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Highlights 

 

1. The discrepancy between the PMV and AMV in a well-controlled environment 

was observed; 

2. People’s long-term living experience in the hot-humid climate accustoms  

thermal sensation to warm; 

3. Habituations neutralises thermal sensation due to moderated thermal 

sensibility of the skin; 

4. A revised PMVa are proposed as 
20.22 0.45 0.1aPMV PMV PMV     

5. PMVa contributes to the thermal engineering solutions in terms of energy 

efficiency of an air-conditioning system.  
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Acronyms 
MST mean skin temperature (℃) 

P probability in Hypothesis Testing 

AMV actual mean vote PMV predicted mean vote 

ANOVA analysis of variance SET* standard effective temperature (℃) 

 

Abbreviations 
PMVa adaptive predicted mean vote 

R heat or lost by radiation (W/m2) 

A body surface area (m2) Tback skin temperature of back (℃) 

C heat lost by convection (W/m2) Tc core temperature (℃) 

cb specific heat of blood [J/(kg•℃)] Tc/dt 
rate of change in core 

temperature (℃/s) 

cc specific heat of core [J/(kg•℃)] Tcalf skin temperature of calf (℃) 

cs specific heat of skin [J/(kg•℃)] Tchest  skin temperature of chest (℃) 

Edif 
heat of vaporized water diffusing 

through the skin (W/m2) 
Tforehead skin temperature of forehead (℃) 

Eres heat loss by respiration (W/m2) Thand 
skin temperature of dorsal hand 

(℃) 

Ersw 
heat loss by regulatory sweating 

(W/m2) 
Tlower arm  

skin temperature of lower arm 

(℃) 

K 
heat conductance of skin tissue 

[W/(m2·℃)] 
Ts skin temperature (℃) 

M metabolic rate (W/m2) Ts/dt 
rate of change in skin temperature 

(℃/s) 

mc mass of core (kg) Tthigh  skin temperature of thigh (℃) 

ms mass of skin (kg) Tupper arm 
skin temperature of upper arm 

(℃) 

Mshi metabolic heat by shivering (W/m2) Vb rate of skin blood flow[kg/(m2•s)] 

 

Abstract  

This paper aims to critically examine the application of Predicted Mean Vote (PMV) in 

an air-conditioned environment in the hot-humid climate region. Experimental studies 

have been conducted in a climate chamber in Chongqing, China, from 2008 to 2010. A 

total of 440 thermal responses from participants were obtained. Data analysis reveals 
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that the PMV overestimates occupants’ mean thermal sensation in the warm 

environment ( 0PMV  ) with a mean bias of 0.296 in accordance with the ASHRAE 

thermal sensation scales. The Bland-Altman method has been applied to assess the 

agreement of the PMV and Actual Mean Vote (AMV) and reveals a lack of agreement 

between them. It is identified that habituation due to the past thermal experience of a 

long-term living in a specific region could stimulate psychological adaptation. The 

psychological adaptation can neutralize occupants’ actual thermal sensation by 

moderating the thermal sensibility of the skin. A thermal sensation empirical model and 

a PMV-revised index are introduced for air-conditioned indoor environments in hot-

humid regions. As a result of habituation, the upper limit effective thermal comfort 

temperature SET* can be increased by 1.6℃ based on the existing international 

standard. As a result, a great potential for energy saving from the air-conditioning 

system in summer could be achieved.  

 

KEYWORDS: Thermal comfort, adaptation, PMV, Skin temperature, Hot-humid 

region, Air-conditioned environment.  

 

1. Introduction 

 

The Predicted Mean Vote (PMV) developed by Fanger is a commonly used index to 

assess occupants’ thermal comfort which has been referenced in international standards 

including ISO 7730 [1], ASHRAE 55 Standard [2], EN 15215 [3] and Chinese Standard 

[4]. It is based on the principle of steady-state heat balance and predicts the mean value 

of the votes of a large group of persons on the 7-point thermal sensation scale (cold (-

3), cool (-2), slightly cool (-1), neutral (0), slightly warm (1), warm (2), hot (3)) by six 

inputs (air temperature, mean radiant temperature, air speed, humidity, metabolic rate 

and the insulation of the clothing) [5]. In the HVAC engineering design practice, PMV 

is expected within ±0.5 to meet 90% occupant satisfaction criteria for indoor thermal 

environment [1-4]. However the PMV has been challenged by the adaptive thermal 

comfort principle from field studies and has been criticized as over/under estimating 

occupants’ actual thermal sensation, i.e. Actual Mean Vote (AMV) [6, 7]. Research into 

adaptive thermal comfort first began following the oil crisis in the mid-70’s [8] and has 

increased dramatically in recent years due to the concerns over climate change and 

energy efficiency.  
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It has been concluded that behavioral, physiological and psychological adaptation 

processes are the three types of presumed causes of the discrepancies between the PMV 

and AMV [6, 9]. However, besides giving a statistical approximation of the general 

effect of such adaptive processes on the thermal perception vote, little is known about 

the individual contributions of the three types of adaptive processes to the effect [10]. 

Liu et al. [11] conducted a subjective survey research and introduced a method of 

quantifying the portions of the adaptation processes by weighting the contribution of 

these three adaptation categories to the thermal adaptation using the analytic hierarchy 

process (AHP). However, the specific quantitative identification of each category still 

remains uncertain.  

 

Principles of adaptive thermal comfort were mainly studied in free-running buildings 

through field surveys [12-17]. A review of the previous studies reveals that there is little 

research on the topic of adaptive thermal comfort in air-conditioned environments. For 

example, de Dear [6] statistically analyzed discrepancies between the PMV and the 

AMV in air-conditioned environments from the ASHRAE RP-884, a quality-controlled 

global database. He concluded that ‘adaptation is at work in buildings with central 

HVAC, but only at the biophysical (behavioral) level of clothing and air speed 

adjustments’; ‘PMV appears to have been remarkably successful at predicting comfort 

temperatures in the HVAC buildings of RP-884’s database’. In contrast, Humphrey [18] 

analyzed the vote bias, PMV minus AMV, using the same database. He argued that the 

possible origins of the bias may be caused by physical, psychological or physiological 

factors. Humphreys argued that ‘PMV can be seriously misleading when used to predict 

the mean comfort votes of groups of people in everyday conditions in buildings, 

particularly in warm environments’. The research leaves open two questions: i) can the 

PMV predict thermal comfort accurately in air-conditioned buildings and ii), if not, 

what factors are involved and how do they impact on actual thermal sensation in 

addition to the behavioral adaptation?  

 

The occupant acceptable indoor temperature is considered as one of the design criteria 

of an air-conditioning system, which is one of the key factors with impacts on the 

operation of air-conditioning and therefore the energy consumption of buildings [19, 

20]. Currently the international and national standard for design and operation 
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temperatures of an air-conditioning system is based on the PMV/PPD method [1-4]. 

The aim of this research is to observe and examine the discrepancies between the PMV 

and AMV in an air-conditioned environment through a laboratory study, and identify 

the factors contributing to such discrepancies, consequently provide optimal design 

basis for the engineering solutions to a creation of thermal environment in hot-humid 

region. 

2. Research Methods  

 

Quantifying the specific factors contributing to the vote bias between the PMV and 

AMV poses considerable challenges because the factors such as physical environmental 

parameters, occupant adaptive behavior and their previous thermal experience, and 

occupant thermal comfort expectations are all variables in real buildings. However, 

these challenges could be solved in a laboratory study by limiting variables and 

focusing on one variable in each experimental case. The research methods applied in 

this study include experimental measurement, a subject questionnaire survey and 

statistical data analysis. Previous field studies in free-running buildings indicated that 

occupants demonstrated a strong adaptability, particularly in the hot-humid tropics [6, 

21-24]. We carried out laboratory experiments in Chongqing, the region with typical 

hot and humid climatic characteristics in summer. The typical summer climate 

condition in Chongqing is listed in Table 1 [25]. The average air temperature in summer 

is 26.9℃ and the average relative humidity is 78%. The climate chamber can provide 

the required indoor physical environmental parameters including air temperature, 

relative humidity and air velocity constantly during the experiment. In order to identify 

the contribution of the physiological and psychological categories, the behavior 

adaptation was eliminated from the three adaptation categories. The ASHRAE seven-

scale thermal sensation surveys were conducted during the experiment period. 

Statistical methods and Bland-Altman agreement assessment have been applied in data 

analysis. 

 

Table 1. Typical climate condition in the summer in Chongqing [25] 

Month 
Air temperature (℃) Relative Humidity (%) 

Monthly Mean Maximum Monthly Mean 

June 25.2 34.9 81.2 

July 28.0 36.6 77.1 

August 27.6 37.7 75.7 
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2.1 Experiment  

Four series of human exposure experiments in the climate chamber were carried out 

during the summer in the period from 2008 to 2010. In each series, we have recruited 

20 subjects from the region. Each series had a number of environmental conditions with 

various settings. In total, 22 thermal conditions were created in the climate chamber for 

the experiments, which are listed in Table 2. These conditions represent typical, real-

life, warm environments that people usually experience in this region.   

  

Table 2. Experimental setting conditions and measured thermal environment 

Experiment 

Series No. 

Setting 

Conditions—ambient 

temperature/relative 

humidity/velocity 

(℃/%/m·s-1) 

Measured thermal environmental parameters b  

Ambient 

Temperature 

(℃) 

Velocity(m/s) 
Relative 

Humidity (%) 

Black-bulb 

Temperature (℃) 

1 

26/70/0.0 a 25.9±0.2 0.04±0.01 71±2 25.9±0.2 

27/70/0.05a 27.0±0.2 0.04±0.00 71±2 26.9±0.2 

28/70/0.05a 28.0±0.1 0.04±0.01 70±2 27.8±0.1 

29/70/0.05a 29.0±0.1 0.04±0.00 70±2 28.7±0.1 

2 

27/50/0.1a 26.9±0.2 0.11±0.02 54±4 26.6±0.1 

29/50/0.1a 28.9±0.2 0.11±0.04 55±7 28.5±0.2 

31/50/0.1a 31.0±0.2 0.14±0.04 51±7 30.4±0.1 

33/50/0.1a 32.9±0.2 0.12±0.02 54±5 32.3±0.1 

3 

26/40/0.1a 25.6±0.1 0.08±0.05 41±1 25.6±0.1 

26/60/0.1a 25.9±0.1 0.1±0.06 60±1 25.6±0.1 

26/80/0.1a 26.0±0.1 0.06±0.05 80±1 25.6±0.1 

28/40/0.1a 28.0±0.1 0.07±0.01 40±2 27.6±0.1 

28/60/0.1a 27.9±0.1 0.09±0.03 60±1 27.6±0.2 

28/80/0.1a 28±0.2 0.09±0.04 80±2 27.6±0.1 

30/40/0.1a 29.8±0.1 0.1±0.02 42±2 29.4±0.2 

30/60/0.1a 29.9±0.1 0.09±0.03 60±1 29.4±0.1 

30/80/0.1a 29.9±0.1 0.09±0.05 81±1 29.4±0.1 

4 

28/90/0.1a 28.0±0.1 0.06±0.03 90±1 28.0±0.1 

28/90/0.8a 28.1±0.2 0.79±0.04 90±1 28.0±0.2 

30/80/0.6a 30.0±0.1 0.61±0.02 80±1 30.0±0.1 

30/80/0.8a 30.0±0.2 0.81±0.04 80±1 29.8±0.2 

32/90/0.8a 32.0±0.2 0.79±0.03 80±1 31.9±0.2 

a Numbers of Samples in each dataset are n=20. 

b Values are presented as mean value ± standard deviation. 
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2.2 Subject characteristics 

The 20 subjects in each series are in an age range of 20 to 30 years old. They were 

recruited randomly to participate in each experiment condition with the gender ratio of 

1:1. In total 80 subjects were involved in the experiments and form 440 valuable 

samples for analysis. All the students were healthy, i.e., not currently taking prescription 

medication and having had no history of cardiovascular disease. Subjects were asked 

to avoid caffeine, alcohol, and intense physical activity for at least 12 hours prior to 

tests. They were briefed on the purpose of the tests, familiarized with experimental 

procedures and trained to know the test procedure well. During the experiment period, 

subjects were required to wear a uniform clothing made in the same style with same 

color and materials in the most fitted size. This uniform clothing had an equivalent 

insulation level of 0.26clo (1clo equal to 0.155m2·K/W) [1] including short-sleeve 

shirts, shorts and lightweight shoes. All the subjects had been living in Chongqing for 

over two years at least, thus it is supposed that they had the hot-humid climate thermal 

experience and hence had generated habituation and/or acclimatization to the specific 

climate characteristics.  

 

2.3 Experimental procedure 

The experiment in each setting condition lasted for 120 minutes. For the first 30 minutes, 

subjects were asked to change into the uniform clothes and sit quietly in a rest room, 

next to the climate chamber. This was kept at a temperature of 26℃ as a neutral 

environment. After this period subjects were moved into the climate chamber for a 90 

minutes exposure. During the first 30 minutes, the subjects were relaxed and got used 

to the chamber environment. The actual measurement and questionnaire survey were 

conducted in the next 60 minutes. During the experiment period the thermal sensation 

questionnaire survey; skin temperature measurements with 13 locations of the body 

including forehead, chest, back, upper arm (right and left), lower arm (right and left), 

dorsal hand (right and left), calf (right and left), and thigh (right and left); and 

environment measurements were performed simultaneously every 10 minutes. Subjects 

were given sedentary office activities without any behavioral adaptive actions during 

the exposure. The ASHRAE thermal sensation scale was used in the questionnaire for 

quantifying occupant's thermal sensation. This is as follows: -3(Cold), -2(Cool), -

1(Slightly cool), 0(Neutral), +1(Slightly warm), +2(Warm), +3(Hot). Figure 1 shows 

the experiment scene. 
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Figure 1. Climate chamber experiment scene 

 

2.4 Measurements  

For the calculation of PMV and standard effective temperature (SET*), the thermal 

environmental parameters around the subjects were measured by a Thermal Comfort 

Monitoring Station (LSI). The LSI was positioned at a height of 0.6m above the floor. 

All sensor probes for measuring ambient temperature, black-bulb temperature, relative 

humidity and air velocity were in conformity with the ISO 7726-2001 standard [26]. 

The specifications of the sensor probes employed in this study are shown in Table 3. 

 

The copper-constantan thermocouples were attached to the different local skin positions 

to measure the local skin temperatures. All the thermocouples were calibrated using a 

standard mercury thermometer with a precision of 0.1℃. These were linked to a multi-

channel data collector which recorded the skin temperatures automatically. 

 

Table 3. Ranges and precision of the LSI instrument 

 
Environment 

parameters 
Range Precision 

Thermal 

Comfort 

Monitoring 

Station   

(LSI) 

Air temperature -25 ~ 150℃ ± 0.1℃ 

Relative humidity 0- 100% RH 

± 2% (15-40%) RH 

± 1% (40-70%) RH 

± 0.5% (70-98%) RH 

Air velocity 0.01 ~ 20m/s 

±0.05 m/s（0~0.5m/s） 

±0.1 m/s（0.5~1.5m/s） 

4%（＞1.5 m/s） 

Black-bulb temperature -10~100℃ ± 0.15℃ 
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2.5 Calculation and statistical analysis 

The PMV and the ASHRAE standard effective temperature (SET∗) were calculated by 

the standard procedure provided by ISO 7730 [1] and Gagge’s study [27] respectively. 

The average values of the measured thermal parameters in each experiment condition 

were used as the inputs for the calculation of both PMV and SET* index. An 8-point 

weighted method [28] was adopted to calculate the mean skin temperature (MST), as 

represented by Equation 1. 

 

MST=0.07Tforehead +0.175Tchest +0.175Tback +0.07Tupper arm+ 0.07Tlower arm+ 0.05Thand+ 0.19Tthigh+ 

0.20Tcalf  (1)   

 

To examine the statistical significance of the experimental data, the analysis of variance 

(ANOVA) and T-test were conducted using SPSS 20.0 [29].  

To investigate the subject’s mean responses in experiment conditions, Bin process [6] 

was conducted by calculating the mean values of subjects’ thermal sensation vote and 

skin temperature in each experiment condition bin (shown in Section 3.2 and 3.3). 

The aim of this research, as stated, is to observe the discrepancy between the PMV and 

AMV in a well-controlled environment and, if it exists, to identify the causation factors. 

Therefore it is necessary to assess the agreement of the PMV calculated based on the 

experimental physical parameters and the AMV based on the subjects’ simultaneous 

thermal comfort votes. Bland and Altman proposed a method of assessing agreement 

between two measurements methods in clinical research. They criticized the 

commonly-used approaches including ‘Comparison of means’, ‘Correlation 

coefficient’, and ‘Regression’ as inappropriate ways for assessing the agreement of two 

different measures [30] and proposed a new approach which was named Bland-Altman 

analysis [31, 32]. Bland-Altman analysis is based on graphical techniques and simple 

calculations. Zaki [33] endorsed that in medical research the Bland-Altman method was 

the most appropriate method for agreement assessment between two methods and over 

85% of existing studies applied this method. In our study, in order to assess the 

agreement between PMV and AMV methods, we introduce the Bland-Altman method 

from medical research to thermal comfort research. The PMV and AMV can be 

regarded as two methods of measurement of thermal comfort. To apply the Bland-

Altman method, we calculated the mean difference ( d ) of the level of thermal comfort 
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obtained by AMV and PMV methods and the standard deviation of the differences ( s
d
). 

Consequently, the degree of agreement, or so called ‘limits of agreement’ ( 2 dd s ), 

were obtained. The PMV and AMV can be interchangeable only if the provided 

differences within this ‘limits of agreement’ are acceptable by professional knowledge. 

The principles and details of the Bland-Altman analysis can be found in references [31] 

and [32]. The analysis results are shown in Section 4.1. 

 

3. Results and analysis 

 

3.1 Thermal sensation and SET* 

The ASHRAE standard effective temperature (SET∗) is defined as the equivalent 

temperature of an isothermal environment at the relative humidity level of 50% RH in 

which a subject, while wearing standardized clothing for the activity concerned, 

would have the same heat stress (skin temperature) and thermoregulatory strain (skin 

wettedness) as in the actual test environment [27, 34]. The SET* is a comfort index 

that was developed based upon a two-node dynamic model of the human thermal 

regulation mechanism. 

 

In this study, the SET* and PMV for each experiment condition were calculated based 

on the physical parameters recorded. The subjects’ actual mean thermal sensation 

votes, referred to as the Actual Mean Vote (AMV), for each experiment condition 

were recorded through the subject questionnaire survey during the experiment period. 

Figure 2 shows the relationship of AMV against SET* in four series of experiments 

respectively in comparison with the PMV, and each dot in the figure represents the 

mean value in a certain condition with 20 samples. This figure reveals that the mean 

thermal sensation vote increases when the SET* increases. In addition, there are 

discrepancies between PMV and AMV. PMV generally overestimates the subjects’ 

actual mean thermal sensation. Moreover, in most series, PMV has a high significant 

linear relationship with SET*(P<0.001), but AMV tends to follow a non-linear 

relation with SET*, especially in warmer conditions. 
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(Experiment series 1) 

 
(Experiment series 2) 

 
(Experiment series 3) 

 
(Experiment series 4) 

Figure 2. Thermal sensation vote (PMV and AMV) against SET* in each 

experiment series described in Table 1  

 

We plotted all the data collected from the four series in Figure 3 to present the 

relationships of the thermal sensations (PMV and AMV) against the SET*. From the 

figure we can see that PMV has a linear relation with SET*, while the AMV has a 

polynomial relation fit with SET*. The regressions of PMV/AMV against SET* were 

at the temperature range of 23℃<SET*<33℃. The correlations can be expressed by 

Equations 2 and 3. 

 

2=0.3134 * 7.41PMV SET  ,  (R2=0.96,P<0.001)  (2)  

20.0327 * -1.4552 *+16AMV SET SET   ,  (R2=0.94, P<0.001)  (3) 
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Figure 3. Thermal sensation votes (PMV and AMV) against ASHRAE Standard 

Effective Temperature (SET*) for all measured data.  

 

From Figure 3 we can see that, at the thermal comfort upper limit point PMV/AMV=0.5, 

the related SET* temperatures are 25.24℃and 26.84℃ respectively to the PMV and 

AMV estimations. Apparently, the PMV overestimates thermal sensation and leads to 

a lower SET* upper limit. The adverse effects will cause an overuse of energy for 

cooling in air-conditioning.  

 

3.2 PMV and AMV 

PMV predicts the actual thermal sensation well around the neutral thermal sensation 

point (when PMV=0) (see Figures 2, and 3).  This finding endorses de Dear’s claim 

that ‘PMV appears to have been remarkably successful at predicting comfort 

temperatures in the HVAC buildings’. However, from the figures, we can see that in the 

warm conditions (when 0PMV  ), PMV overestimates actual thermal sensations. In 

order to rigorously investigate the agreement of the two indices (AMV and PMV), the 

Bland-Altman [31, 32] analysis method was applied. The values of the AMV and the 

PMV in each condition (marked as AMVi and PMVi) were regarded as a pair. The 

average value of each paired sample (AVi), the value of the difference of each paired 

sample (AMV-PMV), the mean difference ( d ) and the standard deviation of the 
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differences (
ds ) were calculated by Equations 4, 5, 6, 7; as demonstrated in Figure 4.  

 

  / 2i i iAV PMV AMV     (4) 

i i id AMV PMV     (5) 

1

1
=0.296

n

i

d d
n 

    (6)  
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2

1

/ 1 =0.296
n

d

i

s d d n


    (7) 

 

 

Figure 4. Differences of PMV and AMV against mean for AMV/PMV data 

 

From Figure 4 we can see that the differences of the AMM and PMV are uniformly 

distributed around the mean difference ( d ) and lie within the range 2 dd s  to 2 dd s . 

According to the Bland-Altman method, the ‘limits of agreement’ estimated by the 

values of 2 dd s  provides an interval within which 95% of the differences between 

AMV and PMV are expected to lie, this interval is defined using the Equations 8 and 9: 
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PMV or 0.889 below the according to the ASHRAE thermal sensation scale. As 

described in Section 2.5, the PMV and AMV can be interchangeable only if the 

provided differences within the ‘limits of agreement’ are acceptable to professional 

knowledge. In the assessment of PMV performance, Humphreys et al. [18] argued that 

it would be necessary for the prediction to be within ±0.1 scale unit. Considering that 

the prediction-bias of the group comfort votes were usually greater than this figure, he 

suggested that the PMV would need to correspond closely to the actual mean vote of 

the occupants at least within ±0.25 scale unit, otherwise the bias of PMV was 

unacceptable. The ‘limits of agreement’ obtained by the Bland-Altman method cannot 

meet the lowest criteria suggested by Humphreys. Therefore, we can regard the AMV 

and PMV in this study as lacking in agreement and that there is a remarkable bias of 

PMV when applied in the well-controlled environment in the hot-humid region. 

 

3.3 Skin Temperature 

For each experiment condition bin, we calculated the mean value and standard deviation 

of subjects’ mean skin temperature (MST). Figure 5 illustrates the relationship between 

MST and SET*. In the figure, the predicted values of mean skin temperature were 

obtained using the two-node model proposed by Gagge [34]; and the measured mean 

skin temperatures were obtained from our experiment measurements. The results show 

that when SET* is above 25℃, the differences between the measured and predicted 

values are statistically insignificant (P>0.05, one sample T-test), which means the 

measured value of the mean skin temperature matches well with the predicted value. 

However, for the experiment conditions where SET* lies between 23-25℃ (marked 

within the rectangle with dashed lines), the measured values are nearly all significantly 

lower than the prediction (P<0.05, one sample T-test), the biggest value of difference is 

about 0.5℃. 
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Figure 5. Measured and predicted mean skin temperature related with SET*.  

 

The Boltzmann fit was used for regression analysis to work out the relation between 

the AMV and the MST as demonstrated in Figure 6 where each black square represents 

the average value of 20 observations in a bin. The fitted curve (the dash line) could be 

referred as the ‘thermal sensibility curve for skin’ in the hot-humid region. Equation 10 

is the regression equation used.  

 

  3.6 3.72 / 1 exp 34.8 / 0.3AMV MST       (R2=0.87, P<0.001)  (10) 
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Figure 6. Subjects’ thermal sensibility curves to skin temperature  
 

In order to identify the thermal sensibility to skin temperature of subjects from different 

regions, the curve in our study was compared with the existing research outcome from 

Gagge et al. conducted in the U.S [35]. Gagge’s thermal sensibility curve is presented 

in a solid line in Figure 6. From this figure we can see a significant discrepancy between 

the results of these two studies. There is no strong relation between actual mean vote 

and mean skin temperatures when MST is lower than 34℃ as shown in our study 

(actual mean vote is less than 0.15 scale unit). In contrast, Gagge’s results demonstrate 

a marked sensations of warmth appearing at the point where MST is lower than 34℃ 

(actual mean vote is greater than 1 scale unit).  

 

4. Discussion 

 

The open literatures provide overwhelming evidence supporting the identification of 

human thermal adaptation from field studies rather than from climate chamber 

laboratory experiments [6]. To study the human adaptation in central controlled HVAC 

environments, de Dear and Brager [6] and Humphreys and Nicol [18] analyzed data 

from the HVAC building field study from the RP-884 database. Although field studies 

are best for assessing the potential impact of behavioral and psychological adaptations 
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as they occur in the real environment, it is hard to identify the significance of the 

contribution from each adaptation category. Only the joint effect can be assumed in the 

field studies. On the contrary, the climate chamber study provides the opportunity to 

rule out some variables regarded as the causation of the PMV-bias in real centralized 

HVAC buildings. We specifically focused on key variables by fixing the others and 

identifying the mechanism of adaptation.  

 

4.1 Experiment conditions 

The experiment conditions in our study are almost the same as those used by Fanger in 

the 1970s except for two aspects: i) the subject exposure time and ii) regional climatic 

experience of the subjects in the experiments.  

 

Subject exposure time 

The exposure time in Fanger’s experiments was 3 hours in order to obtain a steady state 

for the human body; whilst the exposure time in the our study is 1.5 hours. In our 

experiments, the mean skin temperature achieved steady-state when the exposure time 

is 30 minutes. Therefore, the 1.5 hour exposure time is adequate for the human body to 

achieve a physiological steady state. It is thus reasonable to assume no essential 

difference between the two experiments in terms of the exposure time.  

 

Subject climatic experience 

Fanger’s PMV model is based on the experiments involving subjects from America and 

Europe [5]. The targeted subject groups were not from a single, specific, climate region. 

In our case, all the subjects had a long-term acclimatised thermal history of hot-humid 

experience before they participated in the experiment.  

 

To summarise, the difference between our experiments and Fanger’s is that our targeted 

group of subjects are a unique group in which all subjects have a long-term acclimatised 

thermal history of hot-humid experience.  

  

4.2 Identification of the causes of the bias of PMV 

In our climate chamber experiments, both physical environments and human activity 

were strictly controlled, and each subject was clothed uniformly. There were no 

behavioural adaptation opportunities for subjects in the experiment. As the behavioural 
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adaptation factor has been ruled out, we will next analyse another two categories of 

adaptation: physiological and psychological.   

 

4.3 Physiological adaptation 

By definition, physiological adaptation includes changes in the physiological responses 

that result from exposure to thermal environmental factors and which lead to a gradual 

diminution of the strain induced by such exposure [36]. Acclimatisation is a 

subcategory of physiological adaptation which is closely related to the occupant’s 

thermal living environment and thermal experience history [6]. 

 

According to the knowledge of thermogulation theory and heat transfer theory, any 

thermal physiological response will result in the change of temperature of human body. 

By analysing the research in the thermogulation model of human body [34, 37], we 

found the skin temperature was the most sensitive indicator to the physiological 

response. Taking the simplified model of Gagge as an example [34],  showing in the 

Equation 11 and 12, the physiological responses of sweating, vasoconstriction, 

vasodilation, metabolic rate and shivering will directly or indirectly affect the value of 

skin temperature. Moreover, the skin temperature was often used to represent the results 

of the physiological responses in the thermogulation model studies [38-40]. Therefore, 

the skin temperature is chose as an indicator for the study of physiological adaptation 

in this paper. If there’s any physiological adaptation that lead to any changes in the 

physiological responses, then the skin temperature should be changed as well. 

 

  / +s
s s b b c s dif rsw

T
m c A K c V T T C R E E

dt
        (11) 

  / +c
c c shi res b b c s

T
m c A M M E w K c V T T

dt
        (12) 

 

From Figure 5, we can see that when SET* is between 23 and 25℃ and MST lies in 

the range of 33-34℃ the measured mean skin temperature was significantly lower than 

the predicted value by almost 0.5℃  using Gagge’s prediction model which was  

based on the group of people who are not from this region. The changes in skin 

temperature caused by physiological response decrease the stimulus of the thermal 

environment to the human body, and consequently lead to thermal sensation reports 

becoming more towards neutral. The phenomenon has been regarded as a physiological 
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adaptation of the human body. As illustrated in Section 3.2 and shown in Figure 6, the 

variation of mean skin temperature contributes a small (0.15) scale unit to the actual 

thermal sensation vote within the MST range of 33-34℃ (around neutral point). This 

implies that the significant physiological adaptation does exist but only over a small 

range of indoor temperature which could lower the skin temperature, but the 

contribution to the thermal comfort vote is not significant. 

 

4.4 Psychological adaptation 

The effect of physiological factors on the PMV has been regarded as insignificant based 

on the actual thermal sensation, thus psychological adaptation turns into the most 

significant explanation. The psychological dimension of thermal adaptation is defined 

as “an altered perception of, and reaction to, sensory information due to past experience 

and expectations” [6]. The skin temperature can typically represent the major 

information of such thermal sensory system this is because plenty of the 

thermoreceptors of human body are distributed in the skin [41]. Thus subjects’ thermal 

sensibility to skin temperature reasonably reveals this “perception of, and reaction to, 

sensory information”. According to the results in Figure 6, the thermal sensibility curve 

to the skin of the subjects in the hot-humid region significantly differs from the curve 

of Gagge’s data. In principle, when subjects have the same MST, they should have the 

same sensory information. However, the intensity of warm sensations of subjects with 

a hot-humid climate background in our study is weaker than that of the subjects from 

Gagge’s study (as the arrow shown in Figure 6). This moderated thermal sensibility to 

skin temperature indicates that subjects’ thermal perception has been altered, i.e. 

psychological adaptations have been generated. The differences between the values of 

the two sensibility curves generated from two different groups of subjects from different 

climates indicate a quantitative value for the magnitude of psychological adaptation. It 

is therefore revealed that psychological adaptation creates a drop in the thermal 

sensation vote around the boundary of the comfort zone, which effectively accounts for 

the overestimation of PMV in a warm environment. It can be concluded that 

psychological adaptation does exist in the well-controlled environment and that it is the 

primary factor that makes the thermal sensation neutralised and the comfort zone wider. 

 

Psychological adaptation is usually recognized to play a role in terms of habituation 

and expectation. Previous studies in psychological adaptation focusing on the role of 
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personal control indicated that psychological adaptation is a key factor influencing 

occupant expectations [42] and that it has important implications in naturally-ventilated 

vs. centrally-air-conditioned buildings [36]. Such expectations were usually embodied 

in the change of preferred temperature in the naturally ventilated buildings [37]. 

However, in our climate chamber study, personal control was restricted and the 

expectation effect was limited. Therefore, the psychological adaptation shown in the 

well-controlled environment is distinguished from that in a naturally-ventilated 

environment and should result from the effect of habituation, which is quite related to 

people’s thermal experience history. It is inferred that the subjects with a thermal 

experience history of a hot-humid climate have generated a certain kind of habituation 

due to the long time spent living in such a region. Such habituation alters the subjects’ 

thermal sensibility to skin temperature and results in the neutralization of the intensity 

of thermal sensation. 

 

4.5 Application of adaptive principle in thermal engineering 

The discussion above demonstrates the disagreement between the PMV and the AMV 

in a well-controlled environment in the hot-humid climate region. This indicates the 

discrepancies between the PMV and AMV in a well-controlled environment in the hot-

humid region. As illustrated in Section 3.1, the PMV overestimates the actual thermal 

sensation thus leading to an unnecessarily lower temperature setting in an air-

conditioned building with a consequent wastage of energy for cooling. Therefore, the 

PMV index needs to be adjusted when it is applied for thermal comfort assessment in 

the hot-humid region. A polynomial regression of the PMV and AMV has been 

produced based on the experimental data collected in this study. The adaptive thermal 

sensation vote PMVa is proposed as Equation 13: 

 

20.22 0.45 0.1aPMV PMV PMV    (13)  

 

The correlation is significant (R2=0.85, P<0.001).  Figure 7 shows the polynomial 

regression of the PMV and PMVa.  .  
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Figure 7.  PMVa and AMV against PMV  

 

The air-conditioning setting point significantly affects energy consumption and 

occupants’ thermal sensation. Adaptive thermal comfort theory has been widely 

accepted in the naturally ventilated/free running buildings. However, little studies have 

been done in a well-controlled; air-conditioning system equipped environment. This 

fundamental research studies the impact of habituation factor on human thermal 

sensation and moderates the traditional thermal comfort model with a new index PMVa 

in the hot-humid region in China. The moderated PMVa index will provide a new 

acceptable temperature range for an air-conditioning system design and operation. 

Furthermore, the adaptive thermal comfort principle will fully support the engineering 

solution of a hybrid system (passive and mechanical active) design and dynamic 

operation strategies of the environmental system. 

 

5. CONCLUSIONS 

 

This paper presents an investigation on thermal sensation and adaptation in a well-

controlled climate chamber for people who have a hot-humid climate thermal 

experience history. It is revealed that the ‘limit of agreement’ between the PMV and 

AMV is in the range of -0.889 and 0.296 by using the Bland-Altman agreement 
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assessment method. The result indicates that the PMV and AMV are lacking in 

agreement; therefore in principle, the PMV could be amended in its application in air-

conditioned environments in this region. The PMV predicts neutral comfort 

temperature well (when PMV=0), however, it overestimates thermal sensation in a 

well-controlled environment in the warm condition (when 0PMV  ). 

 

The bias of the PMV from the AMV can be regarded as the thermal adaptation 

generated by the past thermal experience of a long time spent living in a specific region. 

This thermal adaptation can be regarded as a joint effect of the non-significant factor of 

acclimatisation due to the physiological response and the significant habituation due to 

psychological adaptation. However, the psychological adaptation contributes the most 

to the thermal sensation vote. The psychological adaptation neutralizes people’s 

thermal sensation by means of reducing the thermal sensibility of the skin. The 

contribution of habituation to the actual thermal sensation of two groups of people from 

different regions can be quantified by calculating the differences between the thermal 

sensibility curves to the skin temperature. 

 

A revised PMV index, named as PMVa, has been derived as an empirical equation: 

20.22 0.45 0.1aPMV PMV PMV     

which is suitable for application in an air-conditioned building in the hot-humid region 

in China. Therefore, the ASHRAE Standard thermal comfort temperature SET* upper 

limit could be adjusted by a 1.6℃ increase from 25.24℃ to 26.84℃. This adjustment 

will be instructive to the creation of indoor thermal environment and significantly 

contribute to energy efficiency in buildings.  
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