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Anxiety disorders are the most common psychiatric disorders,
with a lifetime prevalence of ~30%.1 They are a major cause of
global disability, and impose considerable economic burdens on
society.2,3 They commonly have their onset in childhood or
adolescence and have been linked to the occurrence of later
disorders, including depression and conduct disorder.1,4 Adults
with anxiety disorders show rates of childhood anxiety diagnoses
significantly above baseline.5 Given this potential gateway effect,
and the distress caused by these disorders, there is a need to
optimise and understand treatment effectiveness in childhood.

Cognitive–behavioural therapy (CBT) is a first-line treatment
for anxiety disorders in the UK, with 59% remission reported
immediately post-treatment.6,7 Despite this high reported efficacy,
variability exists in patient response that may be influenced in part
by genetic variants. Multiple studies examining the genetics of
differential response to psychological therapies (therapygenetics8)
have been undertaken, and variants in seven genes (5HTT/
SLC6A4, TPH2, MAOA, COMT, NGF, BDNF and GRIK4) have
been implicated at least once in studies of CBT for anxiety
disorders.9 However, findings have proven difficult to replicate,10

and the direction of effects found inconsistent. These problems
may result from the low power of small cohort sizes, resulting

in a high rate of false positives, and a narrow focus on a few genes
that may have limited relevance to the phenotype.

Genome-wide association studies (GWAS) provide a
hypothesis-neutral alternative, agnostic to prior assumptions of
relevance and with the potential to discover novel findings at a
single variant level. By analysing thousands of variants across
the genome, GWAS yield more information than the candidate
gene approach, allowing for the acknowledgement and control
of confounds such as ancestry and the quality of genotyping.
Genome-wide information can also be used to investigate
associations between phenotypic change and different levels of
the genetic architecture, including the effect of all variants in a
given gene, and the effect of all genotyped variants across the
genome. However, the explicit requirement for multiple testing
correction in GWAS imposes a need for large sample sizes.

Although GWAS have not been used to study response to CBT,
they have shown early promise in studying anxiety disorders.
Genetic influences on the development of anxiety disorders may
indicate processes underlying treatment response, and provide
interesting genetic candidates.11 A detailed review of the genetics
of anxiety disorders is available elsewhere.12 In brief, one variant,
rs7309727 (TMEM132D), was associated with panic disorder in a
cohort of European ancestry (P= 1.161078

, odds ratio
(OR) = 1.45 (95% CI 1.20–1.72).13 A variant in the TMEM16B
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Background
Anxiety disorders are common, and cognitive–behavioural
therapy (CBT) is a first-line treatment. Candidate gene studies
have suggested a genetic basis to treatment response, but
findings have been inconsistent.

Aims
To perform the first genome-wide association study (GWAS)
of psychological treatment response in children with anxiety
disorders (n= 980).

Method
Presence and severity of anxiety was assessed using semi-
structured interview at baseline, on completion of treatment
(post-treatment), and 3 to 12 months after treatment
completion (follow-up). DNA was genotyped using the
Illumina Human Core Exome-12v1.0 array. Linear mixed
models were used to test associations between genetic
variants and response (change in symptom severity)
immediately post-treatment and at 6-month follow-up.

Results
No variants passed a genome-wide significance threshold
(P= 5610–8) in either analysis. Four variants met criteria for

suggestive significance (P55610–6) in association with
response post-treatment, and three variants in the 6-month
follow-up analysis.

Conclusions
This is the first genome-wide therapygenetic study. It
suggests no common variants of very high effect underlie
response to CBT. Future investigations should maximise
power to detect single-variant and polygenic effects by
using larger, more homogeneous cohorts.
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gene was reported at genome-wide significance in a Japanese
cohort with panic disorder, but was not significant in replication
analyses.14 Two GWAS of post-traumatic stress disorder (PTSD)
have identified variants at genome-wide significance in the TLL1
gene (rs6812849, P= 3.1361079, OR not reported)15 and
PRTFDC1 (rs6482463, P= 2.0461079, OR = 1.47 (95% CI 1.35–
1.59)).16 However, these results require replication in larger
studies; for example, variants in the RORA gene previously
implicated in a GWAS of PTSD failed to attain significance in a
larger replication effort.17 No significant findings from the anxiety
literature to date had previously been considered in candidate
gene studies.12

To our knowledge, this is the first GWAS to examine response
to psychological therapy in any disorder, and the first to examine
treatment response of any kind in anxiety disorders. Participants
were drawn from the Genes for Treatment (GxT) study, an
international, multisite investigation of clinical, demographic
and genetic predictors of response to CBT for anxiety in
childhood and adolescence.10,18 Two analyses of association
between single nucleotide polymorphisms (SNPs) and response
to CBT were conducted, investigating change in symptom
severity between baseline and immediately post-treatment (post-
treatment), and between baseline and 6 months after treatment
cessation (follow-up).

Method

Study design and sample

A detailed description of the participants and the treatment
programmes from which they were drawn is provided elsewhere
(online supplemental material).18 In brief, participants provided
DNA for the GxT study between 2005 and 2013, at 11 sites across
the USA, Australia and Western Europe. Children and adolescents
(5–17 years old, 94% aged 5–13) were included if they met
DSM-IV criteria19 for a primary anxiety disorder diagnosis, with
further psychiatric diagnoses made as appropriate. Exclusion
criteria were significant physical or intellectual impairment, and
the presence of psychotic symptoms. All participants completed
a full course of individual-based CBT (with or without parental
involvement), group-based CBT or guided self-help either as part
of a trial or as treatment as usual within a clinical research depart-
ment. All treatments were manualised and treatment protocols
across all sites were comparable for core elements of CBT including
teaching of coping skills, cognitive restructuring, and exposure.

Assessments were made using the Anxiety Disorders Interview
Schedule for DSM-IV, Parent and Child Versions (ADIS-IV-C/P),20

except at Bochum (Germany) and Basel (Switzerland) where the
German equivalent, Kinder-DIPS,21 was used. All participants
were assessed prior to and immediately after treatment, with
further assessments made at 3-, 6- or 12-month follow-up where
possible. Output from the ADIS (or equivalent) was converted
into Clinical Severity Ratings (CSR) on a scale of 0–8. A diagnosis
was made when the child met the diagnostic criteria and received a
CSR of 4 or more, usually based on a composite of parent and
child report. Diagnoses were made from the ADIS for multiple
anxiety disorders, and primary status allocated to the most severe,
defined as the highest CSR, with ties resolved by clinical
judgement (online Table DS1(b) and (c)).

To minimise differential assessment across sites, raters at
Reading (UK), Oxford (UK) and Aarhus (Denmark) all received
training in evaluation from the Sydney (Australia) site, and
clinicians at Aarhus received additional training in the ADIS from
W.K.S., principal investigator of the Florida (USA) site. As such,
standardised assessments were made for at least 85% of the
analysed sample (for further details see the online supplement).

Definition of the treatment response phenotype

As in previous analyses of the GxT sample, outcome was assessed
across two periods: baseline to post-treatment and baseline to
follow-up. Although dichotomised treatment outcomes are often
used in clinical decision making in treatment response, a
continuous measure of change in severity provides substantially
more power for analyses.22

Response post-treatment was therefore defined as percentage
change in CSR score between baseline and immediately following
treatment. Percentage change, rather than absolute change, was
used as it has been shown to better reflect clinical ratings of
improvement by its successful use in pharmacogenetics GWAS.23

For follow-up analyses, a range of time points were available;
assessments taken at the 6-month time point were used, as these
were the most complete (n= 483). Missing data at this time
point was imputed using the best linear unbiased estimates from
linear mixture models fitted to the GxT data as part of analyses
predicting response from clinical variables alone.18 The mixture
models included the linear and quadratic effects of time as well
as gender, age, primary diagnosis, treatment type and the random
effects of individual and trial (for a full explanation, see Hudson et
al18). This allowed us to compute response at follow-up as the
percentage improvement in CSR score from baseline to 6 months
after the end of treatment. Analyses were performed on residual
scores generated from a linear regression of the percentage change
measure adjusted for baseline severity, age, gender, treatment type,
diagnosis and trial.

Both sets of residual scores were created as output variables
from our previous study, which found a number of significant
non-genetic influences on treatment outcome (online supplement).18

DNA extraction and genotyping

DNA was collected and extracted using standard protocols, from
buccal swabs24 and saliva kits (OG-500 / PrepitL2P, DNAgenotek,
Kanata, Canada). Sample preparation (including concentration
and quantification) prior to genotyping is described in the
online supplement. Genotyping was performed on Illumina
HumanCoreExome-12v1.0 microarrays (Illumina, San Diego,
California, USA), using a standard protocol.25 Samples were
genotyped in two batches, and randomized by site on each
microarray.

Quality control

SNPs were mapped to build version 37/hg19 of the human
genome. Initial genotype calls were made with GenCall software
(GenomeStudio, Illumina, San Diego, California, USA),
reprocessed to remove poorly performing samples, re-clustered,
and manually recalled where appropriate. Further recalling,
targeted at improving the identification of rare variants (such as
the exonic content of the microarray) was performed using
ZCall.26 Following recalling, the data were transferred to a
multinode computing cluster, and quality control was performed
following previously published protocols (online supplement).

Quality controlled data were imputed to the December 2013
release of the 1000 Genomes Project reference (for autosomes;
March 2012 release for the X chromosome27), using the
posterior-sampling method in IMPUTE2 with concurrent
phasing.28 SNPs imputed with an info metric 40.8 and a minor
allele frequency (MAF) 41% were considered best-guess
genotypes, and converted back to PLINK binary format using
GTOOL (Freeman and Marchini, available at www.well.ox.ac.uk/
~cfreeman/software/gwas/gtool.html). SNPs with a genotype
probability of 50.9 were set as missing, and those present in
598% of the sample were excluded from the analysis.

2

Coleman et al



GWAS of response to cognitive–behavioural therapy

Statistical analysis

Two analyses were performed, examining adjusted percentage
change in CSR score from baseline to post-treatment, and from
baseline to 6-month follow-up, as described above. Principal
component analysis (PCA) of the genotype data was performed
to attempt to control for population stratification. However, this
yielded components that were not sensitive to differences in
outcome. This was likely due to the quantitative nature of the
phenotype, the fact that multiple covariates were controlled for
in constructing the phenotype, and because participants were
drawn from a variety of sites across the globe (online supplement).
Accordingly, PCA was deemed unsuitable for controlling for
population stratification, prompting the adoption of mixed linear
modelling for the association analyses (MLMA). MLMA uses
genome-wide genotype data to derive a genomic relationship
matrix (GRM), which is used to control for genetic similarity
between participants as a random effect.29

MLMA association analysis was performed in GCTA, using the
mlma-loco option for autosomes and the mlma option for the X
chromosome (online supplement).30 For each SNP in the study,
percentage change in CSR was regressed on the number of copies
of the reference allele of the SNP (0, 1 or 2), weighted by its
additive effect. A random effect of genetic similarity (from the
GRM) was included as a covariate, as were fixed effects of sample
concentration at genotyping, sample type (buccal swab or saliva),
and ultrafiltration status (whether the sample was filtered in
preparation for genotyping; online supplement). Using the
assumptions of this approach, power for the GWAS was estimated
using the Genetic Power Calculator.31 The sample of 980
participants has 80% power to detect a variant explaining ~4%
of variance and 1% power to detect variants explaining 1%.

Results from the association analysis were clumped according
to P-value using PLINK.32,33 Each clump is represented by a
sentinel SNP (that with the lowest P-value in the clump), and
contains all SNPs in linkage disequilibrium with the sentinel
(R240.25, within 250kb of the sentinel). One imputed sentinel
SNP in the 6-month follow-up analysis was on the borderline of
genome-wide significance (rs72850669, P= 7.5461078), and
was re-genotyped post hoc (LGC Genomics, Teddington, UK). This
showed the genotype calling of rs72850669 was unreliable (data
not shown), and it was removed from the analyses.

To assess the ability of the GWAS to replicate previous
findings, the association of SNPs implicated in CBT response in
previous candidate gene studies was examined.9 Exploratory
secondary analyses were performed to assess the combined effects
of SNPs on response (details can be found in the online
supplement). The proportion of variance in CSR change across
time accounted for by all the SNPs in the study was assessed with
univariate genomic-relatedness-matrix restricted maximum
likelihood (GREML), performed in GCTA using the GRM derived
for the GWAS. Polygenic risk score profiling was used to
investigate the ability of external data-sets to predict CBT
response, using risk profiles from publicly available GWAS of

major depressive disorder34 and schizophrenia,35 as well as from
a meta-analysis of response to antidepressants.36 To test the ability
of the GxT data to predict response to CBT, five analyses were
performed. Participants with generalised anxiety disorder,
separation anxiety, social phobia and specific phobia, and those
from the Reading (UK) site, were separately removed from the
dataset and risk profiles derived from the remaining participants.
Each profile was then used to predict outcome in the relevant set
of removed participants.

Ethics

All trials and collection of samples were approved by site-specific
human ethics and biosafety committees. Parents provided
informed consent, children provided assent. The storage and
analysis of DNA was approved by the King’s College London
Psychiatry, Nursing and Midwifery Research Ethics Sub-Committee.

Results

Sample and SNP exclusions are shown in online Fig. DS1.
Phenotype and high-quality genotype data were available for
939 participants in the analysis post-treatment, with an additional
41 participants available for analysis at 6-month follow-up
(n= 980). Baseline demographic information for these 980
participants is described in online Table DS1(a). The position of
the samples on principal component axes derived from the
HapMap reference populations suggests 92% of the sample are
of White Western European ancestry.37 A total of 260824 common
SNPs passed quality control, which rose to 3017604 SNPs when
imputed genotypes were added.

No SNPs were found at formal genome-wide significance for
either analysis (all P4561078). In the post-treatment analysis,
four independent clumps passed threshold for suggestive
significance (P5561076; Table 1 and Fig. 1). Quantile–quantile
plots show no departure from the chi-squared distribution of
P-values expected under the null hypothesis, suggesting there is
no underlying inflation of association statistics by uncontrolled
confounds (lambda median = 0.972, Fig. 2). Three independent
clumps were suggestive of significance in the 6-month follow-up
analysis (Table 2 and Fig. 3), with no evidence of inflation
(lambda = 1.02, Fig. 4). All clumps with P51610–4 are displayed
in online Table DS2.

A secondary analysis with increased power was performed
restricted to nine SNPs previously associated with response to
CBT in candidate gene studies (five other SNPs have been
previously implicated in CBT response, but did not pass quality
control). Assuming a significance threshold of 0.005455 (0.05/9),
none of the nine previously associated SNPs was significant (Table
3 and online supplement). The sample had 80% power to detect
an SNP accounting for 1.4% of variance at this significance
threshold, suggesting any effect of these SNPs in this data-set is
smaller than this.

3

Table 1 Independent clumps associated with cognitive–behavioural therapy response at post-treatment with P5561076

Sentinel SNP CHR Clump BP

Sentinel

SNP P

Sentinel

SNP MAF

Sentinel SNP

information Genes +/–100kb

rs10881475 1 108113663–108203647 2.4561076 0.187 0.993 NTNG1, VAV3

rs11834041 12 128232721–128239057 3.5061076 0.135 Genotyped –

rs12464559 2 152498699–152679462 4.0961076 0.0410 0.941 NEB, ARL5A, CACNB4

rs881301 8 38322346–38332318 4.4661076 0.403 Genotyped WHSC1L1, LETM2, FGFR1, C8orf86

SNP, single nucleotide polymorphism; CHR, chromosome; BP, base pair; MAF, minor allele frequency.
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Exploratory secondary analyses (GREML, gene-wide analyses
and polygenic risk score profiling) were performed. No significant
estimate of SNP heritability could be obtained from GREML, and
the effect of adding principal components was minimal. In the
post-treatment analysis, all estimates were non-significant. In
the 6-month follow-up data the highest estimate was 0.0797
(95% CI –0.194 to 0.35) without principal components. The
power of univariate GREML in the sample was estimated for a
range of true heritabilities.38 Power ranged from 9 to 46%
assuming true heritability between 0.2 and 0.6. To achieve 80%
power within this range of heritabilities will require 1450–4450
samples (for heritabilities between 0.6 and 0.2).

Polygenic risk score profiling failed to generate predictions
that were consistently significant, either for external GWAS or in
the internal predictions of response.

Discussion

Main findings

We report the first genome-wide association study of psychological
therapy. Although no region reached genome-wide significance, the
single SNP and polygenic results are consistent with the wider
literature of treatment genetics in psychiatry, given the sample size

studied. Genome-wide significant variants detected in GWAS of
psychiatric phenotypes have shown small effect sizes (with the
exception of late-onset dementia), requiring thousands of
participants to discover. The pattern of results in psychiatric
genomics to date suggests that a critical number of participants
(varying by disorder) are required before robust findings begin
to be made. In studies of schizophrenia, this critical number
was ~9000 cases.39 Our results, although preliminary, suggest
response to CBT could be a complex phenotype at the early point
of this trajectory, although the critical sample size is not yet clear.

The purpose of this study was to identify genetic variants
capable of predicting change in symptom severity during
treatment. No common, high-effect SNPs were identified,
suggesting that it is very unlikely a single variant could be used
as a predictor. This also places an upper bound on expected effect
sizes in studies of CBT response. This is relevant considering that
neither GWAS replicated previous findings from the literature.
This does not appear to be due to insufficient statistical power.
For example, the COMT val158met polymorphism (rs6265) was
reported to account for 8% of variance in CBT response in adults
with panic disorder, well above the 4% of variance explained for
which this GWAS was powered.40 Failure to replicate previous
findings from the candidate gene literature has proved common
in psychiatric genetics, whereas GWAS is proving more
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X-axis shows the top million most associated single nucleotide polymorphisms, arranged by position on the chromosome. Lines show conventional thresholds for genome-wide
significance (P= 561078) and suggestive significance (P= 561076).

Table 2 Independent clumps associated with cognitive–behavioural therapy response at 6-month follow-up with P5561076

Sentinel SNP CHR Clump BP

Sentinel

SNP P

Sentinel

SNP MAF

Sentinel SNP

information Genes +/–100kb

rs72711240 4 135657189–135695807 4.49x10–7 0.0269 0.903 –

rs9875578 3 13707416–13810670 1.43x10–6 0.424 0.994 FBLN2, WNT7A

rs6813264 4 146509970–146631854 4.68x10–6 0.410 Genotyped SMAD1, MMAA, C4orf51, ZNF827

SNP, single nucleotide polymorphism; CHR, chromosome; BP, base pair; MAF, minor allele frequency.
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reliable.35,41 The failure to replicate any published variants
suggests previous assumptions of gene relevance may be
erroneous, resulting from underpowered candidate gene studies
that overestimated the likely effect sizes of studied variants, and
that reported variants are likely to be false positives, or to have
effect sizes inflated due to winner’s curse.42 Proximity to a gene
does not imply an effect on gene expression, so the failure to
replicate the effects of candidate SNPs does not exclude a role
for candidate genes, as the SNPs assessed may not capture true
functional variation.

Not all candidate variants are SNPs, and one limitation of
GWAS is the difficulty of assessing structural variants not captured

by the probes on microarrays. For example, we cannot comment
on the previously reported role of the MAOA-u variable number
tandem repeat in CBT response.43 Nor could we assess the effect of
the 5HTTLPR variant of SLC6A4, previously associated with
remission from anxiety disorders at follow-up; however, we
directly genotyped this variant in this cohort, and were unable
to replicate our earlier finding.8,10

Although small when compared with high-profile studies such
as the PGC studies in schizophrenia and depression,34,35 our sample
is similar in size to studies in the depression pharmacogenetic
literature.23,44 The first of these used a multistage design
(n= 1532) and identified several associations at nominal
significance, but none remained significant after correction for
multiple testing.44 The second (n= 706) found one genome-wide
significant locus (for response to nortryptiline treatment) and six
loci at suggestive significance across four subanalyses.23 More
recent meta-analyses were unable to find genome-wide significant
variants.36 However, a significant GREML estimate of SNP-chip
heritability of 42% (95% CI 6%–78%) was identified, suggesting
useful information about treatment response can be obtained at
the whole-genome level.45 Future studies in psychological therapy-
genetics should aim to build a cohort of sufficient size to estimate
SNP-chip heritability and bivariate genetic correlations, enabling
further comparison with pharmacogenetic studies. Such a cohort
could act as a target data-set for polygenic risk scoring, exploring
the predictive value of variants associated with potentially relevant
phenotypes assessed in other GWAS.

Limitations

There are parallels between the antidepressant GWAS literature
and this study, including the necessity of combining many
studies to obtain sufficient participants for analysis. Herein, we
examined a naturalistic clinical cohort, drawn from CBT trials
or from treatment as usual. As all participants received CBT, there
was no placebo group for comparison. Therefore, the results may
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Coleman et al

reflect natural regression to the mean, rather than an effect of
treatment. Theoretically, a parallel GWAS of change in severity
could be performed on wait-list controls to identify associations
with regression to the mean. Results from the GWAS of CBT
response could be weighted by the likelihood that any given
association resulted from regression to the mean. However, this
would require deliberate non-treatment of thousands of wait-list
controls over a period of at least 7 months for the purpose of
comparison only. As CBT is effective in this age group, with
significant improvement seen in treated groups relative to wait-list
controls, non-treatment would raise serious ethical concerns.7

The aim of therapygenetics is to discover predictors of differential
response to treatment. These predictors need not capture a
treatment effect per se; they may describe processes separate to
treatment that nonetheless lead to better (or worse) response.
Nevertheless, in the absence of a control group, this study
specifically examines the association between genetic variation
and change in CSR across the period of CBT treatment and
follow-up, not the biological mechanism of response to CBT.

The naturalistic nature of the cohort creates heterogeneity,
including differences in the details of the treatment given, the
target disorder of the treatment, and several participant
characteristics. The effectiveness of CBT is influenced by a variety

of environmental factors. Some of these can be considered within
the design, such as treatment type, diagnosis and severity. Others
are less easily accounted for, including therapeutic alliance and
other social influences, which may only be partly controlled for
by the inclusion of trial as a covariate.18,46 This reduces the
statistical power of analyses, but should not be viewed as an
argument against therapygenetics. The ability to offer personalised
advice to patients about treatment could avoid considerable
amounts of unnecessary distress and expense. Obtaining a set of
genes able to assist in clinical prediction will require a cohort that
is powerful enough to detect true variants while remaining
clinically representative. Thus, a degree of heterogeneity is
unavoidable in studying response to CBT, and similar difficulties
in pharmacogenetic GWAS suggest this limitation applies to
treatment response genomics more generally.

Combining data from trials at multiple sites necessitated
compromises in study design. Participants were included if they
completed treatment, but drop-out from treatment is common
and likely to be related to poorer response. As such, future studies
should aim to include severity data for non-completing
participants. This would require appropriate modelling of the
treatment period, and the proportion of the treatment process
completed, before participation ceased. Similarly, combining
measurements from different sites and from participants with
varying diagnoses required the use of a general, widely applicable
outcome measure. The ADIS fit these requirements well, but relies
on clinical judgement derived from parent and child report. It
may be less sensitive to the effects of CBT than a self-report
measure, and be more vulnerable to site-specific biases. However,
a suitable diagnosis-general self-report scale was unavailable, and
standardising outcomes to combine multiple diagnosis-specific
scales is likely to lead to a generalised and difficult-to-interpret
result.

Future directions

This study represents the first GWAS of psychological therapy.
Although no genome-wide significant findings emerged, the
spread of significance in the associations captured is similar to
other early general psychiatric and pharmacogenetic GWAS. The
best approach in the immediate future is to increase the sample
size available through combining existing cohorts in mega- and
meta-analyses. Such a cohort would allow replication of the
findings presented in this paper to be attempted, which currently
is not possible due to the lack of an independent cohort of suitable
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Table 3 Genome-wide association study P-values of single nucleotide polymorphisms (SNPs) previously associated with

cognitive–behavioural therapy response.12,a

Gene SNP P (post-treatment) P (follow-up)

SLC6A4 rs25531 Imputed with info 50.8 Imputed with info 50.8

HTR2A rs6311 0.4717 0.9692

rs6313 0.5451 0.8109

rs6314 Imputed with info 50.8 Imputed with info 50.8

rs7997012 Completeness after imputation 50.98 Completeness after imputation 50.98

TPH2 rs4570625 Completeness after imputation 50.98 Completeness after imputation 50.98

COMT rs4680 0.7699 0.5956

NGF rs6330 0.5093 0.4559

BDNF rs6265 (val158met) 0.3408 0.9078

rs7934165 0.5231 0.9880

rs1519480 0.8211 0.5013

rs11030104 0.3158 0.9675

GRIN2B rs1019385 Imputed with info 50.8 Imputed with info 50.8

GRIK4 rs1954787 0.1315 0.1914

a. No P-value is significant after multiple testing correction.



GWAS of response to cognitive–behavioural therapy

size. However, individual variants are likely to have small effect
sizes, so future studies should utilise higher-order approaches such
as polygenic risk scoring and GREML to leverage the predictive
effects of the whole genome. This would also provide an estimate
of heritability, which is difficult to obtain through traditional
family-based approaches. If the heritability of CBT response were
around 30% (similar to that of anxiety disorders), a high-powered
polygenic risk score could capture 10–15% of variance, which
could be clinically useful when combined with known
environmental risk factors.47 However, creating such a score will
require a sample size of at least 10 000, which would involve
considerable effort to obtain.

Alternative approaches may also yield interesting findings.
Response to CBT is a behavioural change following exposure to
a positive environment, so epigenetic studies investigating how
these exposures influence gene expression via DNA methylation
will be informative.48 Similarly, it will be useful to examine
changes in gene transcript expression across treatment and in
the longer term. Used in parallel to these approaches, studying
specific genetic variants remains a potential method of predicting
response to CBT (and understanding its biological basis) and
genome-wide investigations represent the most promising avenue
in which to focus the gathering momentum of therapygenetics.49
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Supplemental material 

 

Site information 

Unless otherwise specified, clinical trials included all primary anxiety disorder diagnoses. All 

sites made secondary anxiety disorder diagnoses where appropriate.  

 

Sydney, Australia  

Participants aged 6-18 were recruited from the Centre for Emotional Health, Macquarie 

University, Sydney. All participants completed the Cool Kids program(1), with 10-12 family 

sessions involving the parents (the majority of which were conducted in groups;  8% of the 

sample’s DNA were collected retrospectively). Variations on this treatment program include 

a subgroup from previous randomized trials who received group, individual or phone-based 

CBT sessions(2, 3); participants from a guided self-help trial with phone support for children 

in rural Australia(4); a group from a trial with additional parental anxiety management (5); 

and those recruited from an ongoing randomized trial of progressive allocation to treatment 

(Stepped Care).  

 

Reading and Oxford, UK  

Participants aged 5-18 were recruited jointly from Reading and Oxford from eight trials at 

the Berkshire Child Anxiety Clinic (University of Reading) and the Oxfordshire Primary Child 

and Adolescent Mental Health Service. Participants received treatment in three main 

themes; one focusing on children with anxious mothers; a set of trials using a parent-guided 

self-help CBT program; and an online CBT program for adolescents.  

 

The Mother and Child (MaCh) project(6). Children whose mother also had a current anxiety 

disorder completed an 8 session manual-based CBT treatment based on the Cool Kids 



  2 
 

program(7). The mothers of these children also received extra sessions focusing on their 

own anxiety and on mother-child interactions.  

Overcoming. Children were treated with a parent-guided self-help CBT program, comprised 

of the same primary components as the Cool Kids program (7, 8). This consisted of 2-4 in-

person sessions and 2-4 telephone sessions. A sub-set of this group with a primary anxiety 

disorder diagnosis of Social Phobia also received targeted Cognitive Bias Modification 

Training (CBM-I,(9)). Additionally, participants with highly anxious parents (screened using 

DASS or by meeting ADIS criteria) were randomized to groups in a trial including additional 

sessions for the parents which focused on strategies for tolerating children’s negative 

emotions. In Oxford, treatment was based on the same basic program, and delivered by 

primary health workers as part of a feasibility trial(10). 

 

BRAVE. The final treatment group completed a therapist-supported online CBT program for 

adolescents (BRAVE), consisting of 10 sessions, half with 5 additional parent sessions and 

half without parent sessions.  

 

Aarhus, Denmark  

Participants aged 7-17 years were recruited from the Department of Psychology and 

Behavioural Sciences, Aarhus University, and all anxiety disorder diagnoses were included. 

Participants received CBT using the Cool Kids manual (including the adolescent version 

where appropriate (7, 11)). Participants came from two groups; one aged 7-17, from a trial 

including treatment and waitlist conditions; and another group aged 7-12 from a trial 

comparing efficacy of traditional group-based treatment with Cool Kids versus a guided self-

help version with clinician support (bibliotherapy). In both trials only participants that 

received in-person CBT were included. 

 

Bergen, Norway  

Participants aged 5-13 were recruited from the child part of the “Assessment and Treatment 

– Anxiety in Children and Adults” study, Haukeland University Hospital, Bergen. Patients 

referred to outpatient mental health clinics in Western Norway, with a primary diagnosis of 

separation anxiety, social phobia, or generalized anxiety, received group or individual 
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treatment with the FRIENDS program (4th edition(12, 13)) in a randomized control trial 

comparing active treatment with a waitlist condition(14). 
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Bochum, Germany  

Participants aged 5-18 were recruited from the Research and Treatment Centre for Mental 

Health, Ruhr-Universität Bochum. Participants received either exposure-based CBT (8-25 

sessions, with sessions occurring at least every 2 weeks), the Coping Cat program (15), or a 

family-based  version of CBT specifically designed to target separation anxiety disorder 

(TAFF (16, 17)). Diagnoses were provided separately for parent- and child-report. The 

primary diagnosis was selected as being the most severe from either reporter. If the most 

severe disorder reported by each was of equal severity but was a different diagnosis, the 

parent-reported diagnosis was selected.  

 

Basel, Switzerland  

Participants aged 5-13 (all with a primary diagnosis of Separation Anxiety Disorder) were 

recruited from the Faculty of Psychology, University of Basel. All participants took part in a 

randomized control trial comparing a family-based version of CBT specifically designed to 

target separation anxiety disorder (TAFF (16, 17)with Coping Cat(15)). All participants 

received 16 sessions over 12 weeks.  

 

Groningen, The Netherlands  

Participants aged 8 to 17 were recruited from the Department of Child and Adolescent 

Psychiatry, University of Groningen. All participants were treated within  a randomized 

control trial of Coping Cat (Dutch version (18)) including 12 individual child sessions and 2 

parent sessions. 

 

Florida, USA  

Participants aged 7 to 16 (including all primary anxiety disorder diagnoses except PTSD) 

were recruited from the Child Anxiety and Phobia Program, Florida International University, 

Miami. All participants received 12 to 14 hour-long sessions of individual manualized CBT. 

Additionally, two conditions included parental involvement focusing on different parent 

skills (Relationship Skills Training or Reinforcement Skills Training).  
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Cambridge, UK  

Participants aged 8-17 were recruited from the MRC Cognition and Brain Sciences Unit, 

Cambridge, UK. Participants were taking part in the ASPECTS trial, which recruited 

individuals exposed to a recent (i.e. in the previous six months) traumatic stressor (i.e. any 

event that involve the threat of death, severe injury, or threat to bodily integrity, or 

witnessing such an event). Those that developed PTSD were randomized to a 10-week 

waitlist or individual PTSD-specific CBT(19), which consisted of up to 10 sessions over a 10 

week period. Only participants that received treatment were included. 

 

Amsterdam, The Netherlands  

 Participants aged 10-14 were recruited from the Academic Treatment Centre for Parent and 

Child, University of Amsterdam UvA Minds and received either 12 weeks of CBT in individual 

sessions or 8 weeks of CBT in group sessions, according to the Dutch protocol Discussing + 

Doing = Daring(20). Diagnoses were provided separately for parent- and child-report with 

the primary diagnosis selected from these data by the trial manager. 

 

Assessment of treatment response 

At all sites, an experienced diagnostician trained the independent assessors using 

observation, feedback and supervision, and clearly specified guidelines for allocating 

diagnoses and CSRs were used. Inter-site consistency between the two largest sites, Sydney 

and Reading/Oxford (hereafter referred to as Reading), was established through initial 

training of assessors at Reading using video-recorded assessments from Sydney. In addition, 

detailed guidance provided by the Sydney site was used in assessments at Reading 

throughout the study. The principal investigator at the Aarhus site (Mikael Thastum) was 

trained in Sydney, and assessors in Aarhus received additional training from the principal 

investigator at the Florida site (Wendy Silverman). As such, treatment response for 

participants at these four sites, which comprise 85% of the sample, was assessed with a 

consistent methodology. Within-site inter-rater reliability for the primary anxiety diagnosis 

ranged from 0.72-1.00, demonstrating that inter-rater agreement was high. 

 Clinical Severity Ratings across time (and number of participants assessed) by site are 

shown in Supplementary Table 1c. Overall, mean severity decreased from pre-treatment to 

post-treatment, and then roughly plateaued across the three follow-up assessments. 
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However, the results at each follow-up assessment are dependent on which sites performed 

the assessment; therefore, this should not be considered a general trajectory of treatment 

response. Similarly, although the mean CSR at each assessment varies between sites, the 

95% confidence intervals of each mean overlap, suggesting mean CSRs do not vary 

significantly. The follow-up phenotype presented in this paper is imputed from this 

information, as described in the main text.  

 

Non-genetic influences on treatment outcome 

A diagnosis of specific phobia was associated with poorer response (percentage change in 

CSR score over time) and non-remission (CSR>4) at post-treatment, and a diagnosis of social 

phobia was associated with poorer outcome on both measures at post-treatment and at 

follow-up (both compared to a diagnosis of generalized anxiety disorder). Comorbid mood 

and externalizing disorders predicted poorer outcomes at both time-points, and parental 

psychopathology (self-reported anxious and depressive symptoms) interacted with time 

since treatment, showing little effect post-treatment but associated with poorer response at 

follow-up. For further information, see (21). 

 

Sample preparation 

DNA concentration was quantified before genotyping by fluorometry using PicoGreen 

(Invitrogen). Samples below 50ng/ul were concentrated using ultrafiltration and re-

suspension. 3600ng of each sample (usually as 300ul at 12ng/ul, although this was adjusted 

as sample characteristics dictated) was dispensed using a customized Beckman FX robot, 

and then pipetted via a manual multichannel pipette into a 96-well filtration plate, which 

captured DNA fragments above 500bp (Multiwell 96-well PCR clean-up plate, Millipore). 

Samples were filtered under 750mBar of pressure until wells were dry. Following filtration, 

samples were re-suspended in 40ul of Tris-EDTA buffer with vigorous shaking, and DNA 

concentration re-quantified using spectroscopy (Nanodrop). Samples with concentration 

above 50ng/ul continued to genotyping on the Illumina Human Core Exome-12v1.0 

microarray, which assays approximately 250 000 common SNPs and 250 000 exomic SNPs 

located across the genome. 
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Quality control 

In addition to recalling of rare variants with ZCall, recalling was also performed in Opticall 

(22). The two methods were concordant for 99.78% of cases.  

 

Quality control post-recalling was performed in PLINK (23) and PLINK2 (24), with reference 

to previously published protocols (25, 26). SNPs were excluded if the frequency of the minor 

allele was <5%, or if the frequencies of both alleles were out of Hardy-Weinberg 

equilibrium, with a threshold of p<10-5. Samples and SNPs were excluded if call rate was 

<99%. Samples were excluded if phenotypic gender was inconsistent with X-chromosome 

homozygosity (F-statistic), if genome-wide heterozygosity was >3 standard deviations from 

the sample mean, if more than 18.75% of variants were shared by descent (pi-hat) between 

two samples, or if the average pi-hat of the sample differed from the mean by >6 standard 

deviations (Supplementary Figure 1). Reported sample gender was compared with X 

chromosome heterozygosity calculated from genotypes. Male samples are expected to be 

homozygous for X chromosome SNPs, while females are expected to be heterozygous – the 

standard PLINK thresholds of >0.8 and <0.2 respectively were used as guidance. Two 

samples were just outside these thresholds, but were retained as their phenotypic gender 

matched that suggested by the genotypes. 

 

Principal component analysis (PCA) was performed in EIGENSTRAT (27, 28) on the dataset, 

pruned for linkage disequilibrium (25). Specifically, SNPs were compared pairwise in 

windows of 1500 SNPs, and one of each pair removed if R2 > 0.2, and the procedure 

repeated after a shift of 150 SNPs (23). Initially, PCA was performed with the intention of 

using principal components to control for population stratification within the dataset. 

However, the use of quantitative phenotypes from which site differences had been 

regressed, combined with the fact that participants were recruited from across the globe, 

prevented the use of principal components for this purpose. The top 100 principal 

components were not associated with either phenotype beyond a level expected by chance. 

However, the principal components capture the different ethnicities in the sample, 

confirming participant self-reported ancestry. The majority (92.4%) of the sample are of 

White Western European descent (Supplementary Figure 2a, 2b; Supplementary Table 1). 

The recent development of software to perform mixed linear model association analyses in 
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genome-wide data provided a better alternative to control for background genetic similarity 

between individuals (29).  

 

Association analyses were performed on phenotypes indicative of sample quality (sample 

concentration at entry into genotyping, and whether the sample was collected as a buccal 

swab or as saliva) as a quality control step. QQ plots were generated using R (script adapted 

from M. Weale, available at http://sites.google.com/site/mikeweale) and lambda-median 

values calculated to assess inflation. SNPs showing a lower p-value than expected under the 

null (those below thresholds p<0.01 and p<0.001, respectively) for either sample quality 

phenotype were excluded from the final analysis. 

 

Statistical analysis 

GWAS was performed using mixed linear model association analysis (MLMA), which derives 

a genomic relationship matrix (GRM) from genome-wide genotype data, and uses it to 

model the overall genetic contribution to phenotypic correlation between participants as a 

random effect. The mlma-loco option in GCTA was used to perform a leave-one-

chromosome-out marker-excluded analysis on the autosomes, in which the GRM was 

produced excluding variants on the same chromosome at the SNP being tested. This 

prevents any effect of the variant of interest being partly captured by the GRM (which 

would reduce the measured effect of the variant). X-chromosome SNPs were assessed using 

the mlma option and a GRM produced from all autosomes. The X chromosome results were 

then merged with the autosomal data. 

 

The ability of the GWAS to replicate previous findings was explored. Variants previously 

implicated in CBT response in mood disorders were examined, as well as further variants in 

HTR2A that have been linked to anxiety disorders more generally (see Table 2). Fourteen 

SNPs were identified, of which nine passed quality control in the GWAS, none of which was 

nominally associated with either phenotype (all p>0.05). Other variants, such as VNTRs in 

SLC6A4 (STin2) and MAOA cannot be captured by GWAS. This is also true of the SLC6A4 

5HTTLPR, which was explored elsewhere (30). In addition to individual assessment, the 

effect of the SNPs as a set in a linear regression in PLINK was examined. This regression used 

the same phenotypes and covariates as the main GWAS analyses, but used 10 PCs to control 
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for further confounds. The effect of the set was not significant (p=1). However, population 

stratification was not controlled for in this analysis, as it is not currently possible to include a 

set-based test in the MLMA-GWAS, so it is possible the results of the set-based test were 

population-confounded. 

 

The GRM produced in the main analysis from all autosomes was used to perform univariate 

genomic-relatedness-matrix restricted maximum likelihood (GREML) estimation. GREML 

estimates the heritability captured by the SNPs investigated within the study; this is a 

fraction of the total heritability in the phenotype, as genotyping will not capture the full 

effect of variants in imperfect linkage disequilibrium with genotyped SNPs (31). GREML was 

performed with iterative inclusion of zero to twenty principal components. 

 

Polygenic risk score profiling (implemented in PRSice (32)) was used to investigate the 

predictive power of the dataset. For each dataset, SNP positions were converted to hg19 

where necessary and SNPs not present in the GxT GWAS discarded. The remaining SNPs 

were clumped by the top p-value using PLINK, such that no SNP that remained was in 

linkage disequilibrium (r2>0.1, distance <250kb) with a more significant SNP (33). Risk 

profiles were created in PLINK, using SNPs with external GWAS p ranging from 0.0001 to 0.5, 

in increments of 0.00005. Risk was weighted by multiplying risk allele number by beta or 

log(OR), depending on the dataset. The proportion of variance (adjusted R2) was calculated 

from a linear regression of score on outcome for each p-value threshold. 

 

Leave-one-out polygenic risk score profile analyses was performed to test prediction within 

the dataset. In separate analyses, participants with GAD, separation anxiety disorder, social 

phobia and specific phobias were secondarily excluded from the data, and MLMA analysis 

performed on the remaining participants. Profile scores were calculated using the method 

described above, and the resulting profiles used to predict response in the excluded 

individuals. The same technique was also used to predict response in participants from 

Reading, using a profile derived from the participants at other sites.  
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Table DS1(a) Demographic details for the 980 participants included in the follow-up GWAS  

 

Site N % Female 
Mean Age  

(95% CI) 

White Western European ancestry (N, 

%) 

Reading 229 55.02 9.57 (6.02-13.12) 208 (91%) 

Sydney 467 53.10 9.42 (5.56-13.28) 435 (93%) 

Oxford 14 57.14 9.21 (6.37-12.06) 14 (100%) 

Florida 25 48.00 9.24 (4.95-13.53) 13 (52%) 

Aarhus 96 59.38 11.12 (5.98-16.27) 93 (97%) 

Amsterdam 3 0.00 12.67 (9.61-15.72) 3 (100%) 

Groningen 25 56.00 11.64 (5.62-17.66) 24 (96%) 

Bochum 37 56.76 11.22 (5.72-16.72) 34 (92%) 

Basel 38 52.63 8.42 (4.19-12.65) 38 (100%) 

Bergen 36 61.11 11.44 (7.38-15.51) 35 (97%) 

Cambridge 10 70.00 13.4 (8.79-18.01) 10 (100%) 

Total 980 54.69 9.82 (5.39-14.25) 906 (92%) 
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Table DS1(b) Treatment and diagnosis of the 980 participants included in the follow-up GWAS 

 

 

 

 

Site 

Treatment Primary Anxiety Diagnosis 

Individual CBT Group CBT Guided Self-Help SAD Social Phobia Specific Phobia GAD Other Anxiety Disorder 

Reading 103 0 126 57 48 40 67 17 

Sydney 24 382 61 64 92 31 247 33 

Oxford 0 0 14 5 6 1 1 1 

Florida 25 0 0 9 5 3 6 2 

Aarhus 1 95 0 25 13 16 27 15 

Amsterdam 1 2 0 1 1 1 0 0 

Groningen 25 0 0 5 11 3 4 2 

Bochum 37 0 0 9 11 13 3 0 

Basel 38 0 0 38 0 0 0 1 

Bergen 20 16 0 11 16 0 9 0 

Cambridge 10 0 0 0 0 0 0 10 

Total 284 495 201 224 203 108 364 81 
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Table DS1(c) Mean Clinical Severity Rating and 95% confidence intervals for the participants split by site and assessment 

 

 

Site 

Severity by assessment 

Pre Post 3 months Six months 12 months 

Mean N Mean N Mean N Mean N Mean N 

Reading 5.64 (4.07-7.21) 229 2.69 (-2.05-7.44) 227 - - 1.90 (-2.65-6.45) 143 2.11 (-2.70-6.91) 76 

Sydney 6.33 (4.57-8.09) 467 3.21 (-0.33-6.75) 432 2.85 (-1.54-7.25) 41 2.78 (-0.63-6.19) 324 2.76 (-1.29-6.81) 46 

Oxford 5.64 (3.79-7.50) 14 2.36 (-2.64-7.36) 14 - - 0.00 (0.00-0.00) 2 - - 

Florida 6.84 (4.34-9.34) 25 2.72 (-0.84-6.27) 25 - - - - 5.50 (2.04-8.96) 4 

Aarhus 6.45 (3.97-8.93) 96 2.71 (-2.64-8.06) 96 1.97 (-3.19-7.14) 92 - - 1.40 (1.07-1.72) 7 

Amsterdam 5.00 (3.00-7.00) 3 5.00 (-3.72-13.72) 3 - - - - - - 

Groningen 6.24 (4.48-8.00) 25 2.75 (-0.37-5.87) 25 0.43 (-2.51-3.38) 23 - - - - 

Bochum 6.86 (4.65-9.08) 37 2.00 (-2.40-6.40) 34 1.63 (1.33-1.93) 17 1.57 (-2.63-5.78) 14 1.52 (1.23-1.81) 21 

Basel 5.92 (4.42-7.42) 38 2.18 (-0.37-4.73) 38 - - - - 4.67 (2.36-6.98) 3 

Bergen 6.81 (4.42-9.19) 36 4.80 (0.25-9.35) 35 - - - - 3.58 (-1.50-8.65) 33 

Cambridge 6.40 (4.05-8.75) 10 2.24 (-0.41-4.89) 10 - - - - - - 

Total 6.20 (4.20-8.20) 980 2.96 (-1.28-7.20) 939 1.94 (-2.72-6.61) 173 2.47 (-1.43-6.37) 483 2.54 (-1.98-7.07) 190 



  16 
 

Table DS2 Clumps with association p-value < 1x10-4 in the GWAS, extending Tables 1 and 2 

 

a)    Independent clumps associated with CBT response post-treatment with p<1x10-4 

Sentinel SNP CHR Clump BP 
Sentinel SNP 

p 

Sentinel SNP 

MAF 

Sentinel SNP 

Info 

Genes +/- 

100kb 

rs10881475 1 
108113663-

108203647 
2.45x10-6 0.187 0.993 NTNG1, VAV3 

rs11834041 12 
128232821-

128239057 
3.50x10-6 0.135 Genotyped - 

rs12464559 2 
152498699-

152679462 
4.09x10-6 0.0410 0.941 

NEB, ARL5A, 

CACNB4 

rs881301 8 
38322346-

38332318 
4.46x10-6 0.403 Genotyped 

WHSC1L1, 

LETM2, FGFR1, 

C8orf86 

rs16823934 3 
115335684-

115340900 
5.62x10-6 0.238 Genotyped GAP43 

rs460214 21 
39962001-

40059734 
6.01x10-6 0.269 0.988 ERG 

rs11581859 1 
99095611-

99393710 
9.18x10-6 0.218 0.981 SNX7, LPPR5 

rs3856211 1 
166021956-

166047333 
1.18x10-5 0.394 Genotyped FAM78B 

rs12188300 5 
158829527-

158848071 
1.61x10-5 0.0801 Genotyped IL12B 

rs2095842 1 
18283857-

18297688 
1.71x10-5 0.231 Genotyped - 

rs2619372 4 
90710099-

90779823 
2.53x10-5 0.279 0.994 SNCA, MMRN1 

rs4705334 5 
145822073-

145904225 
2.64x10-5 0.166 Genotyped 

TCERG1, 

GPR151, 

PPP2R2B 
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rs143282317 17 
5136668-

5327973 
3.15x10-5 0.0160 0.926 

USP6, ZNF594, 

SCIMP, RABEP1, 

NUP88, RPAIN, 

C1QBP, DHX33, 

MIS12, NLRP1 

rs12548760 8 
136791557-

136900947 
3.60x10-5 0.470 0.979 - 

rs727675 14 
31693539-

31949029 
3.60x10-5 0.419 Genotyped 

HECTD1, 

HEATR5A, DTD2, 

GPR33, NUBPL 

rs17667668 2 
181500273-

181626750 
3.61x10-5 0.299 0.990 SCHLAP1 

rs111988532 12 
76161146-

76174818 
3.79x10-5 0.0100 0.855 - 

rs3922930 15 
81610902-

81664087 
3.92x10-5 0.248 0.982 

IL16, STARD5, 

TMC3 

rs10777556 12 
94309145-

94316320 
4.32x10-5 0.0530 Genotyped CRADD 

rs6627537 X 
151284910-

151339003 
4.32x10-5 0.146 0.988 

MAGEA10-

MAGEA5, 

GABRA3 

rs11770698 7 
90201382-

90608207 
4.55x10-5 0.382 0.987 CDK14 

rs78885728 11 
34720279-

35015437 
4.73x10-5 0.0700 0.969 EHF, APIP, PDHX 

rs2506818 X 
33768102-

34099788 
4.74x10-5 0.201 0.975 FAM47A 

rs34141319 9 
139146916-

139148344 
5.81x10-5 0.139 Genotyped 

LHX3, QSOX2, 

GPSM1 

rs2079169 4 
7684641-

7685529 
5.95x10-5 0.389 Genotyped SORCS2, AFAP1 
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rs17106850 5 
146905987-

146920247 
6.02x10-5 0.169 0.998 

DPYSL3, 

JAKMIP2 

rs73127355 7 
53180775-

53653377 
6.04x10-5 0.0200 0.930 POM121L12 

rs433156 2 
77589901-

77627119 
6.59x10-5 0.368 Genotyped LRRTM4 

rs35048888 2 
28683174-

28689459 
6.72x10-5 0.498 0.992 FOSL2, PLB1 

rs148631369 2 
128804780-

128929492 
7.06x10-5 0.0110 0.927 

SAP130, UGGT1, 

HS6ST1 

rs6900853 6 
71618855-

71729332 
8.14x10-5 0.306 Genotyped SMAP1, B3GAT2 

rs35884480 6 
46519020-

46632594 
8.49x10-5 0.0587 Genotyped 

RCAN2, 

CYP39A1 , 

SLC25A27, 

TDRD6, PLA2G7, 

ANKRD66 

rs143836403 15 
48728634-

48941542 
8.66x10-5 0.0820 0.951 

DUT, FBN1, 

CEP152 

rs4766728 12 
114711649-

114725149 
8.88x10-5 0.152 0.988 TBX5 

rs7734294 5 
36689181-

36768602 
9.01x10-5 0.197 Genotyped SLC1A3 

rs1336336 9 
26759980-

26918113 
9.17x10-5 0.474 Genotyped 

CAAP1, PLAA, 

IFT74, LRRC19 

rs6536613 4 
162668979-

162729203 
9.47x10-5 0.0230 0.931 FSTL5 

rs12410507 1 
60899849-

61041875 
9.72x10-5 0.177 0.978 - 

rs59085393 1 
156374432-

156390617 
9.88x10-5 0.0390 0.949 

CCT3, RHBG, 

MEF2D 
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b)    Independent clumps associated with CBT response at six-month follow-up with p<1x10-4 

Sentinel SNP CHR Clump BP 
Sentinel SNP 

p 

Sentinel SNP 

MAF 

Sentinel SNP 

Info 

Genes +/- 

100kb 

rs72711240 4 
135657189-

135695807 
4.49x10-7 0.0269 0.903 - 

rs9875578 3 
13707416 - 

13810670 
1.43x10-6 0.424 0.994 FBLN2, WNT7A 

rs6813264 4 
146509970-

146631854 
4.68x10-6 0.410 Genotyped 

SMAD1, MMAA, 

C4orf51, 

ZNF827 

rs12850751 X 
145130635-

145161195 
6.64x10-6 0.0655 0.952 - 

rs13432654 2 
162300286-

162411997 
8.40x10-6 0.0939 Genotyped 

PSMD14, TBR1, 

SLC4A10 

rs76635837 15 
53613961-

53636281 
1.00x10-5 0.0376 0.956 - 

rs1795708 12 
58750680-

58836631 
1.04x10-5 0.344 Genotyped - 

rs7257625 19 
46468703-

46474428 
1.05x10-5 0.189 Genotyped 

FOXA3, 

IRF2BP1, 

MYPOP, 

NANOS2, 

NOVA2, 

CCDC61, 

PGLYRP1, IGFL4 

rs17025778 2 
98637504-

98701594 
1.23x10-5 0.0821 Genotyped 

TMEM131, 

VWA3B 

rs56090036 15 
99052579-

99054173 
1.65x10-5 0.0457 0.931 FAM169B 

rs111589871 8 
89764480-

90195838 
1.87x10-5 0.0459 0.955 - 
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rs73060838 3 
37982687-

38221526 
2.18x10-5 0.0487 0.970 

CTDSPL, VILL, 

PLCD1, DLEC1, 

ACAA1, MYD88, 

OXSR1, 

SLC22A13 

rs11949603 5 
36361696-

36383780 
2.67x10-5 0.307 0.994 RANBP3L 

rs7766941 6 
54310901-

54702870 
2.70x10-5 0.339 0.991 T1NAG, FAM83B 

rs6133736 20 
9627908-

9726640 
2.79x10-5 0.133 0.968 PAK7 

rs55776604 17 
73362147-

73411596 
3.11x10-5 0.0532 0.965 

MRPS7, 

MIF4GD, 

SLC25A19, 

GRB2, 

KIAA0195, 

CASKIN2 

rs10484917 6 
142038521-

142110406 
3.14x10-5 0.122 0.978 - 

rs61470941 2 
136393157-

136747085 
3.24x10-5 0.0958 0.984 

R3HDM1, 

UBXN4, LCT, 

MCM6, DARS 

rs11784693 8 
11527910-

11832769 
3.40x10-5 0.291 Genotyped 

GATA4, NEIL2, 

FDFT1, CTSB, 

DEFB136, 

DEFB135, 

DEFB134, 

DEFB130 

rs13163544 5 
174069668-

174126415 
3.44x10-5 0.426 Genotyped MSX2 

rs9472259 6 44291641- 3.50x10-5 0.327 0.989 SLC29A1, 
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44355423 HSP90AB1, 

SLC35B2, 

NFKBIE, 

TMEM151B, 

TCTE1, AARS2, 

SPATS1, CDC5L 

rs6971364 7 
8417400-

8453313 
3.69x10-5 0.438 0.993 NXPH1 

rs2690112 6 
25288549-

25328790 
3.81x10-5 0.372 0.985 LRRC16A 

rs1486171 7 
46172701-

46211646 
3.97x10-5 0.392 0.996 - 

rs6804426 3 
151676820-

151780935 
4.00x10-5 0.224 0.988 SUCNR1 

rs13237987 7 
9842272-

9875208 
4.83x10-5 0.278 0.994 - 

rs4686487 3 188341678 5.03x10-5 0.199 Genotyped LPP 

rs114726046 6 
24058226-

24083141 
5.16x10-5 0.0130 0.819 NRSN1, DCDC2 

rs11155986 6 
154875787-

154953972 
5.21x10-5 0.244 Genotyped CNKSR3 

rs4770433 13 
23892555-

23916736 
5.27x10-5 0.439 Genotyped SGCG, SACS 

rs12855797 X 10723386 5.28x10-5 0.125 Genotyped MID1 

rs7131178 11 
93322831-

93473333 
5.46x10-5 0.181 Genotyped 

SMCO4, CP295, 

TAF1D, 

c11orf54, 

MED17, VSTM5 

rs202245865 6 
132282553-

132336972 
6.03x10-5 0.00980 0.828 ENPP1, CTGF 

rs7784698 7 98253847- 6.17x10-5 0.0608 0.993 NPTX2 
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98311136 

rs56118623 21 
19063114-

19085866 
6.21x10-5 0.0906 0.946 

CXADR, BTG3, 

c21orf91 

rs12985380 19 
51850290-

51869346 
6.91x10-5 0.475 Genotyped 

SIGLECL1, 

IGLON5, 

VSIG10L, ETFB, 

CLDND2, NKG7, 

LI2, c19orf84, 

SIGLEC10, 

SIGLEC8 

rs4417554 16 
27028555-

27034201 
6.97x10-5 0.417 0.983 c16orf82 

rs875104 13 
97981705-

98028784 
7.04x10-5 0.115 0.980 MBNL2, RAP2A 

rs1279690 1 
81066500-

81154515 
7.13x10-5 0.300 Genotyped - 

rs115613292 4 
43199190-

43330931 
7.40x10-5 0.170 0.979 - 

rs6453323 5 
76726202-

76877496 
7.42x10-5 0.364 Genotyped 

PDE8B, WDR41, 

OTP 

rs8047148 16 
22255898-

22377003 
7.45x10-5 0.225 Genotyped 

VWA3A, EEF2K, 

POLR3E, CDR2 

rs321505 6 
64381461-

64741820 
7.91x10-5 0.407 0.996 

PTP4A1, PHF3, 

EYS 

rs9393387 6 
23274466-

23320458 
8.11x10-5 0.497 Genotyped - 

rs17289116 9 
32454368-

32546117 
8.33x10-5 0.206 0.977 

ACO1, DDX58, 

TOPORS, 

NDUFB6 

rs6862501 5 
12611030-

12778499 
8.72x10-5 0.155 0.973 - 
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rs2343115 4 
109070672-

109111726 
8.99x10-5 0.462 Genotyped LEF1 

rs6608068 X 
122425522-

122503729 
9.08x10-5 0.184 Genotyped GRIA3 

rs75403290 5 
175607631-

175839232 
9.33x10-5 0.0203 0.910 

FAM153B, 

SIMC1, 

KIAA1191, 

ARL10, NOP16, 

CLTB, FAF2 

rs62312236 4 
108955150-

109017528 
9.58x10-5 0.0594 0.984 

CYP2U1, HADH, 

LEF1 

rs26571 5 
111189290-

111668828 
9.70x10-5 0.0428 0.958 NREP, EPB41L4A 
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Fig. DS1 Exclusion of samples (top) and single nucleotide polymorphisms (bottom). 
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Fig. DS2(a) Samples projected on the first two principal components derived from the study 

samples.
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Fig. DS2(b) Samples projected on the first two principal components derived from the 

HapMap3 samples, showing that the majority cluster in a White Western European group 

(red box), with admixed samples descending down to East Asian ancestry (right), and to 

African ancestry (left). 
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