IZA, NHH and at the 4th
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†Department of Economics, University of Reading, Whiteknights, Reading, RG6 6AA, United Kingdom. Email:
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permanently settle abroad? Answering this question is consequential for several lines of research.

From the destination country perspective, a vast literature has attempted to measure the economic

assimilation of immigrants with natives (see seminal work by Chiswick (1978) and papers by Borjas

(1985); LaLonde and Topel (1992); Borjas (1994) among others). If selectivity in return migration

is not considered, however, the economic progress of immigrants will be over- or underestimated

depending on the nature of this selection (Hu, 2000; Lubotsky, 2007). From the source country

perspective, return migration may mitigate the brain drain through acquisition of skills used at

home (Dustmann et al., 2011). Hence, return migration may help to foster growth in the source

country through an expansion in its human capital stock (Dos Santos and Postel-Vinay, 2003).

Taking into account selectivity in return migration urges scholars to reconsider how they measure

the effects of migration on both immigrants and natives, as well as on both the sending and receiving

regions.

Building on the previous literature that often analyzes how returnees’ average earnings differ

from those of stayers, this paper combines data derived from U.S. and Mexican censuses to estimate

the wage distribution of Mexican-born immigrants in the U.S. under two conditions, namely –

with and without return migration. This approach enables answering two key questions: how do

returnees compare with stayers and where does return migration have its largest impact on the

wage distribution?1 This paper highlights the consequences for the U.S. if no return migration

of Mexican-born workers had occurred between 1995 and 2000, shedding light on a counterfactual

scenario that could have occurred if incentives to return were altered based on exogenous variations

in economic opportunities in the source or host countries.

The overarching problem of this study is to recover the counterfactual wage density in the

presence of selective return migration, when pre-migration earnings are not known. Crucial to the

approach adopted is the introduction of an estimation technique that can recover such distribution,

taking into account not only the observable differences between stayers and returnees but also self-

selection on unobservables. This paper proposes a semiparametric procedure that complements

the estimator presented by DiNardo et al. (1996) applied in the migration literature (Butcher and

DiNardo, 2002; Chiquiar and Hanson, 2005), which accounts for selection based on observable traits

only. The presented estimation method is based on the observation that selection bias disappears

for subgroups where nearly all individuals settle permanently in the U.S. This procedure provides an

alternative to the use of pre-migration earnings to measure selectivity, as these are often unavailable

to the researcher either due to the lack of longitudinal data following stayers and returnees or

because the return flows in available surveys are often too small to allow suitable analysis.

Conditioning on observable characteristics, I find that Mexican returnees are middle to high

wage earners, consistent with models in which the decision to return hinges on reaching target-

earnings levels. Taking self-selection into account, the wages of Mexican born workers in the U.S.

would be approximately 7.7% higer at the median and 4.5% higher at the mean. Furthermore, the

1I assume throughout that the supply effects of the absence of return migration are negligible. Given the negative
yet often small impact of migration on the overall economy, this assumption seems to be reasonable.
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return flow has a small effect on immigrant wage inequality: the outflow of immigrants increases

dispersion in the lower part of the distribution and decreases it in the upper part. Moreover,

selective return migration does not have a constant effect across educational levels: while it increases

inequality at low levels of education, it decreases inequality for the highly skilled. These results

suggest that when designing optimal migration policies policymakers should consider that selective

outmigration might have a greater impact at high levels of human capital. Finally, because at all

levels of education the immigrants who leave are the high-wage earners, the immigrant–native wage

gap would close slightly if there was no return migration.

The remainder of this paper is organized as follows. Section 2 reviews the literature. Section 3

describes the data. Section 4 presents the estimation technique and Sections 5 and 6 the results,

while Sections 7 and 8 show the sensitivity of the results to different specifications and to the

assumptions made. Section 9 concludes the paper.

2 Immigration, Return Migration and Self-Selection across the

Mexican–U.S. border

Several contributions to the immigration literature have empirically assessed the selection of immi-

grants from Mexico to the U.S., while the literature on the selection of Mexican return migrants is

relatively less developed.

The current debate on immigrant selection has developed from the results of Chiquiar and

Hanson’s (2005) which contradict the theoretical predictions proposed in Borjas (1987), showing

intermediate to positive selection based on the observable characteristics of Mexican immigrants

to the U.S. compared with Mexican stayers in Mexico. Yet the finding of positive selection was

challenged by a few authors (Ibarraran and Lubotsky, 2007; Fernandez-Huertas Moraga, 2011;

McKenzie and Rapoport, 2010; Ambrosini and Peri, 2012; Kaestner and Malamud, 2014), who

have drawn scholarly attention to the importance of two key elements in the analysis of the se-

lectivity of migrants. First, it is crucial to use nationally representative data sources that have

a longitudinal component capable of capturing the pre-migration earnings of migrants and non-

migrants (Fernandez-Huertas Moraga, 2011; Ambrosini and Peri, 2012; McKenzie and Rapoport,

2010; Kaestner and Malamud, 2014). Second, researchers must aim to control for the unobservable

differences between migrants and non-migrants (Fernandez-Huertas Moraga, 2011; Ambrosini and

Peri, 2012).

Turning to the selection of returnees, the overall evidence for the U.S. economy suggests that

returnees have below average skills. By comparing longitudinal and cross-sectional data, Lubotsky

(2007) finds that return migration by low-wage immigrants from the U.S. has systematically led

past researchers to overestimate the wage progress of stayers by 10% to 15%. Likewise, Hu (2000)

shows a decline in immigrant wage growth once return migration has been taken into account,

with such results being weaker for Hispanic workers. Hu (2000) and Lubotsky (2007) both provide

interesting insights into the nature of return migration and its impact on the host economy; however,
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in their longitudinal datasets returnees are not directly identified and return migration cannot be

separated from other sources of panel attrition.2 Furthermore, their estimation technique is based

on the assumption of time invariant unobserved selection.3

The previous discussion confirms that self-selection and data availability have limited our un-

derstanding of return migration and its consequences. Therefore, in order to fill this gap in the

literature, this paper advances an analysis that uses representative data and examines the actual

return choices of Mexican migrants based on a dataset that combines data from both U.S. and Mex-

ican censuses. While combining census data to study return migration is not novel and was used in

Lacuesta (2010), this study adds to that contribution by controlling for selection on unobservables.

The use of two censuses together with the econometric technique proposed allows researchers to

distinguish return migration from panel attrition and to treat all those forms of sample selection

and heterogeneity that are not simply eliminated by fixed effects estimators in panel data analyses.

Furthermore, it provides a full picture of what the U.S. could expect if return migration was zero,

owing to changes in either migration policies or migration incentives.

On the methodological side, this paper introduces an estimator for a counterfactual distribution

that accounts for sample selection. This technique complements the analysis based on selection on

observables (Chiquiar and Hanson, 2005; Ibarraran and Lubotsky, 2007)4 in order to account for

selection on unobservables as well. The proposed estimator is based on the model presented by

Heckman (1990), and it extends the estimator proposed by Andrews and Schafgans (1998) to its

density equivalent. This method could also be applied to other contexts in order to recover a

distribution of outcomes that are truncated and/or when panel data are unavailable.

3 Data

The analysis presented uses the U.S. and Mexican censuses from 2000, available through the Inter-

national IPUMS website.5 The Mexican census was conducted in February 2000 by the Instituto

Nacional de Estad́ıstica Geograf́ıa e Informática (INEGI), the Mexican statistical agency. House-

hold heads were asked to list all current members of the household and to also list their place of

2 In particular, these authors identify non-employment, outmigration, employment in the informal sector, and
nonmatch as possible causes of panel attrition.

3 Further analyses from the Mexican perspective include Lacuesta (2010), Ambrosini and Peri (2012) and Reinhold
and Thom (2013) . Lacuesta (2010) and Reinhold and Thom (2013) both provide evidence of selection and skill
upgrading for Mexican returnees in Mexico. Lacuesta (2010) argues that return migrants are similar to stayers,
suggesting that the 7% wage premium found upon return might actually be caused by the selection of return migrants
that were unaccounted for in the analysis. Meanwhile, Reinhold and Thom (2013), using the Mexican Migration
Project (which is not a representative sample), estimate the experiences of returnees to the U.S. labor market by
correcting for the endogeneity of migration decisions. They find that returnees are negatively selected in terms of
unobservable traits, although selection is not significant in their analysis. Finally, Ambrosini and Peri (2012) find
preliminary evidence that returnees are positively selected compared with non-migrants and permanent migrants.
However, the results on returnees’ self-selectivity are based on a very small sample.

4 Chiquiar and Hanson (2005)’s estimation is in turn based on DiNardo et al. (1996)
5 Minnesota Population Center. Integrated Public Use Microdata Series, International: Version 6.4 [Machine-

readable database]. Minneapolis: University of Minnesota, 2015. See https://international.ipums.org/

international/, last retrieved on June 2012.
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residence in 1995. The data consist of a 10.6% sample of the Mexican population and are stratified

geographically by municipality and urban area. The U.S. census was conducted in April 2000 and

the available data are a 5% random sample of the original forms. It is a weighted sample with

stratification by state. Mexican-born immigrants are defined as individuals born in Mexico who

appear in the U.S. census. Mexican-born return migrants appear in the Mexican census and are

identified as those individuals who report having resided in the U.S. five years prior to the Mexi-

can census enumeration. The data on the returnees in Mexico and the data on the Mexican-born

stayers in the U.S. are then pooled to build a dataset containing all individuals who are or have

been in the U.S. For comparison purposes, this study also uses data on a random sample of U.S.

native-born workers (n = 103,994).6

However, the use of different data sources to identify return migrants is not without limitations.

As discussed in Chiquiar and Hanson (2005) and Ibarraran and Lubotsky (2007), the most notable

drawbacks relate to changes in education once in the U.S., the misreporting of education in the U.S.

census, and undercount due to illegal immigration and short trips. Given that this study focuses on

return migration, the possibility of Mexican immigrants having obtained additional schooling after

arriving in the U.S. should not be regarded as invalidating since returnees could have made the

same choice. Nonetheless, the concern remains that Mexican migrants in the U.S. might overstate

their levels of educational attainment (Ibarraran and Lubotsky, 2007). I will further discuss this

issue when checking the robustness of the results. The undercount of illegal immigrants and short-

term migrants in the U.S. census might indeed constitute a problem, which is discussed in Section

7. Finally, there is a further concern specific to this study: the universe of returnees is much

broader than is captured by the Mexican census. If Mexican workers who returned before 1995

systematically differ from those who returned between 1995 and 2000, the conclusions of this paper

would not be externally valid. Since no further information is available on workers having been

abroad, looking at place of residence in 1995 is the best proxy for return status. 7

The sample is restricted to men aged between 25 and 55 years, born in Mexico, and in earning

employment, resulting in a total sample size of 133,389. Of this number, 120,205 (90%) immigrants

stay in the U.S., while 13,184 (10%) are return migrants. This study applies four indicators of

educational attainment (Less than primary school completed, Primary school completed, Secondary

6 I have run exploratory analyses to understand whether the use of weighting in each sample affected the conclusions
of the paper. Results are comparable with those reported in the analysis, and in particular the selection of individuals
with a high probability of staying is unaffected by the weighting procedure. The sampling criteria of the censuses
are unlikely to be related with the decision to stay or with the error term in the wage equation. If the reader is
concerned about the geographical stratification, the full model estimated in Section 7 should reassure that results are
stable once we control for geography. In choosing not to use weight, the results are directly comparable with those
in the literature (Chiquiar and Hanson, 2005; Lacuesta, 2010). Additional details on sampling issues are discussed in
Section 7.

7 The 1990s were a decade of radical transformation in the Mexican economy, with the signing of the NAFTA in
1994, the Mexican peso crisis in 1994-1995, and the subsequent period of macroeconomic growth. It is, therefore,
possible that changing macroeconomic conditions affected the return migration flow. However, it remains of interest to
study the return phenomenon during periods of financial turmoil, as public opinion might have particular sentiments
about migrants prolonging their stays in the U.S. Finally, a parametric analysis of selection in 1990 shows a similar
pattern of return migration. These results are available upon request In addition, Section 7 further shows how
selection patterns persist when looking at return migration in the early 2000s.
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school completed, College Degree), while socioeconomic characteristics are represented by indicators

of being married (Married), having children (Child), and having a U.S.-born spouse (Spouse U.S.-

born) or child (Child U.S.-born). The decision to stay in the U.S. is modeled throughout this

analysis as a function of these educational and socioeconomic variables. Table C.1 in the Appendix

reports the characteristics by return status. 8

The wage process is modeled according to various specifications. In the first set of regressions

the observable characteristics include those regressors used in previous analyses on Mexican-U.S.

selection, namely, education, age and family status (Fernandez-Huertas Moraga, 2011; Ambrosini

and Peri, 2012; McKenzie and Rapoport, 2010; Lacuesta, 2010; Kaestner and Malamud, 2014).

Moreover, the indicator of having a U.S.-born spouse is included to capture the constructs of

“attachment”and “networks,”which have both been shown to be relevant determinants of migration

decisions (McKenzie and Rapoport, 2010; Ambrosini and Peri, 2012). Having a U.S.-born child

is also included in the model for the decision to stay, yet is excluded from the wage equation.

To summarize the effects of these characteristics on the wage distribution, Figure 1 applies the

methodology developed in DiNardo et al. (1996) to show the actual distribution of wages for

Mexican-born workers in the U.S. and the distribution of wages that would have occurred if U.S.

stayers shared the observable characteristics of returnees and were paid according to U.S. skill

prices.

[FIGURE 1 HERE]

Figure 1 illustrates that the counterfactual distribution is shifted to the left compared with the

actual distribution observed in the U.S.: therefore, returnees appear to be negatively selected in

terms of observable characteristics. Consequently, based on observable traits, the figure suggests

that returnees are drawn disproportionately from the bottom part of the wage distribution. Sec-

tion 4 explains how a counterfactual distribution can be estimated if all returnees had stayed, by

accounting for both observable and unobservable traits. The remainder of the paper subsequently

compares the counterfactual results with the descriptive analysis presented in this section.

4 The Model and the Estimation Strategy

The research question answered in this study requires recovery of the wage distribution for all

Mexican-born men who have been in the U.S., despite wages only being observed for Mexican-born

immigrants who are currently residing in the country. Let Si be an indicator of whether or not

8 Table C.1 in the Appendix reports also the average characteristics of other variables used in the analysis.
Experience in the U.S. is represented by indicators of length of stay between 0 and 5 years, 5 to 10 years, 10 to 20
years, 30 to 40 years, and more than 40 years (Years in the U.S.). The limited information collected by the Mexican
census about returnees’ experiences abroad means that how long these workers stayed in the U.S. before returning to
Mexico is unknown. Regional labor market characteristics are represented by indicators of residence location in four
regions: West, Northeast, Midwest, South. Fourteen industry variables are also reported. The table further reports
the average wages of U.S. stayers. The wage variable is constructed as wage and salary income divided by hours of
work. To avoid division bias (Borjas, 1980), earnings were also used as the dependent variable, without changes to
the conclusions of the paper. The average wage in the U.S. for returnees is unobserved.
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individual i decides to stay in the U.S. In the following model this decision depends on the net

benefits of staying, (Z ′iα0 − εi), being greater than zero.

Let r be the number of returnees and n be the number of stayers. The decision to stay can be

represented as:

S =

1 Z ′iα0 > εi

0 Z ′iα0 ≤ εi
for i = 1, . . . , r + n (1)

The true wage determination process for a randomly selected Mexican immigrant present in the

U.S. takes the form:

Y ∗i = X ′iβ0 + c0 + u∗i i = 1, . . . , r + n. (2)

In the model, Y ∗i is the log of the hourly wage for Mexican immigrants, and Xi represents the

determinants of the log-wage process.

The wage is observed only for those immigrants who stay in the U.S., however. In other words,

the observed wage is:

Yi = SiY
∗
i i = 1, . . . , r + n. (3)

From the model in equations (1) and (2) it follows that (Y, Si, Xi, Zi) are observed random

variables. The aim of the estimation is to obtain the distribution of Y ∗i , given that only Yi is

observed. For generality, the remainder of the paper focuses on estimation techniques that are

free from distributional assumptions, while a comparison with the parametric model is reported as

a robustness check. Using flexible estimators is particularly important whenever the parametric

assumptions are not satisfied. It is assumed throughout that (Xi, Zi, u
∗
i , εi) are i.i.d and (Xi, Zi)

are exogenous random variables. It should be stressed that u∗i and εi are allowed to be correlated.

Section 7 discusses these assumptions. The next subsection introduces the estimation strategy.

4.1 Counterfactual Density Estimation

The distribution of Y ∗i in equation (3) corresponds to the distribution of u∗i up to a location shift

represented by the observable characteristics, (X ′iβ0 + c0). Hence, the estimation strategy of the

counterfactual wage distribution entails two steps:

1. Recover the distribution of the unobservables, f(u∗)

2. Recover the full distribution of wages by shifting f(u∗) by the mean of (X ′iβ0 + c0). At this

stage all observable differences between stayers and returnees are considered and taken into

account.

Because the key challenge and contribution of the paper lies in recovering f(u∗) (step 1), while

standard techniques can be adopted to estimate β0, c0 (step 2), the following discussion largely
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focuses on recovering the distribution of u∗i .

Let f(u∗i ) be the unknown distribution of u∗i . By the Law of Total Probability, f(u∗i ) can be

written as a weighted sum of the distribution of the error terms in the subsamples of stayers and

returnees with weights given by the probability of being in either subsample, i.e.:

f(u∗i |Z ′iα0) = f(u∗i |Si = 1, Z ′iα0) Pr(Si = 1|Z ′iα0) + f(u∗i |Si = 0, Z ′iα0) Pr(Si = 0|Z ′iα0),

I will assume throughout that f(u∗i |S = 1, Z ′iα0) = f(u∗i |S = 1) and similarly f(u∗i |Z ′iα0) =

f(u∗i ). The analysis is carried out under this assumption for computational speed and expositional

purposes. Independence is, however, not necessary. The results are similar when conditioning on

particular quantiles of the selection index, as further discussed in Section 8.

This density cannot be directly estimated using the sample wage distribution, as the latter is

only observed conditional on the decision to stay. In other words, it is not possible to directly

obtain an estimate of f(u∗i ) as no information can be directly extrapolated from the data about

the unobservable component of the returnees’ wage equation. Otherwise stated, f(u∗i |Si = 0, Z ′iα0)

is unknown. However, note that whenever Pr(Si = 1|Z ′iα0) is close to 1, f(u∗i |Z ′iα0) = f(u∗i ) ≈
f(u∗i |S = 1, Z ′iα0) = f(u∗i |Si = 1). Intuitively, selection disappears in the limit for individuals for

whom Pr(S = 1|Z ′iα0) is close to 1, namely for those individuals in a high probability set. While it is

not possible to know the wage distribution of the returnees, we can still recover the counterfactual

distribution out of a subsample for which the likelihood of staying is very high.

This intuition is known as identification at infinity (Chamberlain, 1986). Identification at

infinity has been advocated by Heckman (1990) to estimate the constant term in semiparametric

sample selection models and Andrews and Schafgans (1998) develop an estimator in the spirit of

the one proposed by Heckman.9 Several applications have relied on this identification strategy to

recover the constant term in sample selection models, ranging from studies of gender (Schafgans,

2000; Martins, 2001; Mulligan and Rubinstein, 2008; Albrecht et al., 2009; Chzhen and Mumford,

2011) and ethnic wage differentials which correct for labor force participation choices (Schafgans,

1998) , to the estimation of wage differentials for union and non-union members (Lanot and Walker,

1998), to the effects on children’s BMI of mothers’ labor force participation choices (Liu et al., 2009),

to health care utilization differences among insured and uninsured workers (Shen, 2013). In all these

examples, the constant is recovered out of a subset of individuals for which selection is unlikely

to occur, i.e. groups with fairly high participation rates (older, urban workers with secondary

degrees), likely to be unionized (older, semi-skilled workers) or insured (individuals with several

co-morbidities working in industries with high insurance rates). As long as the characteristics Z

that select the sample are exogenous and observations are i.i.d., focusing on particular groups where

selection disappears should deliver a consistent estimate of the quantity of interest. In my context,

this idea will be used to recover f(u∗). Applying this strategy, estimation of the distribution of

9 Schafgans and Zinde-Walsh (2002) prove the asymptotic properties of Heckman’s (1990) proposed estimator for
the intercept in a sample selection model, while Klein et al. (2015) extend these results to allow for a definition of an
high probability set that is data-dependent.
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unobservable characteristics is based on a subsample selected on observed characteristics Z, in

which nearly all individuals stay in the U.S. To the best of my knowledge, such an identification

strategy has not been applied to recover a counterfactual distribution, as is carried out in this

paper, in order to allow for selection on unobservables in a counterfactual density estimation.

Let Hi be an indicator that defines whether the observation is in this high-probability set, i.e.

let Hi = 1[Pr(Si = 1|Z ′iα0) > p̄n)]. The proposed estimator for f(u∗i ) is:

f̂(u∗i ) =

∑n
i=1

1
hK
(
u−u∗i
h

)
SiHi∑n

i=1 SiHi
, (4)

where K(·) is a kernel density estimator and h is the bandwidth parameter. A Gaussian kernel

with optimal bandwidth h = 1.06σ̂N−1/5(Silverman, 1986) is chosen throughout the paper when

reporting the densities of interest. This estimator is simply a kernel density estimator of the

random variable u∗ over a proportion of observations for which the probability of being in the

selected sample is close to 1 at the limit. A Monte Carlo is reported in Appendix A to explain how

well this method works.

4.2 Parameter Estimation

To estimate the density in equation (4), unbiased estimates of the parameters in the model (α0, β0, c0)

must be obtained in order to construct the residuals, û∗. To study the Si choice, I estimate a semi-

parametric dichotomous choice model,10 by applying the estimation method developed by Klein

and Spady (1993). This estimator is the semi-parametric equivalent of a standard logit or probit

model. In fact, the parameters of interest are estimated by maximizing a log-likelihood function

where the probability of staying in the U.S. is a semiparametric expectation function of the single-

index Z ′iα, rather than a parametric probability in a logit/probit form function of the same index.

Therefore, the likelihood function takes the standard following form:

l̂nL =

n∑
i=1

Si ln(P̂i(vi)) + (1− Si) ln(1− P̂i(vi)),

where vi is the selection index Z ′iα̂ hereafter. In the construction of the likelihood, some of the ob-

servations for which this probability is poorly estimated are trimmed.11 To estimate P̂ , I apply the

bias correction technique proposed by Klein and Shen (2010) to overcome finite sample performance

issues.12 While the original formulation of Klein and Spady assumes that one of the variables in

10 On the contrary, DiNardo et al. (1996) choose to adopt a parametric specification for their selection model
(hence, their approach is deemed to be semiparametric). For coherence, I estimate all parts of the model without
any distributional assumptions. In Section 5, however, I also present parametric estimates for comparison.

11Trimming is standard in this literature.
12 Both in Klein and Spady (1993) and in Klein and Shen (2010), the bandwidth h is set to satisfy n−1/6 < h <

n−1/8. Specifically, I set h = n1/7. Additionally, it should be noted that in the estimation of the selection index, the
only identified parameter in terms of the original model is the coefficient ratio, i.e., αj/α1, with j = 1 . . . k and where
α1 is the coefficient of the continuous variable, which is normalized to 1.
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the index is continuous and with non-zero coefficient to reach identification of the semiparametric

expectation, subsequent work in Delgado and Mora (1995) and Klein and Shen (2010) suggests

that this assumption is sufficient but not necessary for identification, provided tail conditions on

the density for the dependent variable are satisfied. In this application, I have used the variable

Age as normalization variable. Age takes 31 distinct values, and Monte Carlo simulations available

upon request on the performance of the Klein and Spady estimator in my setting show that this

variation is sufficient to identify the parameters of interest.

The recovery of Z ′iα̂ is useful for two reasons.

First, it is now possible to select those observations in the high probability set, for which

selection can be ignored at the limit. Thus, individuals in the high probability set represent those

observations in the 95th percentile of ̂Pr(Si = 1|Z ′iα̂).13

Second, the estimation of (Z ′iα̂) allows us to obtain unbiased estimates of the outcome equation

parameters. In the wage equation, I employ Robinson’s (1988) differencing method in order to

correct for sample selection and recover unbiased estimates of β0, as well as the estimator proposed

by Heckman (1990) to recover c0.

Before proceeding to the results, one identification issue must be discussed. At least one variable

is needed in the Zi matrix that does not appear in the Xi matrix. The variable included in the

selection process and excluded from the wage process is having a U.S.-born child, which proxies

for social attachment to the destination country. Because the idea of attachment to people and

institutions in the destination country raises the opportunity cost of returning, this should act as

a strong predictor of this choice. However, it is unlikely that the wage process depends on the

birthplace location of an individual’s children.14 Consequently, the effect of having a U.S.-born

child should not predict an individual’s wage, after controlling for attachment and network effects

through the U.S.-born spouse indicator and length of stay in the U.S. variable.15

4.3 Potentials and Limitations of the Estimation Strategy

Primary assumptions are that (Xi, Zi, u
∗
i , εi) is i.i.d and that the regressors are exogenous. These

are common assumptions of standard empirical models in the migration literature. In fact, the

mean independence of the error term from the explanatory variables in the outcome and selection

equations is typical in linear regression models (Lacuesta, 2010; Reinhold and Thom, 2013; Kaestner

and Malamud, 2014) and in the non-parametric analyses based on pre-migration earnings (e.g.,

Ambrosini and Peri, 2012; Fernandez-Huertas Moraga, 2011) as selection is here recovered only

if the subdivision into cells is exogenous.16 These models further conjecture the absence of an

13 Although this cut point is arbitrary in the paper, results are stable when a different definition of the high
probability set is used. Such results are available upon request.

14 Additional regressions also controlled for the language spoken at home. Having a U.S. child might be related to
an individual’s wage if English proficiency is enhanced by the presence of a child at home. The results that control
for this additional variable do not differ from those presented in the paper, and they are available upon request.

15Additional evidence and discussion on the validity of the exclusion restriction can be found in Section 8.
16 As already mentioned, the variables used here to identify individuals that have a high probability of staying are

similar to those used to identify cell-probabilities in other studies.
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Ashenfelter dip, and that expectations of migration and return do not influence the individual’s

behavior before migrating. The above estimator avoids these hypotheses as it does not use pre-

migration earnings to measure selection. Nevertheless, it imposes a structure between the outcome

and observable traits and a stronger need for identically distributed observations. This assumption

is further discussed in Section 7.

While the estimation strategy is not a replacement for other analyses, the estimator in this

paper could be advantageous in certain circumstances. Such scenarios include whenever the data

provide insufficient information on returnees’ wages, such as in Census data (as in this paper and

in Lacuesta, 2010; Ambrosini et al., 2015), when the sample size is too small to guarantee sufficient

statistical power to the analysis (Ambrosini and Peri, 2012), or as a robustness check for the

presence of feedback effects on the migration decision or Ashenfelter dip whenever pre-migration

earnings are indeed observable, as in Fernandez-Huertas Moraga (2011), Ambrosini and Peri (2012),

McKenzie and Rapoport (2010), and Kaestner and Malamud (2014).

5 Results

In addition to interest in the counterfactual estimation, the data enable studying different compo-

nents of the return choice, as well as the wage determination process for Mexican-born immigrants

in the U.S. Subsection 5.1 studies these choices, while Subsection 5.2 presents the density estimation

results.

5.1 Parameter Estimates

The estimates of the marginal effects for the observable characteristics determining the decision

to stay in the U.S. are presented in Table 1. Because these marginal effects are computed at the

mean, the first column of the table reports the average characteristics of the immigrant sample.

[TABLE 1 HERE]

Each additional year of age has only a small effect on the probability of staying, increasing it by

0.4%. Compared with uneducated individuals, Mexicans who have completed primary (secondary)

school are approximately 2% (6.7%) more likely to stay, while Mexicans with a college degree are

approximately 3% more likely to stay. Having a foreign-born spouse slightly reduces the probability

of staying, while individuals with a U.S.-born spouse are approximately 5% more likely to stay

compared with those that have a foreign spouse. Meanwhile, having a foreign (U.S.)-born child

reduces (increases) the probability of staying by approximately 6% (17.5%). It should also be noted

that the two variables indicating social attachment to the host country are strongly significant,

and – based on observable characteristics – stayers are more likely to have better educational

outcomes. In addition, Figure 2 shows the actual and predicted share of stayers as we change

the observable characteristics (as represented by decile of the index) and the distribution of the
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predicted probability of staying in the U.S. Overall, the model fits the data well and the probability

of staying in the U.S. takes a wide range of values.

Following Robinson’s (1988) estimation, the procedure explained above also produces results

for the wage process. These results are presented in Table C.2 in the Appendix and show standard

labor market premia of the various individual characteristics. In estimating the counterfactual

density of interest, I use a parsimonious specification where wages are estimated conditional only

on demographics and socioeconomic characteristics such as educational attainment and family

status. The results, based on a full set of controls, are reported as a robustness check in Section 7.

The estimation of the selection equation allows selecting those individuals for which sample

selection disappears, namely, those individuals in the “high probability set”. As mentioned in the

previous section, individuals with a high probability of staying need to be selected. Table 2 shows

the characteristics of the individuals inside and outside this high probability set. These individuals

are on average more educated and more likely to have a U.S. born child and spouse. It should be

noted that these differences will be taken into account when constructing the wage distribution in

the next section. Instead, the main identifying assumption is that the selection of this subsample

is exogenous. In the robustness checks section, I will further comment on the evidence of Z being

exogenous.

5.2 Density Estimates

The following three research questions will now be answered in turn: (i) how different is the full

immigrant population in terms of observable and unobservable traits compared with the population

that stays in the U.S.; (ii) what would the distribution of wages be in the absence of return

migration; (iii) how does this distribution change, conditional on educational characteristics?

How different is the immigrant population from the population of stayers in the U.S.,

in terms of observable and unobservable traits? Table 3 reports the deciles of the predicted

wage, the residuals and the wage process that are observed and that would have been observed had

there been no return migration. These quantities were calculated in the following manner. The

first panel shows the predicted actual and counterfactual wages, both calculated as the product

of the returns on the skills reported in Table C.2 and the characteristics of immigrant stayers’

(immigrant population) characteristics for the actual (counterfactual) predicted wage distribution,

i.e., ĉ+ β̂Xj , where j = only stayers, immigrant full population. I then report the average ĉ+ β̂Xj

in each decile of its distribution. The second panel reports the average estimated residuals in

the actual and counterfactual distribution, by decile. As explained in Section 4.1, these were

estimated from the high probability set. The last panel shows actual and counterfactual wages.

Here I consider the distribution of the residuals and shifts it by the average predicted wages in the

actual and counterfactual scenarios (that is, by the mean of ĉ+ β̂Xj). The deciles of the predicted

wage are therefore reported as a summary measure. Because at all deciles the full population

has higher unobservable characteristics than the selected population, as well as only marginally
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lower observable skills, the wage distribution of the population will lie to the right of the observed

distribution among the stayers, even if other quantiles were used.

[TABLE 3 HERE]

In terms of observable characteristics, Mexican immigrants would on average earn less had there

been no return migration. In fact, the log-difference across the different deciles is always negative,

which is in line with the descriptive analysis that found returnees to have below average skills.

However, these differences are relatively small, reaching at most a decrease of a few cents (approx-

imately 0.8%) in the wages between the two scenarios, because returnees represent only a small

proportion of the total immigrant population.

The role of unobservable traits is shown in the second panel of Table 3. Unobservables were

calculated as the difference between the actual and the predicted wages for the stayers, and were

directly estimated for the full population using the estimation technique described in Section 4. I

find that the positive differences between the counterfactual and actual distributions are driven by

dissimilarities in unobservable traits. Had there be no return migration, the immigrant population

would have been earning approximately 7.7% more (approximately 1 dollar, at the median) due

to unobservable differences between stayers and returnees. The effect at the average level is a

4.5% change in wages, which is consistent with the relatively small effect of selection at the mean

reported in previous studies (Lindstrom and Massey, 1994; Ambrosini and Peri, 2012).

The evidence presented suggests that immigrant stayers and the full population (i.e. stayers

and returnees) are somewhat close in terms of observable traits, whereas differences arise in terms

of unobservable traits. In particular, despite returnees being a disadvantaged group in the labor

market in terms of observable traits, their unobservable abilities seem to compensate for this lack of

skills. Furthermore, it seems that unobservable motives might push returnees to be more successful

in the host country than the immigrants who stay. Although we cannot directly explain the

motives behind returns, it is possible to conjecture that these immigrants leave the host country

upon reaching their savings or skills acquisition goals and that more motivated immigrants are

able to meet their personal objectives despite their original disadvantages in the host country labor

market.17

What would the wage distribution be in the absence of return migration? The overall

impact of return migration is presented in the last panel of Table 3, which reports the deciles

of the actual wage distribution for stayers and those of the counterfactual wage distribution that

would have occurred in the absence of return migration. In practice, this second distribution sums

the average observable traits (panel one) and the unobservable components (panel two) for the

immigrant population at each decile. As differences primarily arise due to the positive difference

in the unobservable characteristics of the two populations, the implied counterfactual distribution

17Yang (2006) explores the reasons behind the returns of Filipino migrants and finds that while lifecycle consider-
ations often motivate return migration, some migrants are motivated by target earnings considerations.
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suggests that Mexican immigrants would be earning more had there been no return migration. In

particular, more people would be earning above the median level.

Figure 3(a) presents the actual and counterfactual distributions described graphically in or-

der to better visualize them. Although relatively close to each other, some differences in the two

distributions are apparent from this figure. In the absence of return migration, more Mexican

immigrants would appear in the upper tail of the distribution, thereby increasing the average wage

in this population. To better observe this point, Figure 3(b) presents the difference between the

counterfactual and actual distributions. Without return migration, more mass would appear in the

upper tail of the wage distribution, as the wage difference is shown to be first negative and sub-

sequently positive. Therefore, the disadvantage that returnees face in terms of lost human capital

skills is balanced by the higher unobserved motivation and productivity displayed by this group.

Overall, this balance translates into an increase in the concentration of individuals in the middle

to upper part of the wage distribution in the absence of return migration. A Kolmogorov-Smirnov

(KS) test for the difference between these two distributions delivers a D statistic of 3.05, implying

that the actual and counterfactual distributions are different at all conventional significance levels.

[FIGURE 3 HERE]

This finding is not the only insight from the analysis, however. The last panel in Table 3 shows

that return migration also affects wage inequality, reporting the 90-10, 90-50, and 50-10 wage gaps

for the actual and counterfactual distributions. At the bottom of the distribution, the absence

of return migration would imply an 7.3% increase in the difference between the 50th and 10th

percentiles, whereas a reduction in this dispersion would occur at the top of the distribution.

Overall, inequality within the Mexican population would increase slightly in the absence of return

migration. Therefore, because selective return migration encourages high-wage earners to leave,

this leads to a reduction in inequality within the Mexican population remaining in the U.S. By

contrast, if all returnees were to stay, the full wage distribution in the population would display a

slightly higher dispersion compared with that previously observed.

How does the wage distribution change conditional on educational characteristics?

Since an individual’s educational attainment greatly affects both his or her decision to stay and

his or her wage, the importance of selection might vary by educational level. I therefore generate a

distribution of unobservables specific to each education group. In other words, the unobservables

are now based on a sub-sample of the high probability set with varying levels of education (primary,

secondary, tertiary) and I compare these distributions to that of the actual stayers.18 Accordingly,

Table 4 reports the deciles of the predicted wage, unobservables and actual wage distributions

for people with a primary school education, high school education and college degree. As before,

18These distributions are based on 448 observations for individuals with primary education, 6043 observations for
the category of secondary educated and 180 observations for individuals with tertiary education. Because the vast
majority of observations falls in the second category, it is unsurprising that the actual and counterfactual distributions
are closer for this group.
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the differences in observables are negligible across all educational groups, while unobservables are

shown to drive dissimilarities in the wage process.

[TABLE 4 HERE]

However, despite the fact that returnees with primary- and secondary-level educations tend to

show higher unobservable traits, the distribution of unobservables is different for college graduates.

Figure 4 shows the dissimilarities in the actual and counterfactual distributions at different edu-

cational levels in order to better visualize these differences. Figures 4(a) and 4(b) first show the

distribution of log-wages for low-educated individuals: as before, returnees are disproportionately

drawn from the upper tail of the density. The same conclusion can be inferred from Figures 4(c)

and 4(d), which show the same distribution for workers that have a secondary-level education.

Finally, Figures 4(e) and 4(f) show what would have happened if all returnees with a college degree

had stayed. In this case, a much larger mass of individuals would appear at the center of the

distribution.

[FIGURE 4 HERE]

The findings presented above suggest two main conclusions. First, not all returnees are low-wage

earners. In other words, within each educational group some returnees are high earners. Second,

most of the action happens at the tails of the distribution: while almost no differences can be

detected for individuals educated to secondary level, selective return migration has a much larger

impact on individuals with either a low or high level of education.

6 Discussion and Policy Implications

In the absence of return migration, more Mexican immigrants would appear in the

upper tail of the wage distribution. The results presented in Section 5 suggest that those

immigrants who decide to leave are high-wage earners. Consequently, without return migration,

the average wage in the population would be higher. This is not only true overall, but also when

considering different education levels within the immigrant population. Despite the returnees being

less skilled in comparison with stayers, they have higher unobservable traits that make them more

successful in the labor market. This finding implies that an analysis that simply controls for

differences in observable characteristics might draw the misleading conclusion that returnees are

those who fail in the host country. On the contrary, returnees are not failures, but rather those who

reached their goals in the host country, either in terms of savings or in terms of skills acquisition.

These important results extend the findings of Lubotsky (2007) and Hu (2000). In particular,

Lubotsky (2007) shows that negative selectivity is less predominant in the Hispanic population,

but the author was unable to explain this finding because of the impossibility of identifying the

subsample of Mexican workers in the data. Furthermore, the results are also in line with the

conclusions of Ambrosini and Peri (2012), who found indicative evidence of positive selection based

on the pre-migration earnings of returnees compared with immigrant stayers despite the use of a
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small sample. Finally, given that recent evidence on the selection of Mexican immigrants to the

U.S. hints at negative selectivity (Ambrosini and Peri, 2012; Fernandez-Huertas Moraga, 2011), the

results are in line with Borjas and Bratsberg’s (1996) model in which selection on return migration

intensifies the original selection process.

The policy implications of these findings are twofold. First, the assimilation process of Mexican

migrants might have been underestimated due to selective out-migration. Second, if migration

policies or economic conditions were to increase the length of stay, or even induce temporary

migrants to settle permanently in the U.S., the consequences would not necessarily be of increased

competition for immigrant and native low-wage earners.

Return migration influences immigrant inequality. The analysis presented has shown that

return migration decreases inequality at the bottom of the distribution and increases inequality at

the top. Therefore, the 90-10 wage differential changes only slightly. These effects are similar even

when only taking account of individuals that have primary and secondary levels of education. The

conclusion about high-skilled workers is different, however: return migration undoubtedly increases

wage inequality within this group. Therefore, if policymakers are concerned about low earners,

selective return migration seems to alleviate the dissimilarities in this population. However, if the

goal of immigration reforms were to increase the average skills level of the incoming alien population,

it should be recognized that the top earners of this group also return to their home countries.

Leaving aside general equilibrium effects, the immigrant–native wage gap would slightly

close in the absence of return migration. An implication of this paper can be drawn by com-

paring the counterfactual distribution of wages with the wage distributions of native-born workers

(the latter are shown in all the figures presented earlier).19 Figure 3 shows that in the absence

of return migration the immigrant wage distribution would become closer to the native-born wage

distribution. The most interesting comparison can be observed in Figure 4, however, where the

wage distribution is represented by educational level, demonstrating that all levels of human capital

present a consistent earning gap between Mexican-born and native-born workers. This gap would

close slightly for both very low and very high levels of education if all immigrants were to stay.

The difference between the actual, counterfactual and native-born wage distributions is also

striking for high- and low-educated individuals for two reasons. First, Figure 4 clearly shows that

selection on return migration is inducing middle to top earners to leave the U.S., thus biasing

our picture of Mexican performance at both low and high levels of education. For example, in

the absence of return migration, more of the top earners among low-skilled workers would stay in

the U.S. A similar conclusion also holds for high-skilled workers. Therefore, a randomly selected

Mexican immigrant would actually be doing better than shown herein. As an example, consider a

migration policy that guarantees entry to the U.S. to individuals with high levels of education. This

19All the regression results and table for the native workers based on which the distributions are derived are
available upon request.
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policy still might not fully benefit the U.S. as middle to top wage earners - the most productive

workers - would still leave.20

7 Robustness Checks

While Section 5 presented the main results of the paper based on the estimation of a parsimonious

wage equation, this section checks the robustness of these results based on different model specifi-

cations. In particular, it controls for a fully specified model, estimates the model parametrically,

discusses the effects of illegal and circular migration on the estimates, and discusses the validity of

the assumptions of the estimator.21

[FIGURE 5 HERE]

Full Model. The previous discussion constructed the counterfactual and actual distributions

based on the estimation of a parsimonious wage equation, only reporting those variables for which

information was provided for both stayers and returnees.22 There may be some concern, however,

that a better specified model could change the results. Panel (a) in Figure 5 shows the actual

and counterfactual distribution when more regressors are added into the analysis. Specifically, the

wage process now includes controls for length of stay, industry and region of residence. Hence, the

residuals based on which the actual and counterfactual densities are estimated should now exclude

the effects of these variables. These variables were not included in the estimation of the selection

equation as information on the migration experience is not available in the Mexican sample.23 All

previously drawn conclusions hold for this further specification, where the wage equation is better

specified.24

Parametric Model. A fully semiparametric specification was adopted throughout the analysis

in order to avoid inconsistency if the normality assumption was violated in the data. The same

technique adopted for recovery of the population distribution of the error term u∗, however, can

also be applied in a parametric setup.

Figure 5(b) show the actual and counterfactual distributions obtained by estimating a probit

model to select for the individuals in a high probability set and the Heckman correction model is

used to estimate the conditional expectations of the wage process.25 The parametric results can

20 I am implicitly assuming that this policy would not change the selection process of immigrants with high levels
of education from Mexico to the U.S.

21 The tables for the actual and counterfactual distribution are available upon request.
22 These are shown in column 1 of Table C.2.
23 The corresponding regression results are shown in column 2 of Table C.2
24As previously explained, the main problem with using a fully specified wage equation is the absence of information

for returnees on the length of stay, the location, and the industry in the U.S. In the figure, I have assumed that
returnees present similar characteristics to those of average non-returning migrants. Given the previous similarities
of the deciles of Xβ̂, this assumption seems reasonable.

25 These results are shown in Table C.3, which presents the estimates for the decision to stay and the wage equation
when both models have been estimated parametrically. A probit model was adopted to estimate the return choice.
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be seen to be very close to the semiparametric results. Further, a KS test of the equality of the

parametric and semiparametric models’ distributions delivered a statistic of 1.13, which is below the

10% critical value, implying that the null of equality of distribution functions could not be rejected.

This is not surprising because the wage process follows a log-normal distribution. This result is also

reassuring as it shows that the technique applied can be easily implemented in a parametric setup.

The parametric model has the further advantage of being efficient under normality, as shown by

the smaller standard errors. However, it is important to note that the major conclusions of the

paper are also valid in this context. Mexican returnees come from the middle to top part of the

distribution, suggesting that a larger mass of people would have their wages in the upper part of

the wage distribution in the absence of return migration.

Recent immigration. A key challenge in the dataset is the sample selection problem due to

the choice of the two censuses. While we would ideally like to compare all stayers in the U.S.

(captured in the U.S. census) with all returnees in Mexico, as mentioned in the Introduction and

Data sections, only those individuals who returned between 1995 and 2000 are captured in the

Mexican census. Hence, as return happens predominantly within 10-15 years since migration, the

results might be driven by the comparison of recent return migrants with older immigration cohorts.

To understand whether this limitation drives the conclusion, Figure 5(c) estimate the model on the

subset of stayers that immigrated to the U.S. between 1990 and 2000, and as can be seen, such a

restriction does not change the main conclusions.

Education. As previously mentioned, one of the drawbacks of combining the two censuses is the

misreporting of education in the U.S. census. Mexican migrants in the U.S. might overstate their

levels of educational attainment (Ibarraran and Lubotsky, 2007). If this were the case, any observed

differences in educational attainment might be partly due to misreporting in the U.S. census rather

than the selection of returnees. For this reason, educational attainment in the paper is measured in

four broad categories (less than primary, at least primary, at least secondary education and college

education) that do not distinguish between lower and upper secondary degrees. Moreover, the

pattern shown in the data used herein can also be found in other studies that do not combine these

two censuses (Fernandez-Huertas Moraga, 2011; Ambrosini and Peri, 2012), which could reduce

such concerns. To further check whether this is a serious challenge to the results, the range of the

educational variable was further reduced to two categories (college and non-college graduates). The

corresponding actual and counterfactual distribution are reported in Figure 5(d), and once again,

results are qualitatively unchanged.

The first column of the table reports the implied marginal effects, which are very close to the semiparametric marginal
effects. The second column of Table C.3 shows the results for the wage equation. Following the same logic used for
the semi-parametric estimator, I have then constructed û∗ as the vector of residuals for individuals in the top 95th-
percentile of the probability of staying, now defined by the cumulative normal distribution evaluated at the index
in the Si decision. I finally compared the distribution of wages implied by this sample, where selection had been
removed, with the distribution of wages in the selected sample.
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Undercount of migrants in the U.S. Census. The U.S. census is known to undercount

immigrants, especially if they are undocumented and short-term stayers (Hanson, 2006; Fernandez-

Huertas Moraga, 2011). The fear of deportation or the fact that migrants are not physically present

in the country at the time of the enumeration might induce this population not to complete the

census form. Consequently, the census sample might not represent the actual Mexican population

in the U.S. For instance, Fernandez-Huertas Moraga (2011) shows that the results of the positive

selection in Chiquiar and Hanson (2005) are largely driven by the non-representativeness of the

Mexican sample in the U.S. census due to the two causes mentioned above.

These problems might be particularly severe when using U.S. census data. By contrast, it

seems reasonable to assume that Mexican returnees are better captured in the Mexican census as

the motivation to underreport U.S. experience is not affected by the illegality status in the U.S.

(although the presence of short trips might still induce an undercount of migrants in this sample).

The resulting key concern is the non-randomness of the census sample even after controlling

for relevant observable characteristics. In the following discussion, I argue that under certain

conditions the identification strategy adopted in the analysis is robust to the non-randomness of

the U.S.-Mexican sample.

To visualize the effects of an undercount of Mexican immigrants in the U.S. census, let Ci = 1

be an indicator that equals 1 if the respondent appears in the census and 0 otherwise:

Ci =

1 W ′iγ ≥ ηi
0 W ′iγ < ηi.

Subsequently, the choice of staying in the U.S. is only observed if the individual appears in the

census:

Si = 1(Ziα ≥ εi) if Ci = 1.

The concern is that ηi and εi are correlated and, in particular, based on the results presented

by Passel (2006), we expect them to be positively correlated: individuals who are more likely to

appear in the sample are also those more likely to stay and to have longer U.S. experience. If ηi

and εi are correlated, then there might be a concern that the probability of staying P (Si = 1|Z ′iα)

has been mis-estimated. Using again the Law of Total Probability, in fact:

P (Si = 1|Z ′iα) = P (Si = 1|Z ′iα,Ci = 1)Pr(Ci = 1|Z ′iα)+

+ P (Si = 1|Z ′iα,Ci = 0)Pr(Ci = 0|Z ′iα),

where the second part of the addition is missing. However, note that the high probability set was

constructed by sending P (Si = 1|Z ′iα,Ci = 1) to 1. By doing so, individuals with large values of

Z ′iα were implicitly selected. However, high values of Z ′iα are associated with high values of W ′iγ. In

fact, the main variable that can send that probability to 1 is age. For instance, older individuals are

not only more likely to stay but also more likely to be captured by the census (Passel, 2006). Thus,

19



whenever P (Si = 1|Z ′iα,Ci = 1) is close to 1, Pr(Ci = 1|Z ′iα) is also expected to be close to 1. This

implies that in the high probability set the probability of staying is largely determined by individuals

who do appear in the sample, i.e., P (Si = 1|Z ′iα) ≈ P (Si = 1|Z ′iα,Ci = 1)Pr(Ci = 1|Z ′iα). As a

consequence of using individuals in the high probability set, the distribution of the unobservables

recovered should be unaffected by illegal immigration. In other words, given the relation between

Si and Ci in this particular application, using the high probability set appears to marginalize the

problems related to the censoring in the selection rule due to illegal immigration.

As a final check, focusing on concerns of illegal migration, as most illegal migrants seem to

settle in California, Florida, Texas and New York (U.S. Immigration and Naturalization Services,

2000), I run the analysis excluding these states and observing how conclusions change. The actual

and counterfactual wage distributions are reported in Figures 5(e): dropping states where illegal

migration may be predominant does not change the main conclusions of the paper. Further, the

difference in the two distributions becomes more marked, as expected in the case of an undercount

of migrants in the U.S. that have worse labor market outcomes. As a final remark, several analyses

report a much lower undercount in the 2000 census (Card and Lewis, 2007) than in previous

enumerations.

Circular Migration. Mexican migrants are recognized for engaging in repeated movements into

the U.S. (Massey and Espinosa, 1997). Using the Mexican Migration Project, and constructing a

sample similar to that used in the analysis, it seems that circularity is more predominant in com-

munities residing at the U.S.-Mexico border.26 Hence, the model was run excluding the bordering

states (panel (f) of Figure 5). As shown, the results are unchanged in this specification.

8 Additional Checks on the Identifying Assumptions

The estimation strategy employed in this paper is based on a set of assumptions. This section dis-

cusses whether they are likely to hold. First, it discusses the results by showing that using different

sources and different techniques findings are still compatible with those reported in the data. Then,

it discusses the challenges of sampling returning migrants. Lastly, it directly assesses the validity

of the identifying assumptions of the empirical strategy in the particular context presented in this

paper.

Additional Evidence on the Validity of the Assumptions using the Mexican Family

Life Survey. To address whether the results are driven by the adopted estimation strategy and

its underlying assumptions, I provide additional evidence on the selection patterns of returning

migrants based on the Mexican Family Life Survey (MxFLS). Although these additional findings

are based on a very small sample size, a key reason why return migration poses serious challenges

26 Over half (53%) of circular migrants reside in a border state, compared with 43% for the single-trip migrants.
Hence, individuals that reside outside bordering states are significantly less likely to be circular migrants at the 5%
level. These results available upon request.
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when analyzed, the similarity of the results obtained gives reassurance about the validity of the

technique adopted in this paper.

The MxFLS is a longitudinal dataset which collects information on socioeconomic indicators,

demographics and health indicators of about 8,000 Mexican households. The baseline (MxFLS-

1) was conducted during 2002. The second wave of field work (MxFLS-2) was conducted during

2005-2006 with a 90 per cent re-contacting rate at household levels. This dataset contains in

principle the ideal structure to study the selection in return migration as migrant and returnees

are followed across borders. In practice, sample sizes are too small (about 130 cases) to make it the

key source for studying return migration. Ambrosini and Peri (2012) have already highlighted this

problem, however still commenting on key selection patterns in this group. Following their work, I

compare in Figure 8(a) income levels of U.S. stayers and Mexican returnees before migration. The

key advantage of this strategy is twofold. First, it follows the most recent approach to measuring

selection by basing it on pre-migration outcomes (Fernandez-Huertas Moraga, 2011; Ambrosini

and Peri, 2012; Kaestner and Malamud, 2014).27 Income here is intended as a reduced form

representation of a worker’s productivity, including both observable and unobservable factors. The

focus on pre-migration income allows therefore obtaining a summary measure of the economic

potential of migrants, independently of the additional challenges that will be faced in the host

country. Second, the distribution of pre-migration income is a direct, non-parametric measure

of selection, that avoids the complex exercise undertaken in the paper and does not rely on the

assumptions that are now under scrutiny.

[FIGURE 8 HERE]

Using the MxFLS I have identified individuals who migrate between 2002 and 2005 and, among

them, identified those who are still in the US in 2005 (U.S. Stayers, S = 1) and those who have

returned to Mexico by 2005 (returnees, S = 0). There are 122 individuals who migrated to the U.S.

between 2002 and 2005, of which 27 had already returned to Mexico by the time of the interview.

Figure 8(a) shows pre-migration income of both U.S. stayers and of the full population of migrants.

The figure shows that returnees are positively selected based also on pre-migration income. The

comparison of stayers’ income with the full population provides similar results to those obtained

from the census. In other words, U.S. stayers are negatively selected compared to the full migrant

population and this is true even before migration, i.e. before the migrants had been exposed to

U.S. shocks. This check is indicative for two reasons. First, it should convince that the main

results are not driven by the identifying assumptions of the paper. Second, it also suggests that

returning migrants are not (only) a sample of individuals with failed U.S. experience as observational

differences in terms of productivity are present even before migration. In particular, looking at the

probability mass above the mean, data from the MxFLS suggests that the difference in the two

distributions peaks at 5%, while in the main dataset the difference peaks at about 10%. Returning

27I rely on individual income due to missing values in wages, which would further reduce the already limited sample
size. Results do not change if wages are used instead of income.
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migrants are doing better than pre-migration income would suggest. This conclusion seems in line

with return migration being part of a life-cycle choice.

Sampling Return Migrants. While sampling of the Census is unlikely to be related to the

decision to stay or return, the strategy of keeping migrants/stayers only and then pooling the two

datasets might raise concerns of choice-based sampling. Although this is commonly done in the

literature (Borjas and Bratsberg, 1996; Chiquiar and Hanson, 2005; Lacuesta, 2010; Mishra, 2007;

Caponi, 2011), one might be concerned that the returning probabilities and returnees’ character-

istics obtained in this pooled sample might differ from the characteristics and probabilities in the

population of migrants at risk of return.

The results based on the MxFLS dataset already indicated that similar patterns could be

obtained in a sample not subject to this particular challenge.

To gain further knowledge about the severity of this concern, I have explored additional infor-

mation provided in a supplementary migration module of the Mexican census. The head of the

household was asked to give information on the number of household members who had left Mexico

between 1995 and 2000 as well as the number of household members who had left in that same time

period and returned by 2000. Unfortunately, no information was collected about the experiences

and characteristics of these stayers and returnees and, additionally, it is not possible to accurately

merge individual information from the full census with information from the migration supplement

because unique individual-level identifiers are not provided. It is therefore impossible to know how

the (observed and unobserved) characteristics of stayers and returnees would compare with those of

the pooled sample used in this paper. Lastly, this data will not record individuals whose complete

household emigrates to the U.S. and no member returns to Mexico, estimates of which are about

8% (Fernandez-Huertas Moraga, 2011). Nonetheless, this source can be used to calculate return

rates of individuals who have left between 1995 and 2000.

This source suggests that 25.96% of migrants had returned in that five-year period. Correcting

for whole migration household, the return rate from this source comes close to the 17.18% return

rate estimated by pooling the Mexican and the U.S. Censuses for that particular five-year interval

(see also Figure 5(c)).

Lastly, while individual-level analysis is not possible, it is still possible to analyze average

income in Mexico for households with all migrants members currently in the U.S. and households

with returning members. Figure 8(c) compares the different levels of income for all households

(with all migrant members still abroad and with at least a returning migrant) and for households

with U.S. stayers only. Albeit smaller, as we would probably expect from a household-level analysis,

selection patterns are in line with those in the paper.

Validity of the Assumptions in the Estimation. Before concluding, it is important to discuss

the several identifying assumptions based on which the model is estimated. I start by discussing

the validity of having a U.S.born child as an exclusion restriction and then continue by discussing

endogeneity of the regressors and heteroskedasticity in this particular application.
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The empirical analysis uses having a U.S.born child as the variable entering the selection equa-

tion and excluded from the outcome equation. The reader might be concerned about the sensitivity

of the procedure to the use of this particular exclusion restriction. As a first step, it should be

noted that the literature on selection models has recently advanced to develop tests of the key iden-

tifying assumptions in sample selection models (e.g. Blundell et al., 2007; Kitagawa, 2010; Huber

and Mellace, 2014). I use the test developed in Huber and Mellace (2014) which assesses the joint

satisfaction of the validity of the exclusion and of (the usually less discussed) additive separability

of the error term in the selection equation. The two assumptions of sample selection models imply

two testable inequality constraints that come from both point identifying and bounding the out-

come distribution of the subpopulation that is always selected. Following the procedure suggested

by these authors, I test the resulting constraints on the mean outcome of the always selected. The

null hypothesis is:

H0 :

(
E(Y |USborn = 1, S = 1, Y < Yq)− E(Y |USborn = 0, S = 1)

E(Y |USborn = 0, S = 1)− E(Y |USborn = 1, S = 1, Y ≥ Y1−q)

)

≡

(
θ1

θ2

)
≤

(
0

0

)
,

where q corresponds to the proportion of always selected in the mixed population of individuals

with and without US-born children (83% in my sample) and Yq represents the qth conditional

quantile in the conditional outcome distribution given USborn = 1 and S = 1. The standardized

mean constraints are ( -0.1073, -0.2434). Such negative value indicates that the inequalities are

never binding. Hence, we do not have enough evidence pointing to a violation of the identifying

assumptions in a sample selection model when relying on having a US-born child as an instrument.
28

To further extend the discussion on the exclusion restriction, it is worth noting two additional

issues. First, the marginal effects from the baseline model (Table 1) are close to the marginal effects

of a probit model (Table C.3), suggesting that the errors in the selection and outcome equations

might be jointly normally distributed. Normality is theoretically sufficient for identification. Rely-

ing only on the non-linearities of the selection model, Figure 6(a) shows the counterfactual obtained

in a parametric framework that does not use having a U.S.-born child as an exclusion restriction.

Results are consistent with the benchmark analysis.

[FIGURE 6 HERE]

Second, technically, identification at infinity does not require the use of an exclusion restriction

(Chamberlain, 1986). Intuitively, as identification at infinity correctly identifies a subset of the

data in which sample selection does not appear, all parameters of the model could be estimated di-

rectly on that subset without resorting to more complex exercises. Identification is instead reached

28The associated p-value is 1, so we fail to reject the null of validity/monotonicity at conventional statistical levels.
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through regressors having a larger probability mass at the tails compared with the error term (An-

drews and Schafgans, 1998; Klein et al., 2015) and the assumptions discussed in Section 4.3 need to

hold. Mulligan and Rubinstein (2008) follow Chamberlain’s suggestion and estimate a wage equa-

tion directly in a subset of their data where females have a probability of participating in the labor

force above the 95th percentile, without resorting to an exclusion restriction. Following this same

strategy, complementary models that estimates the full set of parameters and the counterfactuals

directly in the high-probability set were run, and these provided similar results to those presented

in the paper (results available upon request).

Besides the exclusion restriction, the adopted technique assumes exogeneity and homoskedas-

ticity. Exogeneity is needed for consistency. In fact, the assumed exogeneity of the regressors Z

in model (1) from u∗ guarantees the randomness of this selection rule. The exogeneity of X is

naturally important for the correct identification of the parameters in the wage equation but such

importance is not specific to the current estimation strategy, thus, in the following I will focus

on the role of Z. It should be noted, however, that Z and X coincide with the exclusion of one

variable, hence the following discussion and tests closely relate also to the assumption of exogeneity

of X.

To better visualize the problem, let G be the control function that accounts for the bias that

would occur under selection into the decision to stay, i.e. a non-parametric equivalent of the inverse

Mills ratio. In the population, G is an unknown function of Z ′iα0. The wage equation in the selected

sample can be written as:

Yi = X ′iβ0 + c0 +G(Z ′iα0) + u∗i ≡ X ′iβ0 + c0 + ηi, with G(Z ′iα0) + u∗i ≡ ηi (5)

If sample selection was not considered and the presence of G(Z ′iα0) was ignored, not only would

the conditional expectation of Yi on Xi be incorrectly estimated, but all moments of ηi would

depend on Zi. Therefore, we would expect the distribution of the residuals in the selected sample

to change at different quantiles of Z ′iα0. To underline this point, Figure 6(b) shows this distribution

and highlights the variation in the residuals as a function of different quantiles of the selection index.

On the contrary, if the estimation technique was correctly able to purge out sample selection

when focusing on the high probability group (hence, obtaining G(Z ′iα0) ≈ 0), the distribution of

ηi would be equivalent to the white noise error term in the population, u∗, and, hence, would not

change when conditioning on different quantiles of Z ′iα0. To provide evidence of whether exogeneity

of Zi is appropriate in this context, I estimate f̂(ηi|Z ′iα̂) in the high probability set, which should

be close to the estimated f̂(u∗) in the paper if Zi can be treated as exogenous.

Figure 6(c) shows how ‘close’ the estimated f̂(u∗) is to the distribution of the unobservables

in the high probability set conditioning on Z ′iα0. Conditioning on different quantiles of the index

(Z ′iα̂) does not induce a considerable change in the distribution of u∗. Specifically, it seems that

the recovered distribution f(u∗) is relatively conservative, as it shows higher variability compared

with the conditional distributions.

To provide further indicative evidence of this finding, a KS test can be used to test whether
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these distributions come from the same underlying density. Table 5 tabulates the D statistic at

different deciles of the index. The null that the conditional and unconditional densities are drawn

from the same distributions cannot be rejected at the 5% significance level in the central deciles.

[TABLE 5 HERE]

Since the null is rejected at some deciles, Figure 7 uses the distribution in the high probability

set conditional on the ninth decile of the (Z ′iα̂) index as the counterfactual of interest, as the KS

test found this to be the furthest from the estimated distribution reported in the paper. As can

be seen, the results remain consistent with the middle to positive selection of returnees and, if

anything, results are stronger. This comparison hints that selecting on (Z ′iα̂) does not overturn the

conclusions.

[FIGURE 7 HERE]

It should be noted that, if the excluded variable did enter the wage equation and thus was an

invalid exclusion restriction, the estimated density for individuals in the high probability set would

also change at different quantiles of the estimated index Ziα̂. In fact, an invalid would cause spurious

correlations between the error term in the wage equation and the observable characteristics, and

such correlations would still be present in the high probability set. The results just shown should

further corroborate the validity of the exclusion restriction.

Lastly, turning to the assumption of homoskedasticity, the variance structure of the model

can be extended to allow for an unknown form of heteroskedasticity, at some cost to analytical

tractability. This extension seems to be important, however, as conditional heteroskedasticity is

common in empirical applications. The Appendix extends the estimation technique to allow for

dependence in the second moment between the error and regressors. The results are in line with

those reported in the main part of the paper, implying that even allowing for heteroskedasticity

does not change the main conclusions.

9 Conclusions

The political discussion generated by Mexican migration flows into the U.S. has focused on un-

derstanding migration decisions, yet has until recently ignored the role played by selective return

migration in shaping estimates of immigrant labor market outcomes. Indeed, relatively few pre-

vious studies have examined the breakdown between returnees and stayers in the host country.

This paper thus adds evidence on this topic by recovering a counterfactual wage distribution in the

absence of return migration. The estimation procedure presented herein extended the estimator in

Andrews and Schafgans (1998) to its density counterpart, showing the overall distribution of wages

that would be observed if all migrants were permanent and if such a distribution were conditional

on educational attainment.

The results suggest that selective return migration improves average earnings of immigrants

and reduces immigrant wage dispersion. Further, return migration has a greater impact on the tail
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of the wage distribution. In particular, more mass would appear in the upper part of the wage

distribution in both very low and very high educational groups in the absence of return migration,

implying up to a 7.7% increase in the median wages and a 4.5% increase in mean wages paid to the

Mexican migrant population. These results are stable across different wage specifications, samples

and techniques. The impact at the mean is, however, relatively small, which might be the reason

for the inconclusive findings presented in the literature. Our notion of Mexican migration has been

distorted by selective return migration. Further, the presented results contrast with the general

perception that those migrants who return have failed in the host country and with the findings of

previous studies concerning the nature of return migration in the U.S.
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Tables

Table 1: Marginal effects of variables on the Probability of Staying
in the U.S., Mexican Born Men, 25-55 Years old

Average Characteristics Marginal Effects

Age 35.977 0.004∗∗∗

(4.29E-04)
Primary 0.468 0.020∗∗∗

(0.002)
Secondary 0.324 0.067∗∗∗

(0.003)
College 0.043 0.031∗∗∗

(0.002)
Married 0.796 -0.006∗∗∗

(0.001)
US born spouse 0.105 0.050∗∗∗

(0.002)
Child 0.629 -0.063∗∗∗

(0.003)
US born child 0.568 0.175∗∗∗

(0.004)

N 133,389 133,389

Standard errors in parentheses.
The fraction of stayers is about 89% and the average predicted
probability of staying is 0.90.
Significance levels: ∗: 10%, ∗∗: 5%, ∗∗∗: 1%.
The marginal effects are calculated at the average X and for
a unit change from 0 to 1 for dummy variables.
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Table 2: Demographic and socio-economic characteris-
tics, High Probability Set vs Others

Variable Hi = 1 Hi = 0 T-test

Average Predicted Probability 0.999 0.896 6.154

(0.037) (0.305)

Age 38.215 35.859 2.041

(9.751) (7.788)

Less than Primary School 0.003 0.174 -8.076

(0.059) (0.379)

Primary Education 0.067 0.489 -11.026

(0.250) (0.500)

Secondary Education 0.903 0.293 15.005

(0.296) (0.455)

College Education 0.027 0.044 -0.836

(0.161) (0.205)

Married 0.826 0.794 0.661

(0.379) (0.404)

US born spouse 0.656 0.075 10.691

(0.475) (0.264)

Child 0.677 0.627 0.872

(0.468) (0.484)

US born child 0.977 0.546 13.769

(0.151) (0.498)

N 6692 126697

Hi is an indicator for the probability of staying being above
the 95th percentile. See text for further details.
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Table 3: Deciles of Ŷi and ûi and Yi, Parsimonious
Model, Mexican-Born Men 25-55 Years Old.

Decile Actual Counterfactual Difference

Observables

1 2.288 2.277 -0.011

2 2.345 2.344 -0.001

3 2.384 2.382 -0.002

4 2.424 2.417 -0.007

5 2.457 2.454 -0.003

6 2.483 2.479 -0.004

7 2.512 2.508 -0.004

8 2.552 2.544 -0.008

9 2.618 2.617 -0.001

Average 2.451 2.451 -4.773E-04

Unobservables

1 -0.670 -0.666 0.004

2 -0.492 -0.461 0.031

3 -0.350 -0.292 0.058

4 -0.221 -0.147 0.075

5 -0.097 -0.020 0.077

6 0.031 0.106 0.076

7 0.170 0.249 0.079

8 0.345 0.418 0.073

9 0.615 0.657 0.042

Average -0.045 1.878E-07 0.045

Continue to next page
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Continued from previous page

Decile Actual Counterfactual Difference

Log-Wage

1 1.781 1.785 0.003

2 1.959 1.990 0.031

3 2.101 2.159 0.058

4 2.230 2.304 0.074

5 2.354 2.431 0.077

6 2.482 2.557 0.075

7 2.622 2.700 0.079

8 2.796 2.869 0.073

9 3.067 3.108 0.041

Average 2.406 2.451 0.045

Inequality Measures

10-90 Wage 1.285 1.323 0.038

10-50 Wage 0.573 0.647 0.073

50-90 Wage 0.712 0.677 -0.036

The first column (Actual) shows Ŷ and û for the ob-
served sample of stayers. The second column (Coun-
terfactual) shows û if all returnees had stayed, hence
refers to these quantities estimated in the high prob-
ability set; it also shows the observable characteristics
of the full sample, corresponding to the observables for
both stayers and returnees.
The number of observations used to calculate the ac-
tual distribution is 120,205. The counterfactual dis-
tribution of unobservables is based on 6,692 observa-
tions. The counterfactual distribution of observables is
based on the full set of characteristics of stayers and
returnees, hence 133,389 observations.
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Table 4: Deciles of Ŷi and ûi and Yi by Education Level, Parsimonious Model, Mexican-Born
Men 25-55 Years Old.

Decile Act. Counterfact. Diff Act. Counterfact. Diff Act. Counterfact. Diff

Primary Education Secondary Education College Education

Observables

1 2.249 2.241 -0.008 2.356 2.356 0.000 2.672 2.672 0.000

2 2.305 2.299 -0.006 2.406 2.406 0.000 2.720 2.720 0.000

3 2.355 2.352 -0.003 2.462 2.462 -0.001 2.767 2.767 0.000

4 2.387 2.383 -0.003 2.495 2.495 0.000 2.810 2.810 0.000

5 2.417 2.406 -0.011 2.524 2.524 0.000 2.850 2.850 0.000

6 2.445 2.436 -0.009 2.554 2.554 0.000 2.885 2.880 -0.005

7 2.469 2.469 0.000 2.580 2.580 0.000 2.906 2.906 0.000

8 2.499 2.495 -0.004 2.607 2.607 0.000 2.931 2.927 -0.004

9 2.519 2.517 -0.002 2.635 2.635 0.000 2.945 2.945 0.000

Average 2.401 2.397 -0.004 2.512 2.511 -0.001 2.829 2.828 -0.001

Unobservables

1 -0.652 -0.666 -0.014 -0.674 -0.663 0.011 -0.879 -0.857 0.022

2 -0.488 -0.489 -0.002 -0.474 -0.459 0.015 -0.630 -0.476 0.155

3 -0.356 -0.329 0.027 -0.316 -0.291 0.024 -0.419 -0.170 0.249

4 -0.234 -0.190 0.044 -0.183 -0.146 0.036 -0.241 0.040 0.282

5 -0.119 -0.064 0.054 -0.053 -0.021 0.033 -0.068 0.177 0.245

6 0.007 0.061 0.054 0.076 0.105 0.028 0.104 0.297 0.193

7 0.143 0.228 0.085 0.214 0.243 0.028 0.274 0.444 0.169

8 0.313 0.422 0.109 0.385 0.410 0.025 0.471 0.639 0.168

9 0.585 0.622 0.037 0.633 0.654 0.020 0.758 0.875 0.117

Average -0.055 -0.034 0.021 -0.022 0.000 0.022 -0.053 0.105 0.158

Log-Wage

1 1.749 1.731 -0.018 1.838 1.849 0.010 1.950 1.971 0.021

2 1.914 1.908 -0.006 2.038 2.052 0.014 2.199 2.353 0.154

3 2.045 2.068 0.023 2.196 2.220 0.024 2.410 2.658 0.249

4 2.167 2.207 0.040 2.330 2.365 0.035 2.587 2.868 0.281

5 2.283 2.333 0.050 2.459 2.491 0.032 2.761 3.005 0.244

6 2.408 2.458 0.050 2.588 2.616 0.027 2.933 3.125 0.192

7 2.544 2.625 0.081 2.726 2.754 0.027 3.103 3.272 0.169

8 2.714 2.819 0.105 2.897 2.921 0.024 3.300 3.467 0.167

9 2.986 3.019 0.033 3.146 3.165 0.020 3.587 3.703 0.116

Average 2.346 2.363 0.017 2.490 2.511 0.021 2.776 2.934 0.157

Inequality Measures

10-90 Wage 1.237 1.288 0.052 1.307 1.316 0.009 1.637 1.732 0.095

10-50 Wage 0.533 0.602 0.069 0.620 0.642 0.022 0.811 1.034 0.223

50-90 Wage 0.703 0.686 -0.017 0.687 0.674 -0.012 0.826 0.698 -0.128

N 54,651 54,651 41,694 41,694 5,202 5,202

Act. shows Ŷ and û for the observed sample. Counterfact. shows Ŷ and û if all returnees had stayed. Therefore, the
observable characteristics of the sample correspond to the observables for both stayers and returnees. The unobservables
correspond to the predicted u∗. The density for the actual distribution is obtained by conditioning the residuals from
the wage distribution to people with primary, secondary and tertiary education. The density for the counterfactual
distribution corresponds to the counterfactual distribution of Table 3.
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Table 5: Kolmogorov-Smirnov Test for
the difference in the estimated counter-
factual distribution and the distribu-
tion of residuals in the high probability
set conditioning on different deciles of
Z ′iα̂.

D Statistic

Decile 1 1.83∗∗∗

Decile 2 0.61

Decile 3 1.74∗∗∗

Decile 4 1.23∗

Decile 5 1.16

Decile 6 1.13

Decile 7 1.09

Decile 8 1.38∗∗∗

Decile 9 2.37∗∗∗

Decile 10 2.21∗∗∗

Significance levels: ∗: 10%, ∗∗: 5%,
∗∗∗: 1%.
Critical Values: 10%: 1.22; 5%:
1.36; 1%: 1.63;
The test was constructed compar-
ing the estimated distribution of
u∗ (f̂(u∗)) with the distribution of
the residuals for individuals in each
decile of the (Z ′iα)-index. See text
for details.
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Figures

Figure 1: Wage Densities in the U.S., using DiNardo et al. (1996), Men, 25-55 Years Old.0
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The actual distribution represents the distribution of wages for Mexican-born workers in the U.S. The counterfactual
distribution represents the distribution of wages that would have occurred in the U.S. if Mexican-born workers had
the characteristics of the returnees. These distributions are obtained following DiNardo et al. (1996). To construct
the counterfactual, a probit model is estimated on the probability of staying in the U.S. using the sample of Mexican-
born workers in the U.S. and the returnees in Mexico. This model relates the probability of staying with age, dummy
variables for schooling, marital status, having a child, and birthplace of the child and the spouse. The Gaussian
kernel function with optimal bandwidth was used (Silverman, 1986), to be coherent with the reminder analysis of the
paper.
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Figure 2: Actual and Predicted Probability of Staying in the U.S., Men, 25-55 Years Old.
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(a) Predicted and Actual Share of Stayers, by index deciles
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Figure 3: Actual and Counterfactual Log-Wage Distributions (a) and their Difference (b), Parsi-
monious Model, Men, 35-55 Years Old.

(a) Actual (Solid Line) and Counterfactual (Dashed Line)
Wage Distribution

(b) Difference in Counterfactual and Actual Distributions

The Actual distribution represents the distribution of wages for Mexican-born workers currently residing in the U.S.
The Counterfactual distribution represents the distribution of wages in the U.S. for Mexican-born workers if all
migrants settled permanently, i.e., if no return migration occurred between 1995 and 2000. Section 4 in the paper
explains how to recover these densities. Table 3 shows the deciles of these distributions. Standard errors have been
bootstrapped (100 repetitions).
Kolmogorov-Smirnov test statistic for equality in the Actual and Counterfactual distribution: 4.95. Critical value at
1%: 1.63.
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Figure 4: Estimated Actual and Counterfactual Log-Wage Densities for Mexican immigrants with
Primary (a), Secondary (c), and College Education (e), Parsimonious Model, Men 35-55 Years Old.

(a) Primary Education, n = 27, 403 (b) Difference in Counterfactual and Actual Distri-
butions, Primary Education

(c) Secondary Education, n = 18, 811 (d) Difference in Counterfactual and Actual Distri-
butions, Secondary Education

(e) College Education, n = 3, 001 (f) Difference in Counterfactual and Actual Distri-
butions, College Education

The Actual distribution represents the distribution of wages for Mexican-born workers currently residing in the
U.S. and having primary (a), secondary (c) and tertiary (e) education. The Counterfactual distribution represents
the distribution of wages in the U.S. for Mexican-born workers having primary (a), secondary (c) and tertiary (e)
education if all migrants settled permanently, i.e., if no return migration occurred between 1995 and 2000. The
density for the actual distribution is obtained by conditioning the residuals from the wage distribution to people
with primary, secondary and tertiary education. The density for the counterfactual distribution corresponds to the
counterfactual distribution of Figure 4(a). Section 4 in the paper explains how to recover these densities. Table 4
shows the deciles of these distributions. Standard errors have been bootstrapped (100 repetitions).
KS test statistic for equality in the Actual and Counterfactual distribution for Mexican-born workers with primary
education: 6.16, with secondary education: 2.24, with tertiary education: 4.86. Critical value at 1%: 1.63.
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Figure 5: Differences in Counterfactual and Actual Log-Wage Densities, Full Model (a), Parametric
Model (b), Recent Migrants only (c), Model with College Indicator only (d), Model Excluding States
with High Illegal Migration (e), and Model Excluding Bordering States (f).

(a) Full Model (b) Parametric Model

(c) Recent Migrants (d) College indicator only

(e) Model excluding High Illegal Migration States (f) Model excluding Mexican-U.S. Bordering States

The Actual distribution represents the distribution of wages for Mexican-born workers currently residing in the U.S.
The Counterfactual distribution represents the distribution of wages in the U.S. for Mexican-born workers if all
migrants settled permanently, i.e., if no return migration occurred between 1995 and 2000. Section 4 in the paper
explains how to recover these densities. Tables for the deciles of these distributions are available upon request. Stan-
dard errors have been bootstrapped (100 repetitions).
Model (a) estimates the distributions controlling also for length of stay in the U.S., industry and regional indicators.
Column 2 of Table C.2 reports the regression results. Model (b) estimates the distribution using parametric tech-
niques. Table C.3 reports the regression results of this estimation technique.
Model (e) reports the results excluding California, Florida, New York, and Texas.
Model (f) reports the results excluding the states on the Mexico-U.S. border.
KS test statistic for equality in the two distribution in model (a): 3.10, in model (b): 5.43, (c): 1.98, (d): 2.16, (e):
4.72, in model (f): 4.89. Critical value at 1%: 1.63.
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Figure 6: Counterfactual Distributions conditioning: Suggestive Evidence on Identifying Assump-
tions.

(a) Differences in Counterfactual and Actual
Log-Wage Densities, without exclusion restric-
tion

!

(b) Distribution of the residuals in the selected
sample, conditional on different deciles of Z′iα̂

!

(c) Distribution of the residuals in the high
probability set, conditional on different deciles
of Z′iα̂

Panel (a) reports the difference in the Counterfactual and Actual distributions in a parametric model without
exclusion restrictions.
Panel (b) and (c) compare the distribution of u∗ for individuals in various deciles [q] of the (Z′iα)-index
(f(u∗|Z′iα̂[q])) . If Z′iα̂ was exogenous, these conditional distributions should be close.
Table 5 reports the Kolmogorov-Smirnov test for equality of the f(u∗) and f(u∗|Z′iα̂) distribution functions.
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Figure 7: Actual and Counterfactual Log-Wage Distributions (a) and their Difference (b), condi-
tioning on the 9th decile of the (Z ′iα)-index

(a) Actual (Solid Line) and Counterfactual (Dashed Line) Wage Distribution

(b) Difference in Counterfactual and Actual Distributions

The Actual distribution represents the distribution of wages for Mexican-born workers currently residing in the U.S.
The Counterfactual distribution represents the distribution of wages in the U.S. for Mexican-born workers, if all
migrants settled permanent, i.e., if no return migration occurred between 1995 and 2000, conditioning on the 9th
decile of the (Z′iα)-index. Standard errors have been bootstrapped (100 repetitions).
Kolmogorov-Smirnov test statistic for equality in the Actual and Counterfactual distributions: 3.80. Critical value
at 1%: 1.63.
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Figure 8: Actual Log-Income Distributions Mexican Family Life Survey and Migration Supplement,
Mexican Census
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(a) Actual (Solid Line)Log- Income Distribution for
Stayers (S = 1) and for all Migrants (Dashed Line),
prior Migration to the US, MxFLS
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(b) Difference in the two Distributions, MxFLS
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(c) Income Distribution for Households with U.S. Stay-
ers (Solid Line) and for all Households with Stayers and
Returnees (Dashed Line), Mexican Census
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(d) Difference in the two Distributions, Mexican Census

Source Panel (a) and (b): Mexican Family Life Survey. See text for explanation.
Source Panel (c) and (d): Mexican Census, Migration supplement. See text for explanation.
Notes: In panel (a), the Actual distribution represents the distribution of income before migration to the U.S. for
Mexican-born workers currently residing in the U.S. The Counterfactual distribution represents the distribution of
income prior migration of all Mexican-born workers who migrated to the U.S. - including the returnees. Panel (c)
shows the log-income distribution of Mexican households where all their migrant members are still residing in the
U.S. (solid line) and the log-income distribution of all Mexican households, with family members currently in the
U.S. or having returned from the U.S. (counterfactual, dashed line).
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A Monte Carlo

To get some sense of how well the presented method works, I conducted a small Monte Carlo
experiment. The data generating process is the following:

Si =

1 c + Agei + Primaryi + Secondaryi + Collegei −Marriedi + USbornSpousei + Childi − USbornChildi > εi

0 c + Agei + Primaryi + Secondaryi + Collegei −Marriedi + USbornSpousei + Childi − USbornChildi ≤ εi

Yi = 1 + Agei + Primaryi + Secondaryi + Collegei +Marriedi + USbornSpousei + Childi + ui if Si = 1

I let the error term being distributed as a standard normal. This is a simple assumption not

needed in the Klein and Spady estimator, which is free of distributional assumptions and can also

handle heteroskedasticity of a general but known form, or of an unknown form with an index

structure. As the marginal effects from the baseline model (Table 1) are close to the marginal

effects of a probit model (Table C.3) and similarly results from the full semiparametric procedure

(Figure 3) are similar to results from a parametric estimation (Figure 5(b)), normality seems a

good approximation of the data generating process. This can be seen also in Figure 9 below, which

plots the semiparametric and parametric responses, as a function of the selection index. The two

response functions are very similar.

Figure 9: Semiparametric estimation of the Probability of Staying in the U.S., Men, 25-55 Years
Old.
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The figure plots the semiparametric and parametric response functions, as a function of the selection index.

In the data generating process, all parameters are equal to 1 in absolute value, while their signs

are set to reflect the results of the empirical specification (and common sense). The constant c has

been adjusted to match the share of stayers in the generated data with that of the sample. All

variables are discrete, with the exception of Age. Age takes 31 distinct values as in the empirical

application. Table A.1 shows the means of all the generated variables: the first moments of the

generated sample closely resemble the first moments of the variables in the data.
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Table A.1: Comparison of Empirical and
Generated Means

Data Monte Carlo

Stayers 0.90 0.90

Age 35.98 36.07

Primary 0.47 0.47

Secondary 0.32 0.32

College 0.04 0.04

Married 0.80 0.80

US born Spouse 0.10 0.11

Child 0.63 0.64

US born Child 0.57 0.57

Means of all generated variable across
all replications (R=1,000). Sample size
set to 5,000 observations.

The Monte Carlo experiment is run on the estimator proposed in section 4.1.29 For each

iteration in the Monte Carlo experiment, I calculate the deciles of the distribution of u∗, estimated

as explained in the paper, and the deciles of the distribution of u∗ for those observations for which

Si = 1, i.e. for the stayers, and for the observations in the high probability set. These represent

the deciles of the two distributions of interest: the ‘actual’ distribution, f̂(u∗|Si = 1), and the

counterfactual distribution, f̂(u∗). Due to sample selection, the deciles of the actual distribution

should be far from the deciles of the normally distributed random variable u∗, while, if the estimator

proposed in equation (4) works, the deciles of the distribution in the high probability set should

be close to the deciles of a normal distribution. I run this experiment for N = 5, 000, N = 10, 000

and N = 60, 000 with 1,000 replications each. Table A.2 reports the bias between each decile

of f̂(u∗|Si = 1) or f̂(u∗) and a normally distributed random variable. The first, third and fifth

columns of the table shows how using the distribution of the error term in the selected sample does

not recover the true distribution in the population: in fact, the estimation of each decile of the

distribution is consistently biased. On the contrary, column two, four and six reports the deciles of

the distribution estimated using (4). Across all sample sizes, the estimator performs very well and

the bias is negligible. This suggests that the estimator in equation (4) is able to recover the true

distribution in the presence of self-selection.

29 The small and large sample properties of the Klein and Spady’s estimator as well as the Robinson’s estimator
have been shown elsewhere. In this section, instead, I assume that good estimates of the parameters are available
to the researcher and run a Monte Carlo that instead focuses on the estimation of the counterfactual distribution in
the high probability set - the key advance of the paper. I have run a complementary small Monte Carlo experiment
where I put on scrutiny the performance of the full estimation technique. Results are available upon request.
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Table A.2: Comparison of the Deciles of f̂(u∗i ) and f̂(u∗i |Si = 1) with the
Deciles of a Normal Random Variable.

N = 5,000 N = 10,000 N = 60,000

Decile f(u∗|S = 1) f(u∗) f(u∗|S = 1) f(u∗) f(u∗|S = 1) f(u∗)

1.0 -0.469 -0.018 -0.469 -0.012 -0.467 -0.009

2.0 -0.494 -0.017 -0.494 -0.014 -0.493 -0.011

3.0 -0.514 -0.015 -0.513 -0.012 -0.513 -0.012

4.0 -0.530 -0.019 -0.530 -0.017 -0.529 -0.014

5.0 -0.545 -0.025 -0.545 -0.020 -0.545 -0.017

6.0 -0.562 -0.028 -0.562 -0.026 -0.561 -0.022

7.0 -0.579 -0.036 -0.579 -0.033 -0.579 -0.029

8.0 -0.601 -0.049 -0.601 -0.044 -0.600 -0.040

9.0 -0.631 -0.080 -0.632 -0.071 -0.629 -0.069

B Accounting for Heteroskedasticity

Suppose that the model is:

Y ∗i = X ′iβ0 + c0 + e∗i ,

where there is heteroskedasticity in e∗ of unknown form, i.e. e∗i = u∗k(Xδ0). The observed model

could be written as:

Yi = X ′iβ0 + c0 +G(Z ′iα0) + u∗k(Xδ0),

where G(·) is the piece due to selection and k(Xδ0) is the piece due to heteroskedasticity.

To allow for heteroskedasticity, the following estimation strategy was introduced. As in the

high probability set G(Z ′iα0) tends to zero, it is possible in this set to estimate semiparametrically

k̂(·) simply by estimating the conditional variance of the model. A simple GLS estimator recovers

then the parameters δ. I report below then the difference in the standardized distribution of u∗ in

the selected sample of stayers and in that of returnees. As it can be seen the main conclusions of

the paper are still obtained.
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Figure 10: Difference in Counterfactual and Actual Distributions accounting for Heteroskedasticity

Standard errors have been bootstrapped (100 replications).
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C Additional Tables

Table C.3: Demographic and socio-economic characteristics, Native Born and For-
eign Born Men, 25-55 Years Old

Variable Natives All Mexican Born Stayers Returnees

Age 39.697 35.977 36.168 34.237∗∗∗

(8.483) (7.915) (7.935) (7.508)

Less than Primary School 0.003 0.165 0.155 0.258∗∗∗

(0.056) (0.372) (0.362) (0.437)

Primary Education 0.068 0.468 0.455 0.589∗∗∗

(0.251) (0.499) (0.498) (0.492)

Secondary Education 0.647 0.324 0.347 0.112∗∗∗

(0.478) (0.468) (0.476) (0.315)

College Education 0.282 0.043 0.043 0.042

(0.450) (0.203) (0.204) (0.201)

Married 0.806 0.796 0.796 0.795

(0.395) (0.403) (0.403) (0.404)

US born spouse 0.677 0.105 0.115 0.011∗∗∗

(0.468) (0.306) (0.319) (0.104)

Child 0.528 0.629 0.630 0.623

(0.499) (0.483) (0.483) (0.485)

US born child 0.534 0.568 0.611 0.179∗∗∗

(0.499) (0.495) (0.488) (0.384)

0-5 Years in U.S. - - 0.161 -

- - (0.367) -

5-10 Years in U.S. - - 0.167 -

- - (0.373) -

10-20 Years in U.S. - - 0.387 -

- - (0.487) -

20-30 Years in U.S. - - 0.226 -

- - (0.418) -

30-40 Years in U.S. - - 0.049 -

- - (0.215) -

>40 Years in U.S. - - 0.011 -

- - (0.103) -

Continue to next page
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Continued from previous page

Variable Natives All Mexican Born Stayers Returnees

Northeast Region 0.188 - 0.028 -

(0.391) - (0.165) -

Midwest 0.255 - 0.103 -

(0.436) - (0.304) -

South 0.359 - 0.281 -

(0.480) - (0.450) -

West 0.198 - 0.588 -

(0.398) - (0.492) -

Agriculture, fishing, and forestry 0.023 0.147 0.136 0.245∗∗∗

(0.149) (0.354) (0.343) (0.430)

Mining 0.010 0.006 0.006 0.006

(0.099) (0.075) (0.074) (0.080)

Manufacturing 0.220 0.219 0.231 0.102∗∗∗

(0.414) (0.413) (0.422) (0.302)

Electricity, gas and water 0.019 0.004 0.004 0.002∗∗∗

(0.135) (0.064) (0.066) (0.040)

Construction 0.114 0.195 0.204 0.115∗∗∗

(0.318) (0.397) (0.403) (0.319)

Wholesale and retail trade 0.168 0.191 0.202 0.086∗∗∗

(0.374) (0.393) (0.402) (0.280)

Hotels and restaurants 0.006 0.017 0.015 0.032∗∗∗

(0.080) (0.129) (0.123) (0.176)

Transportation and Communications 0.073 0.039 0.038 0.047∗∗∗

(0.260) (0.194) (0.192) (0.212)

Continue to next page
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Continued from previous page

Variable Natives All Mexican Born Stayers Returnees

Financial services 0.036 0.005 0.006 0.003∗∗∗

(0.187) (0.074) (0.075) (0.054)

Public administration and defense 0.075 0.011 0.011 0.016∗∗∗

(0.264) (0.106) (0.104) (0.126)

Real estate and business services 0.080 0.062 0.067 0.017∗∗∗

(0.272) (0.241) (0.250) (0.131)

Education 0.054 0.015 0.015 0.010∗∗∗

(0.226) (0.121) (0.123) (0.101)

Heath and social work 0.045 0.012 0.013 0.004∗∗∗

(0.208) (0.108) (0.112) (0.061)

Other services 0.077 0.050 0.050 0.046∗∗

(0.266) (0.217) (0.218) (0.209)

Private household services 0.000 0.002 0.001 0.005∗∗∗

(0.019) (0.039) (0.035) (0.067)

Wage 21.555 13.432 13.432 -

(17.200) (11.585) (11.585) -

Observations 103,994 133,389 120,205 13,184

Standard deviations in parentheses
Significance levels: ∗: 10%, ∗∗: 5%, ∗∗∗: 1% for a t-test for differences in means between
Returnees and U.S. Stayers.
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Table C.2: Wage Equation Estimates, Mexican-Born
Men Working for Wages, 25-55 Years Old.

(1) (2)

Constant 1.658∗∗∗ 1.602∗∗∗

(0.279) (0.259)

Age 0.026∗∗∗ 0.021∗∗∗

(0.003) (0.003)

Age Sq -2.532E-04∗∗∗ -2.503E-04∗∗∗

(3.390E-05) (3.350E-05)

Primary Education 0.038∗∗∗ 0.022∗∗∗

(0.005) (0.005)

Secondary Education 0.156∗∗∗ 0.118∗∗∗

(0.006) (0.005)

College Education 0.461∗∗∗ 0.403∗∗∗

(0.008) (0.008)

Married 0.039∗∗∗ 0.045∗∗∗

(0.004) (0.004)

US born spouse 0.063∗∗∗ 0.041∗∗∗

(0.007) (0.006)

Child 0.118∗∗∗ 0.095∗∗∗

(0.004) (0.004)

5-10 Years in U.S. - 0.043∗∗∗

- (0.005)

10-20 Years in U.S. - 0.117∗∗∗

- (0.005)

20-30 Years in U.S. - 0.210∗∗∗

- (0.006)

30-40 Years in U.S. - 0.299∗∗∗

- (0.009)

>40 Years in U.S. - 0.393∗∗∗

- (0.017)

Industry indicators No Yes

Regional indicators No Yes

R2 0.069 0.123

R2-adjusted 0.069 0.123

N 120,205 120,205

Standard errors in parentheses
Significance levels: ∗: 10%, ∗∗: 5%, ∗∗∗: 1%.
The industry and regional indicators used in column
(3) and (4) are the variables presented in the descrip-
tive statistics.
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Table C.3: Probit and Wage Equation Estimates, Parametric Model, Men work-
ing for wages, 35-55 Years old.

Probit Marginal Effects, S = 1 Wage Equation

Baseline 0.948

Constant - 1.558∗∗∗

- ( 0.056 )

Age 0.003∗∗∗ 0.022∗∗∗

( 0.001 ) ( 0.002 )

Age Sq 9.340E-06 -2.6E-04∗∗∗

( 1.000E-05 ) ( 2.4E-05 )

Primary Education 0.020∗∗∗ 0.024∗∗∗

( 0.001 ) ( 0.004 )

Secondary Education 0.076∗∗∗ 0.129∗∗∗

( 0.001 ) ( 0.005 )

College Education 0.026∗∗∗ 0.404∗∗∗

( 0.002 ) ( 0.008 )

Married -0.006∗∗∗ 0.043∗∗∗

( 0.002 ) ( 0.004 )

US born spouse 0.051∗∗∗ 0.057∗∗∗

( 0.001 ) ( 0.005 )

Child -0.073∗∗∗ 0.100∗∗∗

( 0.001 ) ( 0.004 )

US born child 0.186∗∗∗ -

( 0.002 ) -

Continue to next page
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Continued from previous page

Probit Marginal Effects, S = 1 Wage Equation

5-10 Years in U.S. 0.044∗∗∗

( 0.005 )

10-20 Years in U.S. 0.120∗∗∗

( 0.005 )

20-30 Years in U.S. 0.214∗∗∗

( 0.005 )

30-40 Years in U.S. 0.305∗∗∗

( 0.008 )

>40 Years in U.S. 0.390∗∗∗

( 0.016 )

Lambda -0.061∗∗∗

( 0.007 )

Industry indicators No Yes

Regional indicators No Yes

N 133,389 120,205

Standard errors in parentheses
Significance levels: ∗: 10%, ∗∗: 5%, ∗∗∗: 1%.
The industry and regional indicators used in column (3) and (4) are the
variables presented in the descriptive statistics.
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