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Abstract 13 

 14 

The ascomycete Venturia inaequalis causes annual epidemics of apple scab worldwide. Scab 15 

development is reduced in mixed cultivar orchards compared with monocultures. To use 16 

mixtures in commercial production, we need to understand how the population of scab 17 

changes in a mixed orchard and how likely a super race, with virulence factors overcoming 18 

multiple resistance factors in the mixed orchard, is to emerge and become dominant. We used 19 

short sequence repeat (SSR) markers to investigate the temporal change of scab populations 20 

in two mixed cultivar orchards in the UK to infer the likelihood of emergence of a scab super 21 

race. There were no significant differences between the populations at the two sampling times 22 

(six or seven years apart) in either of the two mixed orchards. In one of the orchards apple 23 

scab populations on different cultivars were significantly different and the differences did not 24 

diminish over time. These results suggest that it is not inevitable that a super race of V. 25 

inaequalis will become dominant during the lifetime of a commercial apple orchard. 26 

 27 

Introduction 28 

 29 

Apple scab, caused by Venturia inaequalis, is one of the most important diseases on apple. 30 

Emerging and spreading from central Asia (Gladieux et al., 2008), the centre of origin for the 31 

domesticated apple Malus x domestica (Harris et al., 2002), it is found across apple growing 32 

regions worldwide. Annual epidemics can lead to large losses of marketable fruit and severe 33 

attack may lead to young fruit dropping and to defoliation which can cause a decline in yield 34 

in subsequent seasons (MacHardy, 1996). 35 

  The pathogen survives the winter primarily as pseudothecia in the leaf litter. Rainfall in 36 

spring, around the time of bud break, causes release of sexually produced ascospores from the 37 
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leaf litter establishing primary infections on the new season’s growth. It is also possible for 38 

the pathogen to overwinter as conidia in dormant buds (Becker et al., 1992; Holb et al., 39 

2004). Primary infection by ascospores or overwintered conidia leads to the production of 40 

conidia in the new lesions that form the basis of re-iterative secondary infection cycles 41 

(Bowen et al., 2011).  42 

  Current control can include a number of non-pesticide methods, such as accelerating 43 

decomposition of leaf litter by urea spray (Carisse & Dewdney, 2002). However, the 44 

predominant control method is frequent fungicide application aided by forecasting systems 45 

(Berrie & Xu, 2003). However, due to fungal resistance to pesticides, costs incurred by their 46 

heavy use, consumer pressure on reducing fungicide use and ever-decreasing number of 47 

available fungicides due to regulations, alternative measures are being sought for scab 48 

management.  49 

  An effective scab management strategy is to breed cultivars with durable resistance to the 50 

pathogen. The only major R-gene that has been incorporated into commercial apple cultivars 51 

is the Rvi6 (Vf) gene from M. floribunda, but this gene has been overcome in several regions 52 

(Parisi et al., 1993; Roberts & Crute, 1994), raising the question about the longevity of Rvi6. 53 

Where Rvi6 has been overcome in an orchard also containing non-Rvi6 cultivars the scab 54 

population has been seen to split (Gladieux et al., 2011).  55 

Research in identifying and using major R-genes against apple scab has focused on genes 56 

from wild Malus species rather than domesticated apple, except for Rvi1 from Golden 57 

Delicious (Bus et al., 2011). However, seemingly susceptible cultivars may also contain 58 

resistance (Sierotzki et al., 1994; Koch et al., 2000; Barbara et al., 2008) so that scab isolates 59 

from one cultivar may infect another susceptible cultivar weakly or not at all.. One method to 60 

potentially achieve durable resistance is to combine resistance genes into a single genotype, 61 
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known as gene pyramiding (Gessler et al., 2006). However this process is slow and it may 62 

take a long time before new scab resistant cultivars can be released commercially.  63 

  An alternative use for the difference in resistance factors between cultivars, including those 64 

regarded as susceptible, is to plant these cultivars in the same orchards. Mixing cultivars of a 65 

crop with varying resistance has been shown, predominantly in arable crops, to reduce 66 

disease development compared to monoculture (Wolfe, 1985; Mundt, 2002). The potential 67 

for mixed cultivar orchards to reduce scab development has been demonstrated by simulation 68 

(Blaise & Gessler, 1994) and supported by field trials. Didelot et al. (2007) calculated the 69 

area under the disease progress curve (AUDPC) on leaves in monoculture and row-by-row 70 

mixed plots in two years. The AUDPC of scab leaf incidence, compared with the mean of 71 

monoculture plots, was reduced in the mixture by 8.9% in the more severe year and 22.5% in 72 

the less severe year. Parisi et al. (2013) found 9% of scabbed fruits at harvest in a mixed 73 

orchard compared with a mean of 15% in pure stands in 2008, with the following year also 74 

showing a reduced incidence in the mixed orchard (76% compared with 82% in the pure 75 

stands). This study used a within-row mix as did Didelot et al. (2007). This is the most 76 

effective mixture type, but in commercial orchards with current management methods an 77 

intimate mix of this kind of mix is not economically feasible. 78 

  The management costs of a mixed cultivar orchard are likely to be higher than that of 79 

monoculture due to differences between the timing of bud-breaking, flowering and fruit 80 

development between cultivars, leading to complications in pest and disease control and 81 

harvesting. As a result the benefit of reduced scab must both offset the increased management 82 

cost and be long lasting relative to the life of commercial apple orchards (ca. 20 years). A 83 

major concern in the use of mixed cultivars is that a ‘super race’ of scab, which has combined 84 

virulence factors to overcome the differing resistance genes in the host cultivars, may emerge 85 

and become dominant in the orchard within a short period of time, rendering the mixture 86 
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ineffective as a means of managing scab. A fungal super race may result from a single 87 

mutation or series of mutations, but is more likely to result from recombination of the 88 

necessary virulence factors during sexual reproduction.  89 

  In this study, Simple Sequence Repeat (SSR) markers were used to genotype scab isolates 90 

from different cultivars in two mixed orchards at two different time points. We aimed to 91 

investigate the extent of differentiation between the scab populations on the different 92 

cultivars within an orchard over time. Should the populations on different cultivars become 93 

more alike over time it would suggest that a super race may have become dominant in the 94 

orchard. Otherwise, as suggested by simulation study (Xu, 2012), we may infer that a super 95 

race has not become dominant.  96 

 97 

 98 

Materials and Methods 99 

 100 

Sampling 101 

 102 

Two mixed orchards in the UK, namely Ash Farm, Worcestershire and WM132 at East 103 

Malling Research, Kent, were sampled. The Ash Farm orchard has a mix of Malus x 104 

domestica cv. Bramley’s Seedling (Bramley), cv. Cox’s Orange Pippin (Cox) and cv. 105 

Worcester Pearmain (Worcester) on non-dwarfing rootstocks; each cultivar has two rows 106 

with no cultivar being in consecutive rows. This orchard has never been sprayed or recently 107 

pruned and is ca. 45-50 years old. WM132 has a block of three rows of cv. Cox next to a 108 

block of three rows of cv. Royal Gala on M9 rootstocks. This orchard was not sprayed with 109 

fungicides, but pruned annually, and is ca.15 years old. 110 
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  Ash Farm and WM132 were sampled in 2005 and 2006, respectively (Xu et al., 2013). 111 

Freeze-dried mycelia from single spore isolates were stored at -20°C and used in the present 112 

study. Both sites were re-sampled in the spring of 2012 when lesions had become visible 113 

from primary infection. At Ash Farm, leaves with freshly sporulating, discrete lesions were 114 

collected from shoots of each of 10 trees per cultivar and placed into paper bags until 115 

isolation. At WM132 a total of 15 shoots were collected from each of 6 trees per cultivar (2 116 

trees per row) and all leaves with discrete sporulating lesions were collected. For all leaves 117 

collected in 2012 a single discrete lesion per leaf was cut out with a 5 mm cork borer, placed 118 

in a 2 ml micro tube, left to air dry at room temperature and then closed and transferred to a -119 

20°C freezer. Only a single lesion from any one shoot was used to extract DNA.   120 

 121 

DNA extraction and screening 122 

 123 

DNA was extracted from approximately 50-100 mg of freeze-dried mycelia for the 2005/6 124 

samples, while the samples collected in 2012 had DNA extracted directly from the lesion on 125 

the leaf disc (Table 1). The samples from 2005/6 had previously been used in other 126 

experiments where single spore isolates were required for inoculation tests. For the 2012 127 

samples, it was quicker and cheaper to extract DNA directly from the lesion on a leaf disc 128 

than to produce single spore isolates in vitro, which was done previously (Xu et al. 2008). As 129 

discrete lesions were selected early in the season it is likely that the lesion will have resulted 130 

from infection by a single spore. Should the lesion have had multiple origins it would be 131 

detectable as described below. 132 

  The freeze dried mycelia or infected leaf disc were placed in a 2 ml micro tube with two 4 133 

mm ball bearings and disrupted in an MM2 oscillating mill (Retsch). DNA was then 134 

extracted using a DNeasy Plant Mini Kit (Qiagen) following the manufacturer’s instructions 135 
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with all optional steps. DNA was eluted with 100 µl elution buffer into a 1.5 ml micro tube. 136 

DNA was quantified and quality-checked using a Nanodrop 1000 spectrophotometer 137 

(Thermo Scientific) and stored at -20°C. 138 

  The targets of a number of published SSR primer pairs (Tenzer et al., 1999; Guérin et al., 139 

2004; Xu et al., 2009) were tested for polymorphism against a range of scab isolates. 140 

Following this primary screening eight SSR markers were selected to genotype the 141 

populations (Table 2). SSRs, labelled on the forward primer with either 6-FAM or HEX 142 

fluorescent dyes (Integrated DNA Technologies), were split into two multiplexes of four 143 

primer pairs. PCR was performed using 6.25 µl Type-it microsatellite PCR master mix, 3.5 µl 144 

water (both Qiagen), 1.25 µl 2 µM SSR primer mix, and 2 µl DNA. Due to the high 145 

concentration of the DNA extracted from mycelium (2005/6 samples) the DNA was diluted 146 

1/10 before PCR, whereas the DNA extracted from leaf discs was added undiluted as the 147 

concentration was lower and a proportion of the DNA extracted will have been from the 148 

apple leaf. Touchdown PCR was performed on a DYAD thermal cycler (MJ Research) using 149 

the following cycle: an initial 95°C for 3 min, followed by 35 cycles of 95°C for 30 s, 55°C 150 

for 90 s (decreasing 0.5°C per cycle until 50°C) and 72°C for 60 s, followed by a final 151 

extension at 60°C for 30 min. One µl of PCR products (diluted 1/10 for 2005/6 samples, 152 

undiluted for 2012 samples) were run on an ABI 3130xl sequencer with GeneScan 500 LIZ 153 

size standard (Life Technologies). Alleles were then scored using GENESCAN and 154 

GENOTYPER software conforming to the stepwise mutation model, i.e. to ensure allele sizes 155 

fit into a stepwise model (however, it should be noted that in practice nearly all alleles varied 156 

by integral multiples of the repeat length). PCR was repeated on any samples with no product 157 

for an SSR marker, alongside a positive control(s), so as to score a null allele, rather than a 158 

failed PCR, for that primer pair. 159 

 160 
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Statistical analysis 161 

 162 

Allele frequencies for an orchard were calculated using Powermarker software (Liu & Muse, 163 

2005). Rare alleles, ≤ 0.01 of the population of an orchard (in the present study an allele that 164 

only appears once in the orchard), were recorded as missing values. These were removed 165 

from the data set as they contribute very little information towards assessing genetic diversity 166 

and population structure (Hale et al., 2012). Null alleles were included as a single allele at a 167 

locus. Null alleles occur when a mutation in the flanking region of the sequence repeat stops 168 

the annealing of the primer and therefore no amplification during PCR, or when the SSR 169 

region is deleted, resulting in a very short fragment not scored. In the present study, null 170 

alleles were treated as a single allele for that marker, but they may in fact include different 171 

sequences. Therefore, we also conducted statistical analyses with all null alleles excluded. If 172 

there were two alleles at a locus it was assumed that the lesion had resulted from infection by 173 

more than one spore. If a sample only had one locus with two alleles, one was randomly 174 

selected for inclusion in statistical analysis. If a sample had multiple loci with more than one 175 

allele then the sample was discarded. 176 

  To assess if the scab populations in the two orchards had changed between the two temporal 177 

sampling points, population differentiation was assessed by a two-hierarchical level AMOVA 178 

(Analysis of Molecular Variance) (Excoffier et al., 1992) using the Poppr package in R 179 

(Kamvar et al., 2014). AMOVA was carried out separately for each orchard first with the 180 

‘years/cultivars’ hierarchical structure, i.e. cultivars are nested within each year (2005 vs. 181 

2012 for Ash Farm, 2006 vs. 2012 for WM132) and then the ‘cultivars/years’ structure. 182 

Significance of population differentiation was assessed with a permutation test (a total of 999 183 

permutations). In addition, we assessed the significance of the interaction between years and 184 

cultivars by a permutation test as for the main year or cultivar effect. For a given dataset 185 
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(observed or permuted) the sum of squares (SS) due to the interactions was calculated as the 186 

differences between among-cultivar-within-year SS and among-cultivar SS. The removal of 187 

very rare alleles would have given a large amount of missing data for some loci and therefore 188 

all data were used for AMOVA.  189 

  Arlequin version 3.5 (Excoffier & Lischer, 2010) was used to compute pairwise FST 190 

between populations on each cultivar at each time point based on 110 permutations. Under 191 

the null hypothesis of random mating among isolates from all cultivars, all pairwise FST 192 

values would be expected to be similar. An Unweighted Pair Group Method with Arithmetic 193 

Mean (UPGMA) tree was produced to present FST data using the software Mega (Tamura et 194 

al., 2013).  195 

  Structure 2.3 (Pritchard et al., 2000; Falush et al., 2003) uses a Bayesian approach to 196 

determine the number of clusters (K) present in a set of individuals. Under the hypothesis of 197 

random mating, there should be one population (i.e. K = 1); if there is sufficient population 198 

differentiation, K is expected to be greater than one. To estimate the number of clusters in the 199 

Ash Farm or WM132 orchards, an admixture model with correlated allele frequencies was 200 

run 10 times, with a burn-in period of 10 000 followed by 50 000 Markov chain Monte Carlo 201 

iterations for K = 1 to 10. Inference of the ‘true’ number of populations (K) was based on the 202 

second order rate of change of the likelihood ΔK (Evanno et al., 2005) and the test re-run 203 

with 20 runs of 500 000 iterations after an initial burn-in of 50 000 iterations on a reduced 204 

range of K values. 205 

  Multi-locus Linkage Disequilibrium (LD) was calculated for fungal populations from 206 

individual orchards and from individual cultivars in a given year. When in linkage 207 

equilibrium, the genotype frequency is equal to that of the product of the allele frequencies 208 

(Liu & Muse, 2005). Powermarker software was used for testing LD with a permutation test 209 
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(1000 permutations) to infer whether random mating took place among specific groups of 210 

isolates.  211 

 212 

 213 

Results 214 

 215 

General 216 

 217 

We ran all statistical analysis with or without null alleles, with very little difference in the 218 

results. Therefore, only results with null alleles included are presented. Of the 199 samples 219 

from Ash Farm, 196 gave useable data. Three Cox samples from 2012 were excluded as they 220 

had multiple loci with more than one allele. In addition there were seven samples where it 221 

was not possible to determine the size of the SSR band at one of the loci; these were scored 222 

as missing values. One hundred out of 115 samples from the WM132 orchard were included 223 

in statistical analysis. Seven of the 2012 samples and two of the 2006 samples were discarded 224 

as they had multiple loci with more than one allele. A further six samples failed to amplify 225 

during PCR. There were two samples for which one SSR locus was not reliably scored; these 226 

were marked as missing values. Summary allele data for both orchards are given in Table 3. 227 

  Two of the SSR markers used in this study, vitg9/129 and EMVi029, mapped at the same 228 

locus in the linkage map of Xu et al. (2009). The alleles were in strong LD at Ash Farm (P < 229 

0.0001) but not for WM132 (P = 0.7). Both markers were used in the subsequent analysis.  230 

 231 

 232 

Differences between populations 233 

 234 
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Two-hierarchal level AMOVA of the Ash Farm data showed no significant differences 235 

between the scab populations sampled in 2005 and 2012 (P = 0.5), but the populations from 236 

the three cultivars were clearly different (P ≤ 0.001). There was no evidence for cultivar 237 

differences changing between 2005 and 2012, i.e. no significant interactions between years 238 

and cultivars (P = 0.2) (Table 4). FST pairwise comparison of populations on different 239 

cultivars showed Bramley in 2005 was distinct from those of both Cox and Worcester (P < 240 

0.001), and the differences between the populations on Cox and Worcester were also close to 241 

statistical significance (P = 0.04). In 2012 the populations on the three cultivars remained 242 

different (P < 0.01); while the populations of Bramley and Cox were more alike than in 2005, 243 

the scab population on Worcester was more different from those on the other two cultivars 244 

(Figure 1). The inferred number of populations for Ash Farm, using the Evanno et al. (2005) 245 

method, is K = 2. If K is increased above two these clusters are subdivided but remain as 246 

homogeneous groupings without creating clearly distinct clusters, supporting the inference of 247 

K=2. The scab samples from Bramley are distinctly different to those of Worcester, whereas 248 

samples from Cox appears to be an admixture between the two (Figure 2).  249 

  In WM132 AMOVA showed no evidence for significant differences between the samples 250 

from 2006 and 2012 (P = 0.4) or for differences between cultivars (P = 0.1). There was weak 251 

evidence for interaction between years and cultivars (P = 0.06) (Table 4). FST pairwise 252 

comparison suggested population differentiation between Cox and Gala (P = 0.03) in 2006 253 

but not in 2012 (P = 0.5) (Figure 1). It was not possible to obtain a consistent peak in the 254 

(very low) ΔK values to determine the number of clusters present in the WM132 orchard. 255 

  The scab population as a whole on Bramley in Ash Farm was more like the populations in 256 

WM132, some 200 km away, than it was like the scab population on Worcester in the same 257 

orchard (Figure 3).  258 

 259 
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 260 

Assessment of random mating 261 

 262 

The Ash Farm orchard population was in LD (P < 0.001) in both years. There was evidence 263 

for LD in the scab population on Bramley in 2005 (P < 0.001) but not in 2012 (P = 0.2). LD 264 

in the population on Worcester was significant in both years (P < 0.05) and appeared to have 265 

increased between 2005 and 2012. LD in the population on Cox at Ash Farm was clear (P < 266 

0.002) and did not change much with time (Table 5).  267 

  The WM132 population was in linkage equilibrium in both years indicating random mating 268 

in the orchard; there was no evidence for LD in the populations from individual cultivars at 269 

either time point (Table 5). 270 

 271 

 272 

Discussion 273 

 274 

The present results suggest that the scab populations in two mixed orchards have not changed 275 

in ways that indicate wider host adaptation by the pathogen over a period of 6-7 years. The 276 

differences between scab populations on different cultivars within one of the mixed orchards 277 

showed no sign of decreasing. This suggests that scab in a mixed orchard may remain 278 

adapted to individual cultivars and a super race of scab becoming dominant in an orchard, 279 

even with row alternation rather than the commercially impractical within-row mixing, is not 280 

inevitable, substantiating Xu's (2012) simulation study. 281 

  The Ash Farm orchard is the same as that used to collect samples for in vivo inoculation 282 

virulence testing (Barbara et al., 2008), unfortunately these samples were not available for 283 

use in this study. The 2005 samples used in this study are the same as those used for 284 
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molecular population studies using AFLP and SSR markers (Xu et al., 2013). The results 285 

presented here from the 2012 resampling support the earlier findings with molecular markers 286 

that showed scab populations on different cultivars, namely Bramley, Cox and Worcester, 287 

were significantly different (Xu et al., 2013).  Further, isolates from one cultivar could not 288 

necessarily infect leaves of the other cultivars in virulence tests, confirming distinctness 289 

(Barbara et al., 2008). Both previous studies showed that the scab populations on Bramley 290 

and Worcester are the most different and present findings concur. Barbara et al. (2008) 291 

suggest that there are at least one, two and three resistance factors in Bramley, Cox and 292 

Worcester respectively. Therefore it could be conjectured that Bramley and Worcester do not 293 

share any of these resistance factors while Cox could share a differing resistance factor with 294 

each of these two cultivars. Although there has been much research into resistance mediated 295 

by known R genes, only a few studies (Liebhard et al., 2003; Calenge et al., 2004) have 296 

investigated quantitative resistance in cultivars not carrying a known major R gene, so there 297 

is limited knowledge of hidden resistance factors present in susceptible cultivars.   There was 298 

no significant difference in the scab population of 2005 and that of 2012 at Ash Farm. 299 

Although the gap in sampling (seven years) is short, relative to the life of commercial 300 

orchards, it should be noted that this orchard is about 40-45 years old and has not been 301 

subjected to any control measures. Although the scab populations on Bramley and Cox 302 

appear to become more alike between the two sampling points, they were still significantly 303 

different. The differences in scab populations between Worcester and the other two cultivars 304 

appear to have increased, suggesting that the scab population, especially on Worcester, is 305 

probably becoming increasingly adapted to specific cultivars. Although it is also possible that 306 

other evolutionary forces, such as migration, are having an effect, adaptation is the simplest 307 

explanation. We may therefore infer from these results that a super race has not prevailed in 308 

the life of the Ash Farm orchard, which is around twice that of a commercial orchard.  309 
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  The scab populations in WM132 did not differ between the two sampling years. The 310 

Structure analysis failed to give a consistent result on the number of clusters, suggesting that 311 

there is just one population present (K = 1). Although the populations on the two cultivars 312 

were different in 2006, the multi-locus LD test indicates that the scab population in the 313 

orchard was already in linkage equilibrium. This is most likely explained by the fact that Gala 314 

is susceptible to almost all known scab isolates regardless of the host it was isolated from 315 

(Bus et al., 2011), i.e. ‘universally’ susceptible, despite carrying two QTL for resistance 316 

(Soufflet-Freslon et al., 2008). Thus isolates infecting Cox can infect Gala as well and 317 

therefore recombination among these isolates can take place. It is also possible that the initial 318 

scab founders of the orchard were randomly drawn from a randomly mating population and 319 

the orchard population has not yet adapted to the cultivars present. The difference between 320 

the cultivars in 2006 was not strongly significant and can be explained by the possibility that 321 

a considerable number of isolates sampled from Gala in 2006 may not be able to infect Cox.  322 

  It may take a long time for a super race to form in an orchard depending on the nature of 323 

mutations required and sexual reproduction. If several mutational steps are required, 324 

formation of the genotype will be expected to be vanishingly slow (Hedrick, 2011). In this 325 

case, appearance of a super race requires recombination between strains possessing different 326 

sets of virulence factors. Only in the leaf litter does the annual sexual reproduction occur. It is 327 

not known whether mating only occurs between lesions on the same leaf or whether mating 328 

can occur between lesions on different leaves but physically in contact. If the former is true, 329 

then a super race could only develop either, by multiple mutations or by an opportunistic 330 

infection by non-adapted isolates in conditions where the effectiveness of resistance was 331 

reduced; both routes to recombination are likely to be rare. If the mating between strains on 332 

distinct leaves in the litter is possible, the chance that two infected leaves from different 333 

cultivars have sufficient physical contact to mate would still be less than mating between 334 
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lesions on the same leaf. Whether or not the two exceptional processes occur, mating in the 335 

scab fungus favours recombination among strains infecting the same host.  336 

  Another important factor determining how likely a super race is to emerge and spread in an 337 

orchard is the proportion of primary inoculum resulting from conidia overwintered in buds 338 

and as wood scab. Conidia do not survive on leaves and fruits that have fallen to the orchard 339 

floor in the autumn (MacHardy, 1996). However they have been shown to survive the winter, 340 

predominantly on the inside tissues of buds and wood pustules (Becker et al., 1992; Holb et 341 

al., 2004). The survival of conidia and their impact in the following season as part of primary 342 

infection is dependent on factors such as weather, orchard management and the previous 343 

year’s incidence (Holb et al., 2005). The ratio of sexual to asexual spores as a source of 344 

primary inoculum also depends on the amount of leaf litter in the orchard. The higher the 345 

proportion of primary infection from asexual conidial spores, the higher will be the 346 

proportion of primary inoculum that is genetically identical to spores from the previous year. 347 

As a super race is most likely to develop from sexual reproduction in the leaf litter, if the 348 

relative importance of the primary inoculum from ascospores is less than currently expected, 349 

a super race is expected to be less likely to occur. However this also means that should a 350 

super race develop, significant primary inoculum from overwintered conidia would accelerate 351 

the race towards dominance in the orchard. The relative importance of overwintered conidia 352 

and ascospores as the dominant source of primary inoculum is likely to be region specific. In 353 

areas with warm winters, primary inoculum from conidia is most important (Boehm et al., 354 

2003). The advantage of implementing mixtures is less if conidia are the predominant source 355 

of primary inoculum, as conidia are distributed by water splash and therefore are mainly 356 

likely to infect the same row and therefore the same cultivar (assuming row-by row mixing). 357 

  Should a fungal genotype be present with necessary virulence to infect multiple cultivars in 358 

the orchard it still does not mean it will inevitably become dominant. An increase in virulence 359 
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may come with a cost in fitness, as demonstrated in other pathogens (Bahri et al., 2009; 360 

Montarry et al., 2010). If the cost is sufficient, a super race may never dominate, or it may 361 

increase only slowly; if the emergence was longer than 20-30 years, it would still be 362 

commercially feasible to reduce scab by using mixed orchards.  363 

  This study demonstrated that differentiation between V. inaequalis populations on different 364 

cultivars did not decrease over time in mixed orchards, indicating that a super race, if present, 365 

has not become common. This agrees with inoculation studies of isolates from the mixed 366 

orchard and other monoculture orchards (Barbara et al., 2008). Therefore, we may conclude 367 

that mixed apple orchards could be a feasible component of an integrated management 368 

scheme. Although the reductions of 10-30% in scab are modest, it is likely that mixed 369 

cultivar orchards are beneficial in managing other pests and diseases too (Parisi et al., 2013). 370 

Implementation is particularly suited for cider and juicing apples because cosmetic damage is 371 

unimportant and disease management need not be as stringent as for dessert apples.  372 

 373 
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Table 1 Number of scab lesions sampled from each cultivar in 

each of two mixed cultivar orchards in two years. 

 
Ash Farm W132 

 

Bramley Cox Worcester Cox Gala 

2005/2006 36 27 31 20 23 

2012  35 35 35 36 36 
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Table 2 Sequences (5’-3’) for SSR primer pairs used to genotype apple scab isolates  

SSR Fluorescent label-Forward primer  Reverse Primer  Allele range
c 

EMVi029
a 

HEX-ACGAGTCCCAGGTCTCACAG TGTTGACGGTCACGGTGTAT 164-248 

Vica9/X
b 

FAM-TCGCGCATCACTATCTACAC AGACAGGAATGTGGTGGAAG 219-243 

Vica10/154
b 

HEX-CCTCCTTCCTATTACTCTCG CTGAAGCGAACCTATGTCC 104-168 

Vicacg8/42
b 

FAM-TGTCAGCCACGCTAGAAG CACCGGACGAATCATGC 198-234 

Vict1/130
b 

FAM-GATTGGTGACGCATGTGT GCTGGAGATTGCGTAGAC 148-156 

Vitc1/82
b 

HEX-ACTGTCTCTAGGCGAAAG ACTTGGAAGCTCGCTAAG 223-241 

Vitc2/16
b 

FAM-ACATTGACGAAGACGAGC TACAATTGAGGCGTGTCC 153-169 

Vitg9/129
b 

FAM-CTAATTCAACTCGCTGCGTC TTTCAGCCAGCTAACCTAGG 277-291 
a
Xu et al., 2009  

b
Guérin et al., 2004  

c
In this study  
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Table 3 Summary for eight SSR markers used to genotype apple scab populations from different cultivars in two mixed orchards  

SSR 

 

EMVi029 Vica9/X Vica10/154 Vicacg8/42 Vict1/130 Vitc1/82 Vitc2/16 Vitg9/129 

  Ni
a Rangeb Na

c Rangeb Na
c Rangeb Na

c Rangeb Na
c Rangeb Na

c Rangeb Na
c Rangeb Na

c Rangeb Na
c 

Ash Farm                  

Bramley 2005 36 176-178-210 11 229-231-235 4 
104-122 
136-160 

13 200-206-218 5 148-150-152 3 223-231-235 6 153-153-169 3 
277-277 
279-285 

4 

Bramley 2012 35 172-178-228 10 229-231-243 5 104-134-164 14 200-206-234 5 148-150-156 4 229-231-239 5 153-153-167 2 277-279-291 4 

Cox 2005 27 178-192-196 4 229-229-231 2 104-108-148 7 206-206-212 2 150 1 229-231-231 3 153 1 277-279-291 4 

Cox 2012 32 176-178-200 7 229-231-235 3 106-122-166 12 200-206-218 4 148-150-154 3 223-231-241 7 153-153-167 2 277-277-281 3 

Worcester 
2005 

31 178-192-196 4 229-231-235 3 120-120-148 6 200-206-212 3 150 1 229-231-233 4 153 1 277-277-279 2 

Worcester 
2012 

35 178-192-200 4 229-229-231 2 120-120-136 5 206-206-212 2 150 1 231-231-233 3 153 1 277-277-279 2 

All 196 172-192-228 16(4) 229-231-243 5(1) 104-120-166 21(6) 200-206-234 6(0) 148-150-156 5(2) 223-231-241 9(3) 153-153-169 3(0) 277-277-291 5(0) 

WM132                  
Cox 2006 20 172-178-202 7 229-231-235 4 104-118-156 11 200-206-218 4 148-150-152 3 231-231-239 5 153-153-167 2 277-277-285 5 

Cox 2012 31 176-178-202 7 229-231-243 5 106-118-150 16 200-206-218 5 148-150-154 3 229-231-237 5 153 1 277-277-285 4 

Gala 2006 21 
164-176 
178-248 

10 219-231-231 3 104-134-168 13 198-206-212 3 148-150-154 4 229-233-239 4 153-153-169 5 277-277-283 4 

Gala 2012 28 172-178-216 7 219-231-243 4 104-118-156 14 200-206-222 4 148-150-154 4 229-231-241 5 153-153-167 3 277-277-281 3 

All 100 164-178-248 13(3) 219-231-243 6(0) 104-118-168 26(9) 198-206-222 7(2) 148-150-154 4(0) 229-231-241 8(3) 153-153-169 5(1) 277-277-285 5(0) 
a
Number of scab isolates genotyped

  

b
Range: smallest allele size – mode allele size (two numbers indicates two alleles present in equal numbers) – largest allele size  

c
Number of distinct alleles, number in brackets - the rare alleles removed from orchard dataset 
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Table 4 Two-level hierarchal analysis of molecular variance (AMOVA) of apple scab 

populations in different years and on different cultivars in two mixed cultivar orchards 

Orchard Terms Degrees of freedom Sum of squares P-value
a 

Ash Farm Years (2005 Vs 2012) 1 3.7 0.47 

 

Between cultivars 2 25.5 

 

≤ 0.001 

 

Year x Cultivar 2 9.0
 

0.21 

WM132 Years (2006 Vs 2012) 1 2.3 0.40 

 

Between cultivars 1 2.8 0.14 

 

Year x Cultivar 1 3.3
 

0.06 
a
based on 999 permutations 
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Table 5 Multi-locus linkage disequilibrium test run on two orchard 

populations of apple scab and scab population on individual cultivars 

in two different years. Null hypothesis is the population is in linkage 

equilibrium 

Orchard Cultivar(s) Year P-value
a 

Loci 

Ash Farm Whole orchard 2005 <0.01
 

8 

 2012 <0.01
 

8 

Bramley 2005 <0.01
 

8 

 
2012 0.21 8 

Cox 2005 <0.01
 

6
b 

 
2012 <0.01 8 

Worcester  2005 0.04 6
b 

 
2012 <0.01 6

b 

WM132 Whole Orchard 2006 1.00 8 

 2012 0.17 8 

Cox 2006 1.00 7
c 

 
2012 1.00 7

c 

Gala 2006 1.00 8 

 
2012 0.11 8 

a
Tests run on 1000 permutations;  

b
Full 8 loci could not be run due to lack of polymorphism in Vict1/130 and 

Vitc2/16;  
c
Full 8 loci could not be run due to lack of polymorphism in Vitc2/16 
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Figure 1 Pairwise differences (FST) between apple scab populations on different cultivars 

within the same orchard (Bramley, Cox, Worcester in Ash Farm; Cox and Gala in WM132) 

in 2005(Ash Farm)/2006(WM132) and 2012  
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Figure 2 Structure bar plot assuming two populations (K = 2) in Ash Farm orchard sampled 

in 2005 and 2012, in which individual isolates were plotted as a vertical bar representing the 

probability of being from one (green) or the other population (red). Population (x-axis): 1 = 

Bramley 2005, 2 = Bramley 2012, 3 = Cox 2005, 4 = Cox 2012, 5 = Worcester 2005, 6 = 

Worcester 2012. 
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Figure 3 An UPGMA tree grouping scab populations based on similarity at eight SSR 

markers scored on samples from cultivars in two apple orchards ca. 200 km apart (Ash Farm 

sampled in 2005 and 2012; WM132 sampled in 2006 and 2012) 
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