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Rapid, automated detection of stem 
canker symptoms in woody perennials using 
artificial neural network analysis
Bo Li1†, Michelle T. Hulin1,3†, Philip Brain1, John W. Mansfield2, Robert W. Jackson3 and Richard J. Harrison1,3* 

Abstract 

Background:  Pseudomonas syringae can cause stem necrosis and canker in a wide range of woody species includ-
ing cherry, plum, peach, horse chestnut and ash. The detection and quantification of lesion progression over time in 
woody tissues is a key trait for breeders to select upon for resistance.

Results:  In this study a general, rapid and reliable approach to lesion quantification using image recognition and an 
artificial neural network model was developed. This was applied to screen both the virulence of a range of P. syringae 
pathovars and the resistance of a set of cherry and plum accessions to bacterial canker. The method developed was 
more objective than scoring by eye and allowed the detection of putatively resistant plant material for further study.

Conclusions:  Automated image analysis will facilitate rapid screening of material for resistance to bacterial and other 
phytopathogens, allowing more efficient selection and quantification of resistance responses.
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Background
The bacterial phytopathogen Pseudomonas syringae 
encompasses pathovars that infect over 180 plant species. 
Three distinct clades of P. syringae (pv morsprunorum 
race 1, pv. morsprunorum race 2 and pv. syringae) are the 
major causal agents of bacterial canker of Prunus spe-
cies grown worldwide [1]. This genus of stone fruit trees 
includes economically important species such as cherry 
and plum. The bacteria are able to infect all aerial plant 
organs, including leaves, blossom and fruit. Severe dam-
age to the tree occurs when bacteria infect woody tissues 
via wounds or leaf scars to produce necrotic cankers that 
are often associated with extensive gummosis [2]. These 
cankers cause girdling of branches and may result in 
dieback or eventual death of the tree when affecting the 
main trunk [3]. The disease commonly results in tree 

losses of approximately 20  %, however, in severe cases, 
losses of up to 75 % have been reported in the US [4, 5].

Current control methods for this disease are limited. 
They include good hygiene when pruning, to reduce the 
likelihood of infection and the use of copper-based spays 
to control epiphytic bacterial populations [6]. The breed-
ing of resistant cultivars, complemented with excellent 
sanitation methods, would be the most effective control 
of this disease [7]. At present, no cultivars have been 
shown to exhibit complete resistance; however there is 
variation in disease susceptibility [2], meaning breeding 
approaches could be successful. Therefore, a rapid dis-
ease screening method would be highly beneficial in Pru-
nus breeding programmes, to allow the identification of 
resistant genotypes.

Susceptibility to bacterial canker is usually deter-
mined by visually assessing natural infection in the field 
over several years [8]. This approach is time consuming 
and different environmental conditions between fields 
may lead to misleading results [9]. Several rapid labo-
ratory-based assays have been proposed, including the 
use of cut shoots [3, 8, 10], immature fruits [11, 12] and 
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micro-propagated plantlets [9] to examine disease sus-
ceptibility. In this study we assessed the use of the cut 
shoot assay to screen Prunus cultivars for susceptibility to 
bacterial canker. The assay involves inoculating first-year 
dormant shoots with P. syringae and estimating disease 
severity based on the extent of necrosis. This approach, 
although more rapid than field-based observations, was 
found to be variable between assessors, being based on a 
subjective appraisal of lesion development and therefore 
lacked reproducibility, as has been shown in other similar 
studies [13]. A more rapid and high-throughput alterna-
tive to visual assessment involves the use of automated 
image analysis software [14, 15].

Automated image analysis is becoming a popular tool 
for plant disease assessment as it potentially provides 
greater speed, accuracy and reliability [16]. Nilsson [17] 
was the first to report the utility of remote sensing and 
image analysis for plant pathology. After Nilsson, vari-
ous studies successfully applied image analysis in the 
visible region for disease severity assessment [18–22], 
with such techniques excellently reviewed in [23]. Digi-
tal image analysis has been compared with visual disease 
assessment for several diseases such as coffee rust [24], 
powdery mildew [25], yellow rust [26] and citrus canker 
[27]. These studies indicated that colour or monochrome 
image analysis provided more accurate measurement, 
whilst drastically reducing the time required for exami-
nation [16, 28].

Among the different image analysis algorithms used to 
measure disease severity, the conversion from RGB (Red 
Green Blue) to HSI (Hue, Saturation and Intensity) colour 
space is commonly used and the hue value has been con-
sidered to be an effective channel to discriminate healthy 
and diseased areas on colour images [16]. The hue chan-
nel threshold can be set manually or automatically to seg-
ment diseased from healthy areas using software such as 
Adobe Photoshop [29], ASSESS© [30], Scion image soft-
ware (Scion Corporation, Frederick, MD) [21], ImageJ 
[31] or other custom developed software programs [32, 
33].

Other more sophisticated algorithms have been pro-
posed for the automatic classification of plant diseases 
using colour images. Naikwadi [34] converted RGB 
images to HSI format and applied Spatial Gray-level 
Dependence Matrices (SGDM) as the colour co-occur-
rence texture analysis method for only H (hue) and S 
(saturation) images. Grey-level co-occurrence methodol-
ogy was used to calculate the features, which were input-
ted into neural networks for recognition. Apart from HSI 
colour space, colour images have also been converted to 
the L1 L2 L3 colour model for disease area measurement 
[18, 35]. Schikora [19] utilised this method for the image-
based analysis of plant infection with human pathogens. 

The L2 and L3 values plus the information of the sur-
rounding pixels were classified via supervised learning 
techniques such as neural networks or support vector 
machines.

The use of Artificial Neural Networks (ANN) has 
recently become a popular tool of pattern recognition in 
image analysis [36] and disease quantification [37]. ANN 
is an efficient computational model inspired by the par-
allel nervous systems of animals [38]. It is widely imple-
mented in machine learning and has been applied to the 
food and agricultural industry [39, 40]. The use of ANN 
has also been trialed for detection and quantification of 
various plant diseases [41–44]. The whole system is based 
upon an interconnection of neurons, which computes the 
output from the input variables. Besides input and out-
put layers, ANN systems always have one or more hidden 
layers between them. A training dataset is used to update 
the adaptive weights of all the neurons in order to mini-
mize the mean square error between the output and ideal 
values below a certain criteria [38].

This paper reports the development of an automated 
image analysis software which utilises ANN to analyse 
images of cherry and plum shoots exhibiting necrosis 
due to bacterial canker, with the goal of improving the 
accuracy of disease resistance screening. The software 
developed reduces the time and subjectivity involved in 
disease assessment and has the potential to be applied 
during screening of other important tree diseases.

Results and discussion
Quantification based on automated image analysis
A feed-forward artificial neural network (ANN), which is 
also known as multi-layer perceptrons (MLP), was imple-
mented for the classification of diseased and healthy 
shoot tissue (see “Methods” section for full details). The 
recognition of diseased area is based on the colour, and 
only R, G and B values were used as the input variables of 
the ANN model. The training samples consisted of pix-
els labelled as healthy and diseased, and in total 75,155 
pixels were manually labeled from 13 images, covering 
all the variation in colour due to disease. All the images 
were taken under the same illumination, and the colours 
of the diseased region showed little variation. The image 
analysis was applied to 420 images of inoculated shoots, 
producing estimates of percentage area and length of 
necrosis to determine disease severity.

To determine the utility of our image analysis software 
we compared results with both a current method of dis-
ease image analysis and expert measurements made by 
eye. 84 images (block 1 and 2) (e.g. Fig 1a) were analysed 
by our software to determine percentage area of necrosis, 
which was then correlated with the output for the same 
images produced using ImageJ manual thresholding 
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(Fig.  1b). We also used the software to determine the 
length of necrosis on each shoot (at the longest point), 
which was correlated with data for the same images, 
measured manually using a caliper. The software pro-
duced both a pictorial output (e.g. Fig  1c) and raw data 
(available on github).

Correlation analysis and linear regression indicated 
results were highly similar using the image analysis soft-
ware and the other methods of assessment. Figure  2 
shows the correlation of percentage area of necrosis 
whilst Fig.  3 shows the same for necrosis length. A lin-
ear regression produced r2 values of 0.87 and 0.81 for 
percentage area and length respectively. In both Figs.  2 
and 3, there was deviation between the linear regres-
sion line and the ideal calibration line. This difference 

between methods likely resulted from using an arbitrarily 
threshold in ImageJ and subjective labelling of diseased 
pixels in training images. To further test this, Lin’s con-
cordance coefficient [45] was calculated with rhoC values 
of 0.9 (moderate correlation) and 0.89 (poor correlation 
as <0.9) for the area and length data respectively. Due to 
the lower score for the length data when comparing man-
ual measurement and the new software, this data was 
not used in further analysis of the experiment. This poor 
rhoC value for the length dataset could be due to manual 
assessment of length being more subjective. It was some-
times difficult to measure length of necrosis accurately 
due to natural blemishes on the sample shoots. The auto-
mated software could provide a more objective method 
than classification by eye, however this would need 

Fig. 1  Images of cut shoots with thresholding of disease using ImageJ and the automated software. Shoots were inoculated with either the 
virulent strain Pss 9097 or with sterile 10 mM MgCl2 as a control. a Original image, b thresholding with Image J, c thresholding with automated soft-
ware. 1: Cherry cv. Van, 2: Cherry cv. Napoleon, 3: Cherry cv. Roundel, 4: Cherry cv. Merton Glory, 5: Plum cv. Victoria, 6: Plum cv. Marjorie’s seedling
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further testing to validate. Overall, the correlation analy-
sis indicated that the automated software could produce 
results comparable to currently used manual assessment.

The accuracy of the automated measurements relied 
on an expert’s selection of diseased areas on the images 
used as the training data. This was necessary to ensure 
all the typical colours of both diseased and healthy 
areas were included, reducing the potential for misclas-
sification. The criteria used during prediction of the 

percentage disease were selected empirically. To our 
knowledge this is the first time that image analysis and 
machine-learning algorithms have been applied to dis-
ease quantification on plant shoots. Compared with 
assessment by eye/use of ImageJ manual thresholding, 
the image analysis software only needs to be trained 
once by an experienced expert. Many images captured 
under the same lighting condition can therefore be pro-
cessed using the same model, which could reduce the 
subjectivity. The time taken to process all 420 images 
was approximately 42  s (0.1  s per image) with current 
hardware and ANN model, so the image analysis soft-
ware was much faster than traditional methods (ImageJ 
60–100  s per sample). The results were also compared 
with other common image thresholding methods such 
as fixed thresholding and Otsu’s method. It was found 
that the fixed thresholding produced a comparable cor-
relation with manual assessment (r2 =  0.86) but Otsu’s 
thresholding methods showed poor results (see Addi-
tional file 1: Figure S6 and S7).

With a proper training dataset, the chosen method 
provided a fast, automated and objective method for 
disease quantification on cherry shoots. It could be uti-
lised for general disease quantification during other bio-
logical experiments with different illumination condition. 
ANN is a more flexible approach than other threshold-
ing methods, since biologists only need to label regions 
as diseased or healthy rather than arbitrarily determin-
ing a threshold for disease. Further development of the 
software could involve more input parameters such as 
texture information, so ANN is more extendable to other 
input variables.

Development of automated image analysis software and a 
graphical user interface
In order to make the software user-friendly, a graphical 
user interface was developed. The GUI can be used to 
select the training data on a series of images from a par-
ticular folder (see Additional file 1: Figure S1). This selec-
tion is semi-automatic as user interaction is necessary to 
drag the mouse and draw a rectangle within healthy and 
diseased regions. The colour information of all the pixels 
inside the rectangle is recorded as healthy or diseased to 
train the ANN model.

The trained ANN model can subsequently be applied 
to calculate the percentage area of necrosis. The pixels 
labelled as diseased are coloured as red (Additional file 1: 
Figure S2). The resulting image with false colour can 
be further analysed to estimate the length of disease by 
measuring the height of the fitted rectangles (Additional 
file 1: Figure S3). The source code of the software is avail-
able on Github (https://github.com/eastmallingresearch/
Cherry_shoots).

Fig. 2  Comparison between the measurements by automated 
image analysis software and assessment by ImageJ on diseased area. 
The linear fitted line indicated the deviation from the ideal calibration 
line

Fig. 3  Comparison between the measurements by automated 
image analysis software and manual measurements by experts on 
the length of the diseased area. The linear fitted line indicated the 
deviation from the ideal calibration line

https://github.com/eastmallingresearch/Cherry_shoots
https://github.com/eastmallingresearch/Cherry_shoots
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Results of pathogenicity assays on cherry and plum
Following training, the automated image analysis soft-
ware was used for a resistance screen to produce per-
centage area necrosis data for six strains of P. syringae 
inoculated onto four cultivars of cherry and two cultivars 
of plum. The strains included P. syringae pv. morspruno-
rum race 1 isolated from cherry (5244) and plum (5300), 
P. syringae pv. morsprunorum race 2 isolated from cherry 
(5255) and P. syringae pv. syringae isolated from cherry 
(9097) and plum (9293). A strain isolated from hazelnut 
(P. syringae pv. avellanae) was also used for comparison 
as a non-pathogen of Prunus.

The plant cultivars (cvs) were chosen as they have a 
range of susceptibility to the different races of P. syringae 
that infect Prunus. The cherry cv Van is reported to be 
universally susceptible, whilst cv Merton Glory is toler-
ant/has a lower susceptibility to the pathogen [46, 47]. 
The cultivars Napoleon and Roundel are reported to 
show differential susceptibility to the different races of P. 
syringae pv. morsprunorum [47], with cv Napoleon being 
resistant to R2 but susceptible to R1 and vice versa for cv 
Roundel. For plum, the cv Victoria is highly susceptible, 
while cv Marjorie’s Seedling is reportedly resistant/toler-
ant [48].

The different strains of P. syringae caused variable 
levels of necrosis on shoots of cherry (Fig.  4) and plum 
(Fig. 5). An analysis of variance (ANOVA) was performed 
using the log transformed percentage data (Additional 
file 1: Figure S4). The ANOVA revealed that there was a 

significant effect of Pseudomonas strain on percentage 
area of necrosis (p < 0.001, df = 6), likely due to variation 
in the virulence of the different strains. There was no sig-
nificant difference in percentage area of necrosis between 
the two Prunus species (p = 0.06, df = 1) indicating both 
species exhibit similar levels of susceptibly to the disease. 
However there was a significant interaction between Pru-
nus species and P. syringae strain (p < 0.001, df = 6). This 
indicates that the different P. syringae strains show differ-
ential virulence on cherry and plum (Figs. 4, 5).

On cherry, the three strains isolated from cherry (Psm 
R1 5244, Psm R2 5255 and Pss 9097) were generally asso-
ciated with severe necrosis (>5  % of total shoot area), 
whilst necrosis caused by other strains failed to exceed 
5  % shoot area. Pss 9097 caused significant symptom 
development on all cultivars, whereas necrosis caused by 
the two races of Psm isolated from cherry, varied consid-
erably between cultivars. This supports previous hypoth-
eses that cherry cultivars exhibit differential susceptibility 
towards the two races of Psm [49]. In the global ANOVA 
(Table S1) there was no overall interaction between 
strain, cultivar and species. However, when the com-
parison was restricted to Van and Roundel, a highly sig-
nificant interaction (p  =  0.004) was detected between 
the two cultivars and the strains, which is driven by the 
differences between Psm R1 and Psm R2. The cultivars 
Roundel and Van showed differential susceptibility to 
the two Psm races. On Van, Psm R1 caused more severe 
necrosis than Psm R2, whilst on Roundel this response 
was reversed. One reason for this could be that plant 
immunity responses to the different races vary between 
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Fig. 4  Percentage area of necrosis on cherry shoots inoculated with 
P. syringae for four cherry cultivars (plotted on a log scale with back-
transformed values as the scale). Cv Van is universally susceptible, 
whilst cv Merton Glory has tolerance/lower susceptibility. Cv Napo-
leon is resistant to Psm R2 but susceptible to R1 and vice versa for cv 
Roundel. The control was sterile 10 mM MgCl2. The mean values were 
calculated using ANOVA. LSD Least Significant Difference
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Fig. 5  Percentage area of necrosis on plum shoots inoculated with P. 
syringae for two plum cultivars (plotted on a log scale with back-
transformed values as the scale). Cv Victoria is highly susceptible and 
cv Marjorie’s Seedling is resistant/tolerant. The control was sterile 
10 mM MgCl2. Mean values were calculated using ANOVA. LSD Least 
Significant Difference
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cultivars. Overall the results indicated that no single 
cultivar of cherry was tolerant to all strains. The symp-
toms on Merton Glory never exceeded 25 % of the shoot 
area, indicative of partial tolerance. Therefore, a cross 
between Merton Glory and a more susceptible cultivar 
could be used to further investigate the genes involved in 
tolerance/resistance.

On plum (Fig.  5), the level of necrosis was generally 
higher on cv Victoria compared to Marjorie’s Seedling. 
Interestingly, the two strains originally isolated from 
plum (Psm R1 5300 and Pss 9293) caused a higher level 
of necrosis on plum than on cherry. Also, when inocu-
lated on plum they generally caused more severe necrosis 
than strains isolated from cherry and hazelnut (Psm R1 
5244, Psm R2 5255 and Ps. avellanae). The virulence of 
these plum strains on plum could be due to host-specific 
factors, which allow the pathogens to survive longer and 
cause more necrosis in their natural (homologous) host.

The plum cultivar Marjorie’s Seedling showed some 
resistance to most strains, with the severity of necro-
sis being similar to the control (inoculation with ster-
ile MgCl2). It was also more tolerant to the virulent Pss 
strain 9097. This supports previous reports that this cul-
tivar is tolerant to bacterial canker. Therefore, Marjorie’s 
Seedling could be a target for further investigations of the 
genetics of resistance.

Conclusion
In this study a method for automated image analysis to 
measure the severity of disease symptoms was developed 
using a machine learning approach. To validate the reli-
ability of our automated software, cherry and plum shoot 
images were analysed to measure necrosis using the free 
program ImageJ [31]. The ImageJ analysis was based on 
the hue value of the colour images and the threshold 
between the diseased and healthy area was determined 
arbitrarily, resulting in a loss of the colour information 
from the other two channels. The 3D shape of cherry 
shoots resulted in shadows, leading to a colour similar to 
the diseased area in grayscale images or the hue channel 
of HSV space, but still distinguishable by the naked eye. 
Furthermore, manual image analysis using ImageJ can 
only process one image at a time and the images need 
to be loaded manually before applying the thresholding 
technique, which is extremely time consuming.

Due to the variation in the colour of diseased and 
healthy areas, it is difficult to set arbitrary thresholds for 
all three channels of colour space. The new image analy-
sis method employed artificial neural networks (ANN) 
for the training and classification of a colour dataset. 
With the expert’s selection of training data featured by 
the RGB values and ANN as the classification algorithm, 
the quantification of disease was highly correlated with a 

subjective quantification method implemented in ImageJ. 
The software greatly reduced the time requirements for 
disease assessment when compared to manual thresh-
olding with imageJ. This assisted in the objective iden-
tification of differences in cultivar susceptibility to the 
various strains that cause bacterial canker. This software 
therefore provides opportunities to shorten time taken 
for disease assessment dramatically. The software would 
facilitate the use of the cut shoot test for high-through-
put screening during breeding programmes. This would 
enable the selection of putatively resistant material from 
mapping populations, which often contain hundreds of 
individuals. Finally, this software is highly adaptable and 
could be implemented during the screening of other tree 
diseases.

Methods
Bacterial strains
Strains of Pseudomonas syringae were grown on King’s 
B agar (Sigma) at 25  °C. For liquid culture, strains were 
grown in Luria Broth (Melford) at 25  °C, 150  rpm. 
Strains were obtained from various sources (Table 1) and 
included representatives of the three major clades that 
infect Prunus (Psm Race 1, Psm Race 2 and Pss) as well as 
an out-group strain belonging to pv. avellanae which was 
isolated from hazelnut (Corylus avellana).

Plant material
Dormant first-year shoots were collected from mature 
cherry and plum trees in December 2014 at East Malling 
Research, Kent.

Pathogenicity assay on cut shoots
The cut shoot pathogenicity assay was performed as in 
previous studies [3, 8]. Each cultivar x strain treatment 

Table 1  List of  bacterial strains used in  pathogenicity 
assays, with source host and reference

Strain Species Pathovar Race Source 
of isolation

Isolate  
curator

5244 P. syringae morspruno-
rum

1 Prunus 
avium

SJ Roberts

5300 P. syringae morspruno-
rum

1 Prunus 
domestica

SJ Roberts

5255 P. syringae morspruno-
rum

2 Prunus 
avium

SJ Roberts

9097 P. syringae syringae – Prunus 
avium

SJ Roberts

9293 P. syringae syringae – Prunus 
domestica

SJ Roberts

BPIC631 P. syringae avellanae – Corylus avel-
lana

DS Guttman
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was replicated 10 times, resulting in 420 inoculations. To 
prepare the bacteria, single colonies were inoculated in 
LB and shaken overnight. These cultures were spun down 
using a centrifuge (4000 rpm, 10 min) and re-suspended 
in 10  mM MgCl2. The concentration was adjusted to 
1 × 107 CFU/ml (confirmed by dilution plating) and ster-
ile 10 mM MgCl2 was used for the control. For the plant 
material, dormant first-year shoots of similar diameter 
(5  mm) were collected from cherry and plum trees in 
December and cut into 10  cm sections using secateurs. 
These were surface-sterilised in 0.5  % hypochlorite for 
5 min and rinsed with tap water. The shoot sections were 
air-dried overnight.

To inoculate, the top 5  mm of each shoot tip was 
removed with a scalpel and dipped for 5 min in the bac-
terial suspension. The wound was covered with parafilm 
(Fisher Scientific, UK) and the shoot bases were freshly 
cut (approx. 5  mm) and placed in transparent-boxes 
immersed in water to a depth of 20 mm. The shoots were 
incubated in the closed boxes at 15 °C with 16-hour light, 
8-hour dark cycle for 1 week. Separate boxes were used 
for each bacterial isolate to prevent cross-contamination. 
Next, the shoots were transferred to −2 °C for one week 
to simulate frost damage. Finally, the basal 10  mm of 
each shoot was removed and they were placed in a com-
pletely randomised design (generated using Genstat [50]) 
in water-soaked Oasis Foam (Oasis Floral, UK) in trays 
containing 30  mm of water. These were incubated for a 
further 4 weeks at 15 °C with the same light conditions as 
previously described. The trays were covered with cling-
film to maintain a high humidity.

The shoots were assessed for severity of stem canker 
by peeling back the uppermost layer of bark from the top 
30 mm of the shoot to expose the symptoms, which were 
photographed digitally. The length of necrosis was also 
manually measured with a caliper.

Imaging system
All the images were captured using a SLR camera (Canon 
EOS 1000D) with 53  mm focal length and 1/15  s expo-
sure time. Two 60 W incandescent light bulbs were used 
to illuminate the samples from each side. The distance 
between the lens and the samples was 35 cm. Due to the 
high resolution of the imagery device (3888 × 2592 pix-
els), three shoots were placed on a spectralon white plat-
form (SphereOptics) and imaged together in order to 
enhance the contrast between the foreground and back-
ground. The images were captured using EOS utility soft-
ware (Canon) and saved as JPG files. Individual shoots 
were cropped from each image and due to small varia-
tions in the size of shoots, the resolution of the images 
varied from 43 × 754 to 282 × 839 pixels. All the images 
were saved and processed on a Dell desktop computer 

(Intel® Xeon(R) CPU X5560 @ 2.80  GHz  ×  16). The 
automated image analysis software was written in C++ 
[51] utilising the OpenCV Library [52] on an Ubuntu 
14.04 operating system.

Statistics
Genstat [50] was used to perform the statistical analy-
sis using a nested ANOVA (nesting cultivar by species), 
whilst Excel [53] was used to produce bar charts (Fig. 4 
and 5). The residuals of ANOVA tests were assessed for 
normality using qqnorm (residuals). If the residuals were 
not normally distributed the data was log transformed 
(with the addition of 0.1 to area prior to log transforma-
tion) and the ANOVA repeated. Log transformation was 
selected rather than the more conventional square root 
transformation, as the full spectrum of percentage dis-
ease was not used and the relationship between residu-
als and fitted values was less biased. Furthermore, a log 
transformation is more appropriate to study multiplica-
tive interactions between factors. Full ANOVA tables 
and residual plots can be found in the supplementary 
information (Additional file 1: Tables S1, S2; Figures S4, 
S5). A complete randomised design for the positioning 
of cherry shoots in trays after inoculation was produced 
using Genstat [50].

Image analysis with ImageJ
ImageJ [31] was used to manually measure the disease 
severity on an image-by-image basis. Firstly, the three 
cherry shoots were cropped from the original image and 
converted from RGB to HSI colour space. A threshold 
was manually chosen to determine the total number of 
pixels in the shoot (compared to the total in the whole 
image containing the background). The total number of 
pixels in the shoot was named R1. The second threshold 
on the hue channel was used to segment the diseased and 
healthy areas. As the diseased area always showed darker 
intensity than the healthy area, the background could be 
easily separated. The total number of pixels in the dis-
eased area was called R2. The proportion of the diseased 
area was calculated using the ratio of the diseased area 
(R2) to the total shoot area (R1).

Automated image analysis software
The automated image analysis software was developed in 
C++ with open computer vision library (OpenCV 2.4.9), 
and the interface was designed by Qt designer. The soft-
ware is programmed to load all images in a single folder 
and process them in a batch with the prediction param-
eters included and output the percentage area of necrosis 
and the necrosis length.

The original images were converted to grayscale and 
the pixels belonging to the three shoots were segmented 



Page 8 of 9Li et al. Plant Methods  (2015) 11:57 

from the background by setting an arbitrary threshold. 
All the contours were detected, those  <500 pixels were 
considered noise and were discarded leaving only the 
three shoots. Rectangles were fitted to all three contours, 
which were cropped from background and saved as three 
individual images for further processing.

A feed-forward artificial neural network (ANN) was 
implemented for the imaging classification. The ANN 
model consists of one input layer with three neurons, one 
binary output layer and one hidden layer with 16 neu-
rons (Additional file  1: Figure S8). The input layer was 
the same size as the sample feature variables (Red Green 
and Blue) in this experiment. The input is passed to each 
neuron of the hidden layer and summed up with certain 
weights. A symmetrical sigmoid function was applied to 
the sum for each neuron and the output of each neuron 
on the hidden layer was further summed up with weights 
to the output. The model is trained with a training data-
set to adjust the weights iteratively in order to minimize 
the error between ideal and real output.

Thirteen images were selected for extraction of the 
training dataset. The expert labelled pixels as diseased 
by drawing squares of different sizes by pressing the left 
mouse button to the diseased region. Similarly, the right 
button was used to label pixels as healthy. The origi-
nal images were kept in RGB format and the R, G and B 
values were used as the three variables for the training 
phase.

In the prediction phase, the segmentation was applied 
first with an arbitrary threshold to separate the pixels 
belonging to the shoot from the background and input to 
the classification model, which reduces the computation 
cost. The R, G and B values for each pixel were taken as 
feature variables, classified by ANN and labelled as dis-
eased or healthy. The pixels labelled as diseased were also 
false coloured as red for visualization. Ratios between 
the number of pixels in the diseased area and total area 
were calculated automatically and saved in text files. The 
length of necrosis measurement was based on the false 
colour image. Any red regions with less than 10 pix-
els were regarded as noise so were removed, whilst all 
other red regions were fitted with rectangles. If the area 
of fitted rectangles were less than 10,000 pixels, the cor-
respondent red regions were further removed unless the 
regions were near the top of the shoots (at the point of 
infection). This was required to remove any blemishes 
that were not due to the disease. The final length was cal-
culated by measuring the difference between the top and 
bottom of the rectangle.

The software is available from the East Malling 
github repository, (www.github.com/organizations/
eastmallingresearch/).
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