
An approximate dynamic programming 
approach for improving accuracy of lossy 
data compression by Bloom filters 
Article 

Accepted Version 

Yang, X., Vernitski, A. and Carrea, L. (2016) An approximate 
dynamic programming approach for improving accuracy of 
lossy data compression by Bloom filters. European Journal of 
Operational Research, 252 (3). pp. 985­994. ISSN 0377­2217 
doi: https://doi.org/10.1016/j.ejor.2016.01.042 Available at 
http://centaur.reading.ac.uk/53947/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .

To link to this article DOI: http://dx.doi.org/10.1016/j.ejor.2016.01.042 

Publisher: Elsevier 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


CentAUR 

Central Archive at the University of Reading 

Reading’s research outputs online



An Approximate Dynamic Programming Approach for
Improving Accuracy of Lossy Data Compression by

Bloom Filters

Xinan Yang∗, Alexei Vernitski†, Laura Carrea‡

January 18, 2016

Abstract

Bloom filters are a data structure for storing data in a compressed form. They
offer excellent space and time efficiency at the cost of some loss of accuracy (so-
called lossy compression). This work presents a yes-no Bloom filter, which as a
data structure consisting of two parts: the yes-filter which is a standard Bloom
filter and the no-filter which is another Bloom filter whose purpose is to represent
those objects that were recognised incorrectly by the yes-filter (that is, to recognise
the false positives of the yes-filter). By querying the no-filter after an object has
been recognised by the yes-filter, we get a chance of rejecting it, which improves the
accuracy of data recognition in comparison with the standard Bloom filter of the
same total length. A further increase in accuracy is possible if one chooses objects
to include in the no-filter so that the no-filter recognises as many as possible false
positives but no true positives, thus producing the most accurate yes-no Bloom filter
among all yes-no Bloom filters. This paper studies how optimization techniques can
be used to maximize the number of false positives recognised by the no-filter, with the
constraint being that it should recognise no true positives. To achieve this aim, an
Integer Linear Program (ILP) is proposed for the optimal selection of false positives.
In practice the problem size is normally large leading to intractable optimal solution.
Considering the similarity of the ILP with the Multidimensional Knapsack Problem,
an Approximate Dynamic Programming (ADP) model is developed making use of
a reduced ILP for the value function approximation. Numerical results show the
ADP model works best comparing with a number of heuristics as well as the CPLEX
built-in solver (B&B), and this is what can be recommended for use in yes-no Bloom
filters. In a wider context of the study of lossy compression algorithms, our research

∗Department of Mathematical Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK.
Corresponding author: xyangk@essex.ac.uk, 01206 872787

†Department of Mathematical Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK.
‡Department of Meteorology, University of Reading, Reading RG6 6BB, UK.

1



is an example showing how the arsenal of optimization methods can be applied to
improving the accuracy of compressed data.

Keywords: Lossy compression, Bloom filter, Integer linear program, Approxi-
mate dynamic programming, Heuristics

1 Introduction

In information technology, lossy compression is a data compression method that
reduces the size of the representation at the cost of the loss of some accuracy at
the decompression time. In exchange for losing accuracy in representation, lossy
data structures not only store all information in constant space but also respond to
membership queries in constant time. Examples of lossy data structures include skip
lists [24], lossy dictionaries [22] and several hashing techniques.

1.1 Bloom filter

The Bloom filter is one of lossy methods of storing compressed data, introduced
in [3]. The kind of data that Bloom filter is especially suitable for are sets. Given
a set, a Bloom filter can be produced which represents the set in a compressed
form. It can then be queried in the sense that there is an algorithm which, given
an object and a Bloom filter representing a set, decides whether the object is or
is not an element of the set. The querying algorithm is very efficient and works
extremely fast compared to standard algorithms of accessing compressed data (one
of the reasons why this algorithm is fast is that it contains many operations which are
performed in parallel and that it is easy to implement in hardware) [25]. The size of
the Bloom filter can be very small compared to standard ways of compressing data,
which is a major advantage of Bloom filters. Nevertheless, there is also an important
disadvantage: Bloom filters only represent data approximately, and frequently the
querying algorithm gives an incorrect answer to the question about the membership
of an object in the set represented by a Bloom filter.

The broad area of applicability of Bloom filters, due to their excellent space
and time efficiency, is either in low-performance hardware or for tasks which must
be performed extremely fast and speed is slightly more important than accuracy.
Bloom filters have a range of uses in information technology [26] [4], from hardware
implementations to software applications domain, where it was first conceived to
perform space and time efficient dictionary lookups [3]. Broder and Mitzenmacher [4]
have coined the Bloom filter principle: ‘Whenever a list or set is used, and space is at a
premium, consider using a Bloom filter if the effect of false positives can be mitigated’.
To give just one example, Bloom filters can be used for routing in computer networks:
in this application, a path which a message must follow is represented by a Bloom
filter, namely, as a union of those links between computers which together constitute
the path. It is appropriate to use Bloom filters in this application because each
computer along the path must decide where to forward the message very quickly
(literally with the speed of light, assuming that the links between computers are
optical cables).

2



Calculating a Bloom filter of one object is a preliminary stage before building
or querying a Bloom filter representing a set of objects. Assume that there is an
algorithm which takes any object as its input and produces a binary array of a fixed
length G, in which H bits are equal to 1 and other bits are equal to 0. We refer to this
array as the Bloom filter of the object. The purpose of the Bloom filters of objects is
to serve as uniform labels for each object which may interest us. Informally speaking,
the Bloom filters of objects may be likened to bar-codes glued to every object. We
denote the Bloom filter of an object s by η(s).

Given a set S, the Bloom filter of S can be computed as the bitwise disjunction
of the Bloom filters of the elements in S; in other words, the Bloom filter of the set
S is defined as a binary array of length G, and for each j = 1, . . . , G the j-th bit is
calculated as follows: if in every η(s), where s ∈ S, the j-th bit is 0 then the j-th bit
of the Bloom filter is 0; otherwise, if in at least one η(s) the j-th bit is 1 then the
j-th bit of the Bloom filter is 1. We denote the Bloom filter of a set S by β(S).

Given an object s and a Bloom filter β(S), querying it to determine whether s is
an element of S is done as follows. For each j = 1, . . . , G if the j-th bit of η(s) is less
than or equal to the j-th bit of β(S) then we say that s is recognised1 by the Bloom
filter β(S) as belonging to the set S. In an ideal world, one would like to be able
to claim that s is recognised as belonging to S if and only if s is an element of S.
However, this is not so. Due to the definition of a Bloom filter, if s is an element of S
then s is recognised by β(S); but the converse is not true: not necessarily an object
s recognised by β(S) is an element of S. This kind of error is called false positives,
in the sense that the Bloom filter query recognises the element as belonging to the
set, but should not do it.

A number of approaches have been proposed to reduce the number of false pos-
itives in Bloom filters. The number H of positions equal to 1 can be varied [16].
Generalisations of the standard Bloom filter have also been considered, such as the
yes-no Bloom filter [28] that is further studied in this paper, the retouched Bloom
filter [9], the counting Bloom filter [13], the power of two choices [18], the optihash
[6] or partitioned hashing [14]. Both the standard Bloom filter and its generalisations
listed above can work in the use scenario in which some false positives and some false
negatives are allowed. Nevertheless, in this paper we concentrate on the construc-
tion of yes-no Bloom filter under the standard use scenario in which we allow some
false positives (trying to minimise their number) and do not allow any false negatives
(for example, in the application to routing this approach means that the message
will definitely be delivered to the right recipient but perhaps also sent to some other
computers, thus creating some unnecessary traffic in the network).

1.2 Yes-no Bloom filter

This paper studies a yes-no Bloom filter [28], which is our new generalisation of the
standard Bloom filter which actively reduces the number of false positives at the stage

1It is also convenient to use the pure-mathematics term ‘covered’, that is, s is covered by β(S), thus
stressing that β(S) is a lattice join (or, in another interpretation, a set union) of the Bloom filters of the
elements of S.

3



of building the Bloom filter. Let us start with a fictitious and simplified but realistic
use scenario. Suppose the management of an airport installs CCTV cameras whose
output is automatically compared with photographs of 100 known terrorist suspects.
Suppose these photographs are stored in a compressed form as a Bloom filter. Due
to Bloom filters’ efficiency, even low-performance hardware can effectively compare
faces of people in the airport with the faces of the suspects. Then, if the Bloom
filter recognises a face, the security staff is called to look at the person and make a
decision. As we have discussed, Bloom filters produce false positives; therefore, the
security staff will be called more often than needed. In particular, suppose that out
of all the employees working in the airport, 300 people have faces that trigger false
positives. We can considerably reduce unnecessary checks and nuisance if we actively
indicate to the Bloom filter that these specific objects are recognised incorrectly and
should not be recognised.

A yes-no Bloom filter consists of two Bloom filters, one called a yes-filter and the
other called a no-filter2.

Now we shall define the algorithms for building the yes-no Bloom filter of a set
and for querying a yes-no Bloom filter. We assume that each object has two Bloom
filters corresponding to it: the yes-filter of length G+ and the no-filter of length G−.
Given an element s, we shall denote its yes-filter by η+(s) and its no-filter by η−(s).

Consider a set S and another set T such that that the two sets do not overlap.
The set S is the one that we want to store in a compressed form, and the set T is a
set whose elements are likely to be queried but should not be recognised as elements
of S. (In the example above, S is the set of suspects and T is the set of airport
employees.) Build the yes-filter β+(S) of S as the bitwise disjunction of all η+(s),
where s ∈ S; in other words, β+(S) is the standard Bloom filter built from all arrays
η+(s). The Bloom filter β+(S) will have false positives, including some which are
contained in T ; let us denote the subset of T consisting of false positives of β+(S) by
F . (In the example above, F is the set of those employees whose faces are recognised
by the Bloom filter.) Then the second, more interesting stage begins: we build the
no-filter β−(S) of S so that β−(S) recognises as many as possible elements of F
but none of the elements of S. (As we shall see later in the paper, unlike building
a standard Bloom filter or the yes-filter, this stage involves flexibility as to which
elements of F should be included in β−(S), and, therefore, turns into a meaningful
optimization problem.)

Figure 1 shows diagrammatically how the yes-filter and the no-filter are built.
The yes-filter recognises all elements of S (the wave-patterned set) and also many
other objects, probably including some elements of T (the chequer-patterned set).
In an ideal scenario (shown on the diagram) we manage to build the no-filter in such
a way that it recognises all elements of T recognised by the yes-filter but does not
recognise any elements of S.

Then when we query a yes-no Bloom filter β+(S), β−(S), given an object s we
say that s is recognised by β+(S), β−(S) if η+(s) is recognised by β+(S) but η−(s)

2Slightly more general approaches are also possible, which involve more than two Bloom filters, but
this particular choice in the design of the structure is considered for the purposes of this paper. See the
conclusion for suggestions of further research.

4



S

objects recognised by the yes-filter

T
objects recognised 

by the no-filter

Figure 1: Yes-no Bloom filter.

is not recognised by β−(S). As you can see, the querying algorithm is as fast and
easy as the one of the standard Bloom filter.

We have conducted extensive computational experiments [28] showing that the
number of false positives of a yes-no Bloom filter is considerably less than the number
of false positives of a standard Bloom filter of the same length (by the length we mean
the total memory used up, that is, G+ + G− for the yes-no Bloom filter and G for
the Bloom filter).

As we have said earlier, in this paper we study the use scenario when no false
negatives are allowed. However, yes-no Bloom filters can be also used when one
allows some false negatives. Also it must be said that in this paper we concentrate
on the use scenario in which the set S is fixed; accordingly, a yes-no Bloom filter
representing S is built once and then only queried. If S is changed, we simply
assume that the yes-no Bloom filter of the updated set is recalculated again. Some
other generalisations of the Bloom filter are designed to work with the use scenario
in which a limited number of elements may need to be added to S or excluded from
S very fast, without rebuilding the Bloom filter from the Bloom filters of individual
elements of S; such constructions include, for example, counting Bloom filters [13].

1.3 Optimization and paper plan

In our computational experiments with yes-no Bloom filters [28] we were using a
very simple heuristic for building the no-filter β−(S), which is very fast but not
necessarily picks the best combination of false positives for the no-filter. By using
a more advanced optimization algorithm the accuracy of yes-no Bloom filters can
be improved further. Indeed, the difference between the standard Bloom filter and
the yes-no Bloom filter is not only that the yes-no Bloom filter immediately provides
some improvement of accuracy. What is also important is that the standard Bloom
filter is rigidly determined by the set S (as bitwise disjunction of Bloom filters of all
its elements), whereas when one builds a yes-no Bloom filter for a pair of sets S and
T , one can choose the no-filter in many different ways. Therefore, building a yes-no
Bloom filter can and should be considered as an optimization problem. In particular,

5



if we do not allow any false negatives and allow some false positives, we can consider
an optimization problem of maximizing the number of false positives recognized by
the no-filter β−(S).

At this point we also need to comment whether using a more complicated al-
gorithm is feasible. Indeed, running a more complicated and more time-consuming
algorithm at the stage of building a compressed set is usually possible in applica-
tions. For instance, if we refer back to our airport example, it is querying that
must be done very fast and perhaps with low-performance hardware, but building a
compressed representation of the photographs of suspects is done infrequently and
probably on a big computer.

The aim of this work is to develop an optimization model for building a no-filter,
and discuss a number of approaches to solve the resulting integer program. The paper
is organized as follows. In Section 2 we have a literature review on the optimization
problems related to Bloom filters. In Section 3 we construct an optimization model
for the no-filter, which maximizes the number of false positives included in the no-
filter. Comments on the difficulty of the resulting pure integer program will be made
in the end of Section 3. Section 4 is about the structural properties of the ILP
model and possible simplifications. Specifically, a reduced ILP is introduced in this
section by replacing the explicit cover of every single real positive by some statistical
information and consequently ignoring the use of some integer variables in the initial
model. Based on this simplification, an Approximate Dynamic Programming (ADP)
model is then constructed in section 5, which makes use of the simplified ILP in
its value function approximation. This ADP model is compared with a number of
heuristics and shown effective in producing good solutions on most of the testing
examples in Section 6. In Section 7 we make conclusions and comment on future
work.

2 Literature review on optimization works

Various studies have been done on Bloom filters and data compression in general,
while most of the optimization research that has been done in this context focuses on
the discussion of how to select hash functions to minimize the rate of false positives.
For example, [20] introduced the idea of compressed Bloom filters which limits the
size of transmission by proxies, optimizing the number of hash functions to minimize
both the rate of false positives and the size for transmission. On the other hand, [7]
proved through statistical studies that the optimal setting of Bloom filter should
be determined by the number of items involved in a peer-to-peer keyword searching
rather than by minimizing the false positive rate. From the optimization point of
view, all above works are related to nonlinear programming which aims to find the
best parameters for data compression and transmission; thus, it falls not into the
same category of optimization as the one used in this work.

To the best of the authors knowledge, the works most related to integer program-
ming are done by Bruck et.al [5] and M. Zhong et.al [33]. Both works aim to minimize
the Bloom filter false positive probability for given object popularities by customiz-
ing the number of hashes. The former achieves integrality by allowing arbitrary

6



solution and then rounding to the nearest integer value, while the latter proposes a
constrained nonlinear integer programming model and develops two polynomial-time
approximation algorithms based on dynamic programming.

In contrast, our study focuses on how to separate real positives of a given Bloom
filter from its false positives and exclude as many as possible false positives. As it
deals with a specific set of elements and specific false positives rather than an esti-
mated false positive rate, the optimization model we are addressing here definitely
requires the usage of integer variables. As a result, a Mixed-Integer Linear Program-
ming (MILP) [21] model is developed; in this model, the objective is to maximize
the number of false positives selected for the no-filter, and constraints are imposed
to ensure that no false negatives are created through this selection process. We
will show this problem shares some similarities with the Multidimensional Knapsack
problem [17] [10] [2] and therefore is NP-complete.

The major methodology we use to solve the large scale combinatorial optimiza-
tion problem is based on Approximate Dynamic Programming [23] [1]. Approximate
Dynamic Programming (ADP) is a powerful tool for handling the curse of dimen-
sionality. There are several aspects of this research, most of which focus on the ap-
proximation of value-to-go function in traditional Dynamic Programming based on
discrete state and action space. The last decade is the period ADP has grown most
significantly. It has shown a number of empirical successes in large-scale real-world
applications such as in revenue management [32] [31], job scheduling [8], Internet
traffic routing [12] [30] and so on. In this work we will develop a one-step improving
scheme based on a reduced ILP to solve the optimization model.

3 Mathematical model

In this section we shall discuss the optimization model for picking up elements for
the no-filter β−(S). As described in the introduction, by using a Bloom filter we
can compress data through representing a set S as the bitwise disjunction β+(S)
of Bloom filters of its elements s ∈ S. Building a Bloom filter will likely introduce
some false positives, f ∈ F , which are the objects that are incorrectly recognised by
β+(S). Ideally we hope to exclude all false positives while retaining all elements of
S by adding a no-filter, β−(S), based on a subset of F . Therefore, any element that
belongs to β+(S) but is excluded by β−(S) should be recognized as an element in
set S.

It is not difficult to imagine that in most cases, taking all f ∈ F to create β−(S)
is not a good decision as such a Bloom filter may cover some s ∈ S again. To
simplify the process, we start from the assumption that we allow some false positives
in β+(S)\β−(S) with the hope of excluding as many of them out as possible, while
retaining all elements in S. To this end, we will develop an integer programming
model and the notation for it is presented as follows.

7



3.1 Notation

Sets and indices

• S, s ∈ S: The set of elements which the Bloom filter aims to represent;

• F , f ∈ F : The set of false positives which are incorrectly recognised by the
yes-filter β+(S).

Parameters

• N : the number of elements in set S;
• M : the number of false positives; that is the size of the set F ;

• G: the total number of bits in the no-filter of each object η−(s);

• H: the number of nonzero bits in the no-filter of each object η−(s);

• A = (asj)N×G: parameter matrix for set S, where

asj =

{
1, if element s’s bit j is 1
0, otherwise

, s = 1, ..., N ; j = 1, ..., G.

• B = (bfj)M×G: parameter matrix for false positive set F , where

bfj =

{
1, if false positive f ’s bit j is 1
0, otherwise

, f = 1, ...,M ; j = 1, ..., G.

Decision variables

• xf =

{
1, if false positive f is selected for disjunction β−(S)
0, otherwise

,

f = 1, ...,M.

• δj =

{
1, if bit j is 1 in the disjunction β−(S) with selected false positives
0, otherwise

,

j = 1, ..., G.

3.2 Integer programming model

Our aim here is to maximize the total number of false positives that are picked up
for disjunction β−(S), while guaranteeing that none of elements of S is recognised
by β−(S).

8



max

M∑
f=1

xf (3.1)

s.t.

M∑
f=1

bfjxf ≤ Mδj , j = 1, ..., G (3.2)

(ILP )

G∑
j=1

asjδj ≤ H − 1, s = 1, ..., N (3.3)

xf ∈ {0, 1}, f = 1, ...,M (3.4)

δj ∈ {0, 1}, j = 1, ..., G (3.5)

Constraint (3.2) relates δ with decision x, which makes δj = 1 if bit j is 1 in any
selected false positives. Constraint (3.3) guarantees no element of S is excluded by
saying, for each element in S there is at least one bit that is not being covered by
the selected false positives for β−(S).

This is a pure integer programming problem which contains M +G binary vari-
ables and N + G constraints. Although the size of the problem increases linearly
with its components, due to its integrality nature the solution difficulty grows expo-
nentially as to prove optimality, we need to examine objective value at a maximum
of 2M+G nodes.

3.3 Difficulty

It is not difficult to see that the above problem shares some similarities with the
so-called Multidimensional Knapsack Problem (MKP) [10]:

• The aim is to maximize the total value (number) of items picked for package.

• Decisions are, for each item type, whether to include it in the package.

• Constraint(s) restrict on the selection of items in such a fashion that if some
items have been selected then some others must be excluded. The major dif-
ference is that Knapsack problems impose this restriction by limiting the total
weights/volumes whereas our problem impose it by checking if the disjunction
will cover any elements.

Indeed, we can show that the above problem is reducible to a 0-1 MKP. To achieve
this, let us reformulate the problem to interpret the fact that, if several false positives’
bitwise disjunction covers any element, we have to exclude the possibility of having
all their xf = 1 in the final solution. As for every element in S it is not difficult to find
all h-degree (a combination of h ≤ H items) combinations from the limited number
of false positives which fully cover this element, we can list all such combinations and
restrict for each of them, the number of selected items cannot go higher than h− 1.
For a fixed element s ∈ S, let Lhs denote the set of h-degree combinations, each of
which fully covers s, then mathematically above requirement can be represented as:

9



M∑
f=1

eflxf ≤ h− 1, ∀l ∈ Lhs, h = 1, ...,H,

where efl =

{
1, if false positive f is an element of combination l
0, otherwise

, f = 1, ...,M ; l ∈

Lhs.
Then, the original model (ILP) is converted into a MKP with less variables but

(in general) more constraints:

max

M∑
f=1

xf (3.6)

(MKP ) s.t.

M∑
f=1

eflxf ≤ h− 1, ∀l ∈ Lhs, h = 1, ..., H, s = 1, ..., N (3.7)

xf ∈ {0, 1}, f = 1, ...,M (3.8)

3.4 A small example

Here we consider an example where there are two elements in S and four false positives
with H = 2. Following the previous definition, assume

A =

[
0 1 1 0
1 1 0 0

]
, B =


1 0 1 0
1 0 0 1
0 1 0 1
0 0 1 1

 .

The (ILP) of this easy example is given as:

max x1 + x2 + x3 + x4

s.t. x1 + x2 ≤ 4δ1,

x3 ≤ 4δ2,

x1 + x4 ≤ 4δ3,

(ILP eg) x2 + x3 + x4 ≤ 4δ4,

δ2 + δ3 ≤ 1,

δ1 + δ2 ≤ 1,

xf ∈ {0, 1}, f = 1, ..., 4

δj ∈ {0, 1}, j = 1, ..., 4

To convert it into a corresponding (MKP), we have to go through the nonzeros
of each element to check which false positive it relates to. For instance, the first
element has its second and third bits nonzero, which does not allow the combination

10



of false positives {1, 3} and {3, 4} to be considered in the optimal solution. Therefore
we create constraints:

x1 + x3 ≤ 1, and x3 + x4 ≤ 1.

Similarly, considering the second element we obtain:

x1 + x3 ≤ 1, and x2 + x3 ≤ 1.

And thus the complete (MKP) turns out to be (removing repeated constraints):

max x1 + x2 + x3 + x4

s.t. x1 + x3 ≤ 1,

(MKP eg) x3 + x4 ≤ 1,

x2 + x3 ≤ 1,

xf ∈ {0, 1}, f = 1, ..., 4

Solving both systems we will achieve the same optimal solution x1 = x2 = x4 = 1
which means β−(S) = {1, 2, 4}. Note that this example shows just a special case of
the problem for which the (MKP) is a smaller system comparing with (ILP). Actually
in practice when the number of items for both sets increases, the (MKP) will become
far larger than the (ILP) as it has to consider every single infeasible combination of
false positives.

It is well known that 0-1 MKP is NP-complete, therefore a polynomial time
solution approach for our problem may not be available. Nevertheless, the Knapsack
problem is amongst the most studied problems in combinatorial optimization on
which much theoretical and empirical work has been done, including some clever
heuristics and/or pseudo-polynomial approaches like the greedy method and Dynamic
Programming. In this work we will be talking about a greedy heuristic based on
Approximate Dynamic Programming.

4 Structural properties and simplification

We now try to take the special structural properties of it to design a heuristic which
is anticipated to provide reasonably good (nearly maximized), and always feasible
solutions. Traditional optimization approaches for the pure integer programming
problems are based on Branch-and-Bound. This methodology starts from finding
the optimal solution of the LP relaxation of the corresponding ILP and branch on
the fractional optimal solution observed to search for the optimal integer solutions.
In the intermediate steps, a number of integer feasible solutions are observed, whose
corresponding objective values serve as the lower bound of the final optimal integer
solution we are looking for. Therefore, it is not difficult to find feasible integer
solutions throughout this procedure, while the biggest difficulty is to improve on the
current best solution and/or to prove optimality without going through the whole
Branch-and-Bound tree explicitly.

11



4.1 Relaxation

To achieve an acceleration for the solution approach let us firstly consider the partial
LP relaxation of the (ILP), defined as (LPRpartial), which allows decision x to take
fractional values between 0 and 1.

max

M∑
f=1

xf (4.1)

s.t.

M∑
f=1

bfjxf ≤ Mδj , j = 1, ..., G (4.2)

(LPRpartial)

G∑
j=1

asjδj ≤ H − 1, s = 1, ..., N (4.3)

xf ∈ [0, 1], f = 1, ...,M (4.4)

δj ∈ {0, 1}, j = 1, ..., G (4.5)

Lemma 4.1. The optimal solution of LPRpartial must have x∗
f̃
= 0 or x∗

f̃
= 1, f̃ =

1, ...,M .

Proof. Let (x∗, δ∗) be the optimal solution of LPRpartial. Assume x∗
f̃
= ϵ and 0 <

ϵ < 1. As x∗ = (x∗1, ..., x
∗
f̃
, ..., x∗M ) is a feasible solution, it must satisfy:

M∑
f=1

bfjxf ≤ Mδj , j = 1, ..., G

Therefore for any j:

• If bf̃ j = 0, modifying xf̃ value will not have any impact to this constraint. So
if we increase xf̃ value from ϵ to 1, the constraint is also satisfied.

• If bf̃ j = 1, to satisfy the constraint we must have

0 < ϵ = xf̃ ≤
∑
f ̸=f̃

bfjxf + xf̃ ≤ Mδj ,

which implies δj = 1 and the constraint becomes:
∑
f ̸=f̃

bfjxf + xf̃ ≤ M . As∑
f ̸=f̃

bfjxf ≤ M − 1, we can always increase the value of xf̃ from ϵ to 1 without

violating the constraint.

While in both situations, by increasing xf̃ value from ϵ to 1 we can achieve an
improvement on the objective value by 1 − ϵ. Therefore we proved in the optimal
solution x∗

f̃
= 0 or x∗

f̃
= 1, f = 1, ...,M .

12



Lemma 4.2. The optimal solution of LPRpartial must also be the optimal solution
of ILP .

Proof. This is a direct conclusion of Lemma 4.1 since if the optimal solution of a LP
relaxation turns out to be integer, it must also be the optimal solution of the original
IP problem.

Up until now we have reduced the problem into a Mixed-Integer Programming
(MIP) problem, where the only integer restrictions are made on δ values. Now we
will revise the constraints to see if we can simplify the problem further by reducing
the number of variables that we need to consider in the optimization model.

4.2 Simplification

Remember that constraints (4.3), which are only relating to δ values, impose the
restriction that for any element in S there must be at least one bit to be uncovered
by the selected false positives disjunction β−(S). As these constraints are somehow
the “hard constraints” which cannot be further simplified, let us consider whether we
can get rid of constraints (4.2) instead, and therefore remove x variables completely.

Suppose we can split the problem into two steps according to the constraints,
then:

• The first step, corresponding to constraints (4.2), is to create a disjunction
β−(S) by picking up a collection of false positives.

• The second step, corresponding to constraints (4.3), is to check whether the
disjunction β−(S) fully covers any element in S.

If we hope to do every step individually, in the second step we have to define an
aim that we want to achieve, which somehow reflect our initial aim of picking up
as many false positives as possible for β−(S). Without the value of xs we cannot
do this accurately, but it is not difficult to imagine that, potentially, the more ones
in disjunction β−(S) (the more bits covered by β−(S)), the more false positives can
be selected. To make it more accurate, we can also consider for every single bit,
how many false positives it overlaps with. Potentially, the more false positives one
bit is covered by, the higher possibility to make more xs equal 1 by allowing β−(S)
contains this bit. Therefore let us define a cardinality, cj , for every single bit j, which
indicates how many false positives having this bit equals 1:

cj =

M∑
f=1

bfj , j = 1, ..., G,

and then use it to define the objective in an approximated problem containing only
second step variables:

13



max

G∑
j=1

cjδj (4.6)

(APP ) s.t.
G∑

j=1

asjδj ≤ H − 1, s = 1, ..., N (4.7)

δj ∈ {0, 1}, j = 1, ..., G (4.8)

The resulting system (APP) is a reduced pure ILP with G variables and N con-
straints, which becomes a so-called Set Packing problem [29]. Although the Set Pack-
ing problem is also NP-complete [11], with significantly reduced size, the (APP) is
more tractable than the original (ILP).

By solving this problem we will get efficiently an integer solution δ∗ which indi-
cates a disjunction β−(S)∗. Then going through the first step is straightforward:

if a false positive is completely covered by β−(S)∗ we include it in the collection,
otherwise we exclude it.

Through the later tests with examples, we can see this method works very well
and efficiently for applications having thousands of elements and false positives.

5 Approximate dynamic programming model

One typical pseudo-polynomial method to solve the Knapsack Problems is Dynamic
Programming (DP) [19] [15]. Nevertheless DP suffers from the so-called “curse of di-
mensionality” for large size problems [23]. In this section we will consider DP to solve
the problem, while avoiding the curse of dimensionality by using an approximated
value function.

5.1 DP model

• Stage: k = 1, ...,M , consider every false positive in its natural order.

• State: Dk = (dk1, d
k
2, ..., d

k
G), which denotes the bitwise disjunction of yet-

selected items after considering false positives 1, ..., k and

dkj =

{
1, if bit j is covered by yet-selected items from false positives 1, ..., k
0, otherwise

,

j = 1, ..., G.

• Decision:

uk =

{
1, if bring false positive k into β−(S)
0, otherwise

, k = 1, ...,M.

14



• Recurrence:

Vk(Dk) =

{
−∞, if Dk fully covers ANY element in S
max{1 + Vk+1(Dk ⊕ bk·), Vk+1(Dk)}, otherwise

,

k = 1, ...,M − 1;

VM (DM ) =

{
−∞, if DM fully covers ANY element in S
0, otherwise

,

where Dk ⊕ bk· ≡ {dkj + bkj(1− dkj )|j = 1, ..., G}, which denotes the state after
bringing false positive k into consideration.

If the DP can be solved exactly it will definitely find the optimal solution as it
considers potentially all possible combinations of false positives. To make decision
for stage k we have to evaluate function values for stage k + 1 at all possible states
beforehand. So starting from k = M , following a backward decision process we can
obtain the optimal decision uk iteratively for all stages and states, which contain the
optimal solution as the best path we ought to follow from k = 1 to M .

Nevertheless, it is not always realistic to solve the DP accurately in practice,
especially when the number of states increases exponentially with the problem size.
As an alternative, let us consider the approximation to the DP model which uses an
approximated value function for Vk+1 that is easy to evaluate without going through
all the later stages in detail.

5.2 ADP model

This section introduces an ADP heuristic, which takes use of the simplified model
(APP) as we defined in Section 4.2 to approximate the value function Vk+1. Basically
we will follow all the definitions of DP model in the ADP, besides the fact that we
will step forward in stage to check in turn whether the current false positive k should
be included in the final disjunction β−(S). As this “forward” process just needs to
be carried out once, we could accelerate the whole solution process significantly by
using ADP instead of DP.

In the DP model, at stage k we need to solve the recurrence:

Vk(Dk) = max{1 + Vk+1(Dk ⊕ bk·), Vk+1(Dk)} (5.1)

which results in the best action, uk, that is to take for false positive k. Instead of
calculating Vk+1 explicitly through the backward recurrence, we modify the (APP)
problem to give quickly an approximation to the Vk+1 value at the current state Dk

and Dk ⊕ bk·, denoted as V̄k+1(Dk) and V̄k+1(Dk ⊕ bk·). This requires to solve 2
subproblems (APP k

0 ) and (APP k
1 ) defined as follows.

(APP k
0 ) is defined as the optimization problem associated with the decision uk =

0.

15



max
∑
j /∈Dk

ck0jδj (5.2)

(APP k
0 ) s.t.

∑
j /∈Dk

asjδj ≤ (H − 1)−
∑
j∈Dk

asj , s = 1, ..., N (5.3)

δj ∈ {0, 1}, j /∈ Dk (5.4)

where ck0j =
M∑

k̃=k+1

bk̃j , j /∈ Dk, which define the cardinality of bits according to their

appearance in the false positives that have not been considered yet. Solving (APP k
0 )

we will get the optimal solution δk0 , in terms of which bit should be covered by the
disjunction generated with false positives k+1, ...,M . And V̄k+1(Dk) is calculated as
the number of false positives in k+1, ...,M that are fully covered by this disjunction.

On the other hand, (APP k
1 ) is defined as the optimization problem associated

with the decision uk = 1. So in addition to Dk which is the current disjunction,
we also need to exclude all bits that have been covered by the false positive k and
consider the best disjunction that is to be generated with false positives k+1, ...,M .

max
∑

j /∈Dk⊕bk·

ck1jδj (5.5)

(APP k
1 ) s.t.

∑
j /∈Dk⊕bk·

asjδj ≤ (H − 1)−
∑

j∈Dk⊕bk·

asj , s = 1, ..., N (5.6)

δj ∈ {0, 1}, j /∈ Dk ⊕ bk· (5.7)

where ck1j =
M∑

k̃=k+1

bk̃j , j /∈ Dk ⊕ bk·. Solving (APP k
1 ) we will get the optimal solution

δk1 , and V̄k+1(Dk⊕bk·) is calculated as the number of false positives in k+1, ...,M that
are fully covered by this disjunction. With the resulting V̄k+1(Dk) and V̄k+1(Dk⊕bk·)
values, we can then solve problem (5.1) for an approximated decision ūk.

Using this approximation scheme, to solve the entire ADP model we need to solve
2M binary subproblems. Nevertheless, as the size of problem decreases gradually
with the increased number of bits that have already been covered by Dk, the solution
process will get increasingly quicker as each next stage. Besides this, we will also
take use of the special recursive manner of (APP k

0 ) and (APP k
1 ) to further simplify

the solution process.

5.3 Acceleration

To improve the efficiency of solving the ADP model, in this section we will discuss
some additional simplifications around the binary subproblems, motivated by the
fact that there are large similarities between the subproblems of stage k and k + 1.

• Firstly, observe that if the best action in stage k was decided as uk = 0, we
have Dk+1 = Dk which means constraint set for (APP k

0 ) is completely the

16



same as constraint set for (APP k+1
0 ). The only difference between these two

problems is then the cardinality in the objective, for which (APP k+1
0 ) has H

variables possessing one unit less ck0j than (APP k
0 ). As the cardinality is in

general comparable to the number of false positives which is normally hundreds
or thousands, it is reasonable to believe that in most cases this 1 unit less will
not change the optimal solution significantly. Therefore we can use V̄k+1(Dk)−1
to approximate V̄k+2(Dk+1) if no new false positive has been added to Dk in
stage k (uk = 0), and the latter could directly be used in recurrence for stage
k + 1.

• Secondly, if the best action in stage k was decided as uk = 0 and if by solving
stage k’s subproblem (APP k

0 ) we already have uk+1 = 1 (bits of false positive
k+1 are fully covered by δk0 ), then the optimal solution of subproblem (APP k+1

1 )
plus uk+1 = 1 is identical to the optimal solution to (APP k

0 ). Therefore we don’t
need to re-solve the former again in stage k + 1 but instead use V̄k+2(Dk+1 ⊕
bk+1·) = V̄k+1(Dk)− 1.

• Thirdly, if the best action in stage k was decided as uk = 1 and if by solving
stage k’s subproblem (APP k

1 ) we already have uk+1 = 1 (bits of false positive k
are fully covered by δk1 ), then the optimal solution of subproblem (APP k+1

1 ) plus
uk+1 = 1 is identical to the optimal solution to (APP k

1 ). Therefore we don’t
need to re-solve the former again in stage k + 1 but instead use V̄k+2(Dk+1 ⊕
bk+1·) = V̄k+1(Dk ⊕ bk·)− 1.

By considering all above possibilities, lots of binary subproblems can be skipped
for the optimization step. For example, let us consider Ins. 5 as given in the numerical
test Section 6.2. Originally we need to solve 2M = 7442 integer programs, while by
applying the acceleration strategy we can remove 2712 of them with criterion 1, 745
with criterion 2, 246 with criterion 3 and end up with only 3739 integer programs
to solve which is nearly half of the original number. As a result the running time of
ADP algorithm reduces significantly (from 19.71s to 10.04s for Ins. 5), which creates
better possibilities for managing larger size problems. Of course we can further the
acceleration design by also considering some warmstart approaches according to the
closest previous optimal solution as observed. But this is omitted in this work as the
solution process takes only 8 minutes for instances with ten-thousand false positives
(Ins. 9 and Ins. 10), and performs much quicker than alternative methods like B&B.
For more details on the running time information please refer to Section 6.2.

6 Numerical tests

To test our ADP model, we firstly develop several simple heuristics which are mainly
designed to reflect the nature of the problem.

6.1 Simple heuristics

Our aim is to select as many false positives as possible to generate the disjunction
β−(S) without covering any elements in it. To achieve this aim, the simplest idea

17



is to consider false positives in turn, following the order in which they are defined,
to check if selecting the next item will cover any elements. If not, we select it for
β−(S); otherwise we exclude it. This is actually a naive method that has been
used by [27] for testing the effectiveness of the yes-no Bloom filter when it had been
firstly introduced. We will make use of this naive method as the first heuristic to
compare our ADP model with.

It is obvious that the naive heuristic as described above will not lead to a generally
“good” solution, since following different sequences of considering items will definitely
produces different solutions. Only if we can figure out the “optimal” sequence of
considering items, we can build the optimal solution this way. Therefore, in this
section we will develop some other rules, which are easy to achieve with simple
calculations, for how the sequence can be identified. Our aim here is to define for
every false positive a degree, which indicates how large the impact will be to the
procedure of including other items, if we decide to include this item in β−(S). Note
that most of the following discussion are around the case where H = 2.

6.1.1 Element-only degree

Naturally, we assume that there are no duplicate items in both the element set and
the false positive set. This assumption can easily be satisfied with a preliminary step
removing all identical items from both set. Let us consider a single bit j. If this bit
is contained in n elements in S, in order to make all of these nj elements not covered
by β−(S), we have to make other nj bits that are covered by this nj elements not
covered by β−(S). This means, in β−(S) we have to restrict nj bits to 0 if we decide
to select bit j. Therefore, the higher the value of nj associated with a bit, the less
preferred to include this bit as potentially including it will lead to the exclusion of
many others.

Secondly, selecting any false positive f will make two bits covered by β−(S).
Suppose the two bits are j1 and j2, then including item f in β−(S) will make at
most nj1 +nj2 other bits been restricted to 0. As the more zeros there are in β−(S),
potentially the less false positives we can select, therefore we treat this information as
a measure of the degree of false positive f , which will be used to decide the sequence
in which all the false positive s are considered:

DGRe
f =

G∑
j=1

bfjnj , f = 1, ...,M.

So the smaller the DGRe
f value is, the earlier the corresponding item will be

considered and the larger opportunity for it to be selected. As this method does
not consider the detailed coverage of elements by false positives, it is a very efficient
heuristic.

6.1.2 Element-and-False-Positive degree

In practice we may see lots of same values in DGRe
f as defined above. If two items

share the same degree, we hope to take more information into account to decide on

18



their sequences. This information comes from considering the false positives in a
similar fashion. If a bit j is covered, then potentially all false positives containing
the same bit are easier to include than those which are not, as they will just bring
one more bit to 1 in the disjunction β−(S), and the fewer ones we observe in β−(S),
the less chance there is of an element being covered by it. Therefore, it is better to
cover earlier the bits j which are contained by more false positives, since this creates
more opportunity for later selection.

So for bit j, we denote by mj the number of false positives containing this bit,
and define an alternative degree value according to mjs:

DGRb
f =

G∑
j=1

bfjmj , f = 1, ...,M.

Thus, if there are any ties when we just check the DGRe
f values, we take DGRb

f

into consideration and pick up items in a non-decreasing order of DGRb
f .

6.1.3 False-Positive covering degree

Remember that our ultimate goal is to pick up as many as possible false positives
without covering any elements by the resulting disjunction β−(S). In practice, se-
lecting any false positive may result in the exclusion of some others. Suppose we can
determine accurately how many false positives will be excluded afer selecting a false
positive f ; let us denote this number by DGRc

f . Intuitively we would like to consider
those having smaller DGRc

f s with priority.
This method finds explicitly how many false positives will be excluded by selecting

a specific false positive f . Consider every single false positive f ; by including it we
will make at most two more bits in β−(S) be 1. Exactly how many bits in β−(S)
will be changed to 1 actually depends on what bits have already been covered by
the false positives considered and selected before f . As here our aim is to choose a
reasonable order of items, let us treat every single false positive f independently, or
equivalently, assume item f is the first being considered, to see how many other false
positives will be excluded by selecting item f .

Suppose false positive f has two bits, j1 and j2, equal one. Let Sj1,j2 denote a
subset of S whose elements having j1 or j2 bit equals 1. If item f is selected, all
elements in Sj1,j2 will create a disjunction β−(Sj1,j2) and any false positive (except
f) which overlaps with β−(Sj1,j2)\{j1, j2} are then needed to be excluded. The total
number of such false positives are defined as DGRc

f . As using this heuristic we have
to consider in detail the coverage of all elements by item f , the resulting heuristic
works less efficiently than the two above.

6.2 Numerical results on individual tests

Table 1 lists the numerical results of testing above ADP and heuristics on some ran-
domly generated examples (in each example, a certain number of no-filters are picked
at random with equal probability from the set of all Bloom filters with given param-
eters), which are compared with the best solution that solving the ILP model with

19



CPLEX can find within pre-specified amount of time. Note that here we restricted
the CPLEX to go through the Branch-and-Bound step for just limited time as for
large problems, although it can quickly find a feasible integer solution, it will take
very long time to improve it or prove its optimality. The specified time below is
the average time that we observed through tests as when a “quick initial improves”
finishes. After the cut-off time as specified, most examples will just continue the
branching step without improving the objective for hours.

Dimensions Simple Heuristics APP ADP CPLEX

Ins
G N M Naive DGRe

f DGRb
f DGRc

f APP time ADP time ILP time gap

1 256 100 289 188 190 190 198 198 0.0029s 201 0.29s 201 0.02s 0%

2 256 100 268 172 181 188 188 189 0.0027s 191 0.30s 192 0.03s 0%

3 512 200 479 301 309 322 332 336 0.0057s 339 1.25s 340 0.03s 0%

4 512 200 501 329 327 331 346 347 0.0063s 353 1.35s 355 0.03s 0%

5 256 400 3721 753 868 883 900 994 0.0221s 1009 10.04s 967 50s 85.10%

6 256 400 3735 759 980 966 959 1109 0.0229s 1132 10.20s 1109 50s 65.30%

7 512 400 5852 2157 2516 2490 2527 2656 0.0409s 2659 48.24s 2651 100s 24.51%

8 512 400 6188 2236 2682 2710 2708 2820 0.0378s 2835 48.17s 2834 100s 28.52%

9 1024 1015 13026 4083 4616 4719 4676 5062 0.1733s 5096 406.13s 5117 600s 48.74%

10 1024 1000 12004 3757 4324 4386 4407 4760 0.1785s 4892 403.23s 4809 600s 46.92%

Table 1: Numerical results on 10 randomly generated examples with different sizes. “gap”
represents the percentage difference between the best integer solution and the optimal solution
of LP relaxation. Entries with underlines indicate the best possible solution out of all proposed
algorithms.

Table 1 summarises numerical results on 10 examples tested with four heuristic
methods as proposed, compared with the solution given by APP, ADP models and
ILP solved by CPLEX. Small examples, like Examples 1-4, can be solved efficiently
to optimality (with gap 0) by CPLEX. At the same time, heuristic methods also
provide very good feasible integer solutions which are quite close to the optimal
for small problems. ADP works especially well for all small examples, picking just
one or two less false positives than what can be found by CPLEX. Note also that
the execution times for all simple heuristic algorithms are small comparing to ADP
and CPLEX. But since they are generally worse and just served as benchmarks for
optimality comparison, we exclude the execution time of these heuristic algorithms.

In contrast, when the number of false positives go above 1, 000, achieving opti-
mality by CPLEX takes unreasonable time (e.g. it costs another 1 hour to reduce
the gap from 85.10% to 81.28% in Ins. 5) and effort (computer memory to save the
Branch-and-Bound tree). As CPLEX can still report the current best solution out
of the existing Branch-and-Bound tree after the cut-off time, we put this solution
in the corresponding column of CPLEX together with the gap between the current
best integer solution and the optimal objective of its LP relaxation. Looking at the
table we can see that for larger size problems, like examples 5− 10, simple heuristics
perform much worse than APP and ADP. ADP in general is the best performance
heuristic which can always give as good solutions as CPLEX, within roughly a half

20



of the solution time. As CPLEX cannot give an optimal solution in general, in most
cases ADP can do even better than CPLEX like for all examples except Example 9.
In general, the larger the gap that CPLEX left until the cut-off time, the more ADP
is improving on the CPLEX result.

6.3 Numerical results on random group tests

From above test examples it is clear that the simple heuristic methods as described
in the beginning of this section have the worst performance in general. Therefore, in
later tests we will just focus on the APP and ADP and compare them with CPLEX
solutions (for limited running time) to see if we can improve on CPLEX best feasible
solutions within shorter time. Following experiments are all run on 100 random
examples. Three typical problem sizes are considered.

Dimensions APP CPLEX ADP

Tests
G N M APP time ILP time gap ADP time AvrImpr NoImpr

T1 256 100 300
204.17 0.0025s 207.85 0.02s

0%
205.91 0.26s

-0.94% 32±7.33 ±0.0001s ±6.67 ±0.00s ±7.31 ±0.01s

T2 512 400 6000
2708.96 0.0416s 2711.92

100s
25.03% 2746.24 49.64s

1.27% 80±61.84 ±0.0015s ±60.27 ±4.38% ±63.10 ±1.77s

T3 1024 1000 12000
4779.32 0.1698s 4798.83

600s
45.96% 4860.69 404.88s

1.29% 96±114.36 ±0.0211s ±123.15 ±3.47% ±132.59 ±10.31s

Table 2: Numerical results on 100 randomly generated examples with different sizes. Test
results are given in the mean±s.d. form. “AvrImpr” indicates the percentage improvement on
the average objective value (number of false positives selected) that ADP policy has over CPLEX;
“NoImpr” indicates the number of instances that ADP improves on or equal to CPLEX out of
100 random examples.

The T1 is on small examples again, which can be solved to optimality directly
by CPLEX. We can see in general ADP perform quite close to it, which can pick up
just slightly less (by 0.94%) false positives than the optimal solution and performs
the same well as CPLEX on about one third examples (32 out of 100). The T2 is
on medium sized examples. Here we allow CPLEX to run for 100 seconds which is
believed to be long enough for the Branch-and-Bound method to get initial updates to
a good enough node in most cases. We can see ADP works much better than CPLEX
in average for this 100 random runs, which improves the CPLEX best feasible solution
by 1.27%. As in average there is a relatively small gap (25.03%) between the best
feasible integer solution and the LP relaxation observed in CPLEX, we have reason
to believe the ADP model gives quite good sub-optimal solution (if not optimal) in
most cases. Indeed, ADP works better than CPLEX on 80% of random examples
as tested, which emphasises on the strength of it from another point of view. On
the other hand, the average running time for this sized ADP model is roughly 50
seconds, which proves the efficiency of ADP model. Similarly for large examples, T3,
ADP improves the CPLEX best feasible solution by 1.29%, which picks up roughly
60 more false positives to make the final no-filter more accurate. In addition, ADP

21



picks up more false positives on 96 out of 100 instances, which means ADP improves
the CPLEX result almost certainly.

7 Conclusions and Future Work

In this work we have discussed the optimization model for a new Bloom filter con-
struction, a yes-no Bloom filter. The optimization problem is a pure integer program
which is reducible to multi-dimensional Knapsack problems with special constraints.
This points out the difficulty of solving the whole problem to integral optimality, espe-
cially considering the problem size grows exponentially with the number of items/bits.
On the other hand, some of the separation variables in the pure optimization model
can be relaxed to continuous ones without changing the final solution. Although
the partial relaxed model does not make the solution of the problem easier, it gives
us some insights on how to simplify the model in order to design efficient heuristics
producing sub-optimal solutions. A number of such heuristics have been presented
in this work which all outperform the naive method used in the original paper [27].

In addition to this, as in general the Knapsack problem can be solved by Dy-
namic Programming techniques, we also build the DP model for this optimization
problem which is then extended to Approximate Dynamic Programming (ADP) to
deal with the dimensionality in its recurrences. The resulting ADP model uses a
one-step improvement scheme, which approximates the value-to-go function at any
specific state by solving a simplified ILP with largely reduced size in contrast to the
original integer model. The resulting ADP model has been justified effective in its
performance, which in general picks up more false positives in the Bloom filter to
make the separation more accurate than any heuristics. As claimed by the author
in [27], the yes-no Bloom filter as introduced outperforms the standard Bloom filter
even if the naive method is used when picking up false positives, whereas the sep-
aration provided by the ADP model will definitely improve the current technology
of Bloom filter designs. The ADP algorithm as proposed can also be extended to
other applications, because the considered problem is similar to Multidimensional
Knapsack problems, and the latter has many applications in a number of areas.

As future work, we shall consider multiple no filters. Another, more challenging
direction of future work is to evolve the yes-no Bloom filter into a more complicated
data structure which would contain several yes-no parts consecutively. Either of these
modifications will improve the accuracy but will make it necessary to consider more
complicated optimization problems. All in all, there are a number of directions of
interesting future work that we can do on this topic as we develop the concept of a
yes-no Bloom filter.

References

[1] D. P. Bertsekas, Dynamic Programming and Optimal Control: Approximate
Dynamic Programming, Athena Scientific, 2012.

22



[2] D. Bertsimas and R. Demir, An approximate dynamic programming ap-
proach to multidimensional knapsack problems, Management Science, Vol.48,
No.4 (2002), pp. 550–565.

[3] B. H. Bloom, Space/time trade-offs in hash coding with allowable errors, Com-
munications of the ACM, 13(7) (1970), p. 422426.

[4] A. Broder and M. Mitzenmacher, Network applications of bloom filters: A
survey, Internet Mathematics, (2002), pp. 636–646.

[5] J. Bruck, J. Gao, and A. Jiang, Weighted bloom filters, IEEE int’l Symp.
on Information Theory, (2006).

[6] L. Carrea, A. Vernitski, and M. Reed, Optimized hash for network path
encoding with minimized false positives, Computer Networks, 58 (2014), pp. 180–
191.

[7] H. Chen, H. Jin, L. Chen, Y. Liu, and L. M. Ni, Optimizing bloom filter set-
tings in peer-to-peer multi-keyword searching, IEEE Transactions on Knowledge
& Data Engineering, vol.24 Issue No.04 (2012), pp. 692–706.

[8] L. Dong and K. Glazebrook, An approximate dynamic programing approach
to the development of heuristics for the scheduling of impatient jobs in a clearing
system, Naval Research Logistics, Volume 57, Issue 3 (2010), pp. 225–236.

[9] B. Donnet, B. Baynat, and T. Friedman, Retouched bloom filters: allowing
networked applications to trade off selected false positives against false negatives,
in Proceedings of the 2006 ACM CoNEXT conference, ACM, 2006, p. 13.

[10] A. Fréville, The multidimensional 0-1 kanpsack problem: An overview, EJOR,
155 (2004), pp. 1–21.

[11] M. P. Garey and D. S. Johnson, Computers and Intractability: A Guide to
the Theory of NP-completeness (Series of Books in the Mathematical Sciences),
1979.

[12] A. Grothey and X. Yang, Approximate dynamic programming with bzier
curves/surfaces for top-percentile traffic routing, European Journal of Opera-
tional Research, Volume 218, Issue 3 (2012), pp. 698–707.

[13] D. Guo, Y. Liu, X. Li, and P. Yang, False negative problem of counting
bloom filter, Knowledge and Data Engineering, IEEE Transactions on, 22 (2010),
pp. 651–664.

[14] F. Hao, M. Kodialam, and T. Lakshman, Building high accuracy bloom
filters using partitioned hashing, ACM SIGMETRICS Performance Evaluation
Review, 35 (2007), pp. 277–288.

[15] H. Kellerer, U. Pferschy, and D. Pisinger, Knapsack Problems, Springer,
2004.

[16] A. Kirsch and M. Mitzenmacher, Less hashing, same performance: Build-
ing a better bloom filter, Random Structures & Algorithms, 33 (2008), pp. 187–
218.

23



[17] J. Lorie and L. Savage, Three problems in capital rationing, Journal of Busi-
ness, 28 (1955), pp. 229–239.

[18] S. Lumetta and M. Mitzenmacher, Using the power of two choices to im-
prove bloom filters, Internet Mathematics, 4 (2007), pp. 17–33.

[19] S. Martello and P. Toth, Knapsack problems: Algorithms and computer
interpretations, Wiley-Interscience, 1990.

[20] M. Mitzenmacher, Compressed bloom filters, IEEEACM TRANSACTIONS
ON NETWORKING, VOL. 10, NO. 5 (2002), pp. 604–612.

[21] G. Nemhauser and L. Wolsey, Integer and Combinatorial Optimization,
Wiley Interscience Series in Discrete Mathematics and Optimization, Wiley,
New York, 1988.

[22] R. Pagh and F. F. Rodler, Lossy dictionaries, ESA 01: Proceedings of the
9th Annual European Symposium on Algorithms, (2001), p. 300311.

[23] W. Powell, Approximate Dynamic Programming - Solving the Curses of Di-
mensionality, John Wiley & Suns, New Jersey, 2007.

[24] W. Pugh, Skip lists: A probabilistic alternative to balanced trees, Lecture Notes
in Computer Science, Volume 382 (1989), pp. 437–449.

[25] S. Tarkoma, C. E. Rothenberg, and E. Lagerspetz, Theory and practice
of bloom filters for distributed systems, Communications Surveys & Tutorials,
IEEE, 14 (2012), pp. 131–155.

[26] S. Tarkoma, C. E. Rothenbergand, and E. Lagerspetz, Theory and
practice of bloom filters for distributed systems, IEEE Communications Surveys
and Tutorials, 14(1) (2012), pp. 131–155.

[27] A. Vernitski, The yes-no bloom filter: representing sets with fewer false posi-
tives. http://repository.essex.ac.uk/12359/, 2015.

[28] A. Vernitski, L. Carrea, and M. Reed, Yes-no bloom filter: A way of rep-
resenting sets with fewer false positives for in-packet path encoding. submitted,
2015.

[29] W. L. Winston, Operations Research: Applications and Algorithms (foruth
edition), Brooks/Cole, 2003.

[30] X. Yang and A. Grothey, Solving the top-percentile traffic routing problem by
approximate dynamic programming, IMA Journal of Management Mathematics,
23(4) (2012), pp. 413–434.

[31] X. Yang, A. K. Strauss, C. S. M. Currieb, and R. Eglese, Choice-based
demand management and vehicle routing in e-fulfilment, Transportaion Science,
(2014).

[32] D. Zhang and D. Adelmany, An approximate dynamic programming ap-
proach to network revenue management with customer choice, Transportation
Science, (2009), pp. 381–394.

24



[33] M. Zhong, P. Lu, K. Shen, and J. Seiferas, Optimizing data popularity
conscious bloom filters, Proceedings of the twenty-seventh ACM symposium on
Principles of distributed computing, (2008), pp. 355–364.

25


