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On mathematical and physical principles of
transformations of the coherent radar backscatter

matrix
David Bebbington and Laura Carrea

Abstract— The congruential rule advanced by Graves for
polarization basis transformation of the radar backscatter matrix
is now often misinterpreted as an example of consimilarity
transformation. However, consimilarity transformations imply
a physically unrealistic antilinear time-reversal operation. This
is just one of the approaches found in literature to the de-
scription of transformations where the role of conjugation has
been misunderstood. In this paper, the different approaches are
examined in particular in respect to the role of conjugation. In
order to justify and correctly derive the congruential rule for
polarization basis transformation and properly place the role
of conjugation, the origin of the problem is traced back to the
derivation of the antenna hight from the transmitted field. In
fact, careful consideration of the role played by the Green’s
dyadic operator relating the antenna height to the transmitted
field shows that, under general unitary basis transformation, it
is not justified to assume a scalar relationship between them.
Invariance of the voltage equation shows that antenna states and
wave states must in fact lie in dual spaces, a distinction not
captured in conventional Jones vector formalism. Introducing
spinor formalism, and with the use of an alternate spin frame for
the transmitted field a mathematically consistent implementation
of the directional wave formalism is obtained. Examples are given
comparing the wider generality of the congruential rule in both
active and passive transformations with the consimilarity rule.

Index Terms— polarimetry, backscatter, unitary bases, spinors.

I. INTRODUCTION

Apart from the fact that it is an important principle of
mathematical physics that formulae involving vectors should
be expressible in a way that is independent of the basis, there
are often practical reasons to transform bases. Sometimes
simplicity is achieved in a particular basis, especially if the
symmetry of a problem favours a particular representation, or
that in some representation a convenient parametrization arises
that best captures the phenomena of interest. Recent examples
in polarimetry include the following [1], [2], [3].

This paper should be regarded as the precursor to a planned
series on the foundations of polarimetry. Our initial plan is to
clarify some long standing ambiguities and conflicting view-
points expressed in the previous literature and to motivate a
new approach. Such an approach will redevelop the foundation
of polarimetry that is consistent with physical principles and
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exhibits a coherent mathematical framework. In particular, our
purpose here is not a general review, but to focus instead on
a small number of key contributions to the literature where
we can most clearly demonstrate that ambiguities have been
introduced in the process of justifying the current formulation
of polarimetry. More than any other concept in polarimetry, it
seems that the equivalence relation for polarization states upon
wave reversal remains problematic (e.g. [4], [5]). Previous
papers addressing the foundations of polarimetry in the context
of remote sensing radar have had to run the gauntlet over
the status of the so-called backscatter alignment convention
(BSA). This convention is almost universally adopted in mono-
static radar, and is associated with this issue of wave reversal
that has proved to be so contentious historically [6], [7], [8],
[9], [4], [5]. So, although this was not our intended starting
point in reforming the foundations of polarimetry, it seems that
we cannot set out our stall until certain fundamentals regarding
this question are dealt with. It is beyond the scope of this paper
to comprehensively introduce our formal methods. However,
our intention is to show how the problem can be addressed,
employing some of the ideas that flow from a new perspective.

The solution to the problem of how correctly to account for
Graves’ congruential rule [10], as it applies to the transmitted
and received polarization states of the electric fields is devel-
oped in this paper in terms of spinors. References to spinors
as descriptors of coherent polarization states have appeared
previously in the literature [11] [12] [13], and more recently,
applications of quaternion algebra to scattering matrices have
been presented [14], [15]. To date, however, the fundamental
significance of spinors in polarization representation has not
been discussed in any depth. Given that within the polarimetric
community there is generally much less familiarity with spinor
algebra than with conventional vector algebra, we have to
consider ourselves under some duty to make a case for it.
All other things being equal, one could say rather, why leave
spinors out of the picture? Spinors are the carriers for the
unitary group SU(2), which is what is used to make basis
changes. All conventional polarimetry theory refers at least
implicitly to SU(2), and spinors are what that group operates
on. In a strict sense, if one consider Jones vectors as vectors
rather than spinors, problems are already lining up: do we
consider Euclidean or Hermitian products as fundamental? For
orthogonality tests, and gauging of intensity, one traditionally
uses the Hermitian inner product; in the voltage equation
where the response of an antenna to a received field is
evaluated, however, it appears that a conventional Euclidean
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inner product is taken. The essence of inner products is that
they should be invariant under basis change - but in terms of
conventional forms of vector algebra one needs to ask how
both could be true if each is only invariant under distinct and
incompatible group actions. The compelling answer to these
and other curiosities in polarimetry that have puzzled several
generations of polarimetrists is that the conventional vector
algebra does not have the capability to express the different
complexions of vectorial objects that appear in polarimetry.
Spinor algebra (with indices), on the other hand, expresses
succinctly exactly the four different forms of 2-vector that
are required. Firstly, as this paper demonstrates, in addition
to gradient-like objects (the fields) belonging to the space
of covariant fields, we need to have coordinate-like objects
such as complex antenna height. For each of these we need
a related, conjugated space. Conjugate spaces have antilinear
transformational properties, and therefore require a separate
spaces of representation from normal linear space. As this
paper will show, it has been a long standing and unfortunate
misconception in polarimetry that the backscatter alignment
convention (BSA) implies that backscattered waves are ex-
pressed in a conjugate representation. This would imply that
backscatter is antilinear in character. Such an interpretation
leads to a number of absurd conclusions involving time re-
versal, which are not warranted by the physics. To be clear,
conjugate representations are required in operations relating
to correlation. Here the time reversal implied is conceptually
valid, because it is accounted for in the autocorrelation kernel
of which the complex correlation is the Fourier transform.
We have been asked a number of times to present our results
without using spinors, but in order to expose correctly the
relations that occur in polarimetry we should have to invent a
notation that at best would be no simpler than that of spinor
algebra. This paper shows spinor algebra at work in resolving
the rather intricate interplay of misconceptions that came
to represent the standard take on the BSA, which Hubbert
[5] for example felt to be unacceptable. There is however
much more in polarimetry that spinors can help to resolve:
typically oddities such as Huynen’s pseudo-eigen problem
[16] and the missing vector component in Cloude’s theory
for reciprocal target vectors [17] are things that have arisen
because of imprecise associations that we hope to present as
part of a much wider and coherent account in future papers
on Geometric Polarimetry.

The organization of the paper is as follows. In section
II we briefly outline some important aspects regarding the
origins of radar polarization algebra, and highlight differences
from Jones’ optical polarization algebra. In section III we
comment and compare three significant formal approaches to
unitary transformations of polarization basis: the congruential
transformation introduced by Graves [10], the similarity trans-
formation by Kostinski and Boerner [6], and the consimilarity
transformation proposed by Lüneburg [18]. In section IV
we demonstrate how the accepted congruential rule can be
justified in terms of the application of both mathematical and
physical principles without the need for antilinear transforma-
tions. Finally, in section V we present concrete examples that
compare the congruential transformation with consimilarity

and we show the wave reversal using spinors.

II. DEFINING RELATIONS IN RADAR POLARIMETRY

Radar polarimetry started to take off in the early 1950s, the
post World War II era when radar technology had become
established, and not long after the emergence of Jones’s
calculus for coherent propagation in optical systems [19].
The states of plane harmonic electromagnetic waves are de-
scribed conventionally by two-component complex vectors,
now known as Jones vectors. They are complexified vectors,
transverse to the wave-vector. Ostensibly, we are dealing with
Cartesian vectors that are projected onto the phase-front, and
we keep only the transverse components. Geometrically, Jones
vectors are considered to be Euclidean, which implies several
underlying assumptions, such as how to take scalar products,
and what defines orthogonality.

Throughout our discussions, unless otherwise stated, we will
be concerned with the description of complex harmonic plane-
wave fields and voltages with signature ej(ωt−k·r) for waves
propagating in the positive r-direction.

In monostatic radar, one crucial difference with respect to
the majority of optical systems is that one must consider
waves that counterpropagate along the ’optical axis’ of the
system. To that end Sinclair [20] introduced 2 × 2 matri-
ces, the scattering matrices, that describe the far-field vector
scattering of the wave by the target. They are distinguished
from the conventional Jones matrices which instead describe
transmission along a unidirectional optical axis. A second even
more crucial difference between the treatments of optical and
radar polarization that has received almost no formal attention
is that the latter needs to describe antenna as well as field
polarizations. The IEEE standard on polarization defines the
polarization of an antenna as that of the radiation that it
transmits, and also that to which it is maximally receptive
[21]. The fact that this definition is a statement of labeling,
but does not of itself prescribe a mathematical relationship
seems largely to have been overlooked.

From the outset, and even today, radar systems have been
predominantly monostatic, so that the problem most often dealt
with has been that of backscatter. Radar scientists for the
most part have preferred to adopt the backscatter alignment
convention (BSA), in which field components are measured
in the same transverse plane.

One of the complicating factors present in describing radar
scattering is that the field is detected indirectly - by measuring
voltage received by an antenna. Two linearly independent
antennas suffice to infer the field (in practice, it is usual to
employ, so-called orthogonal basis), such that the Jones vector
components representing the field in that basis provided are
directly proportional to the two complex voltages determined
by an orthogonal pair. No such analogue appears in the domain
of Jones vectors in optics, but it has generally been assumed
that the concept of antenna height [22] can be complexified,
and treated in the same way as a Jones vector that describes the
field. In the ensuing critique of the aforementioned important
papers regarding this, and the transformation rules for various
polarimetric quantities, it will be seen that this assumption has
not always been properly questioned.
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Antenna height is an extensive variable which relates the
field radiated by an antenna to the vectorial superposition
of equivalent dipole current vectors in the aperture plane. A
fundamental and basic derivation shows that in a spherical
coordinate system (r̂, θ̂, φ̂) in which the antenna phase centre
is at the origin, the radiated far-field electric vector E is
proportional to the complex height vector h1 [22]:

E (r, θ, φ) =
jZ0I

2λr
e−jkr h(θ, φ), (1)

where Z0 is the impedance of free space, I the excitation
current, λ the wavelength, r is the distance from the antenna
( r >> λ ), and the vectors are parallel to the tangent plane
at the observation point. What is significant here is that the
vector quantities E and h have identical direction. It is also
assumed that the ratio of the vector components may be
complex. Another relation considered to be fundamental in
radar polarimetry is that for a scattered field, E = E1e1+E2e2
received by an antenna with complex height, h = h1e1 +
h2e2, measured in the same coordinates {e1, e2}, the received
voltage V is given by

V = E · h = E1 h1 + E2 h2. (2)

Note that this is the ordinary scalar product and not the
Hermitian one which frequently arises in the theory of unitary
invariants. These relations are rigorously demonstrated in
[22], who uses standard Cartesian vector notation throughout.
Complications arise, however, when one wishes to consider
unitary changes of basis. Although one is never forced to
change a basis, it is often regarded as illuminating to do so,
perhaps because of symmetries in certain scattering problems.
From a mathematical point of view, if we know that certain
representations should be unitarily equivalent, we would also
wish at least to be able to transform everything consistently
from one basis to another. When mathematicians or physicists
consider transformations, they usually demand and expect
that any relation in the theory should transform covariantly.
Ultimately, this means that if everything in a relation is
described algebraically, then the algebra connecting all the
transformed objects should be identical to that of the original
elements. More generally, we should expect to apply the same
rule for any given type of object.

III. A CRITIQUE OF FORMER APPROACHES

We now look at three significant approaches from the
radar polarimetry literature to the description of unitary basis
transformation, in which we examine critically the assump-
tions on which they are based. In the interests of ease of
comparison we have made slight notational changes regarding
incident and scattered states and such that inverse of the basis
transformation is applied in each case to the received electric
field. These changes make no substantive difference to the end
results but facilitate intercomparison.

1It is also called effective length. It does not necessarily correspond to the
physical length of the antenna although there is a correspondence for a dipole.

A. Congruential transformation

In the radar polarimetry literature it was found that use of
conventional algebra to describe basis transformation seemed
not to be possible, and that new rules had to be invoked. Graves
[10] found it necessary to express outgoing and incoming
states under separate representations. He made use of direction
vectors E+ = (E1, E2)+ to describe a wave propagating in
the positive z direction and E− = (E1, E2)− in the negative
z direction where the components are referred to the same
fixed reference basis. If the outgoing wave E+ transforms by
unitary basis change Q as in the new outgoing wave E′

+,

E′
+ = Q−1E+ (3)

then, according to Graves, incoming wave E− transforms as

E′
− = Q̄−1E−. (4)

where we use overbar (rather than the more usual asterisk) to
denote complex conjugation - this notation, more often seen
in the mathematical literature, is convenient when we want to
be clear when an entire expression is conjugated.

Graves then goes on to give the widely accepted congruen-
tial rule for transformation of the backscatter matrix,

S′ = USUT (5)

where, for the sake of uniformity of treatment, we denote the
basis transformation matrix as U = QT . From here on, we
shall refer to (5) as Graves’ rule. In his argument, Graves
uses the equivalence Ū−1 = UT for the last step, as far as
we can tell for no other reason than that UT is neater. Graves
does not employ the concept of antenna height, but argues that
the received voltage is expressed as the (non-Hermitian) scalar
product of the normalised E+ corresponding to the transmitted
wave and E− representation of the scattered wave. No physical
or mathematical justification is provided as to what a scalar
product between two fields might actually mean. The relation
(5) turns out to be the generally accepted result, although as we
remark, the way in which it is arrived at lacks rigour in terms
of justification of assumptions. We defer further discussion
to the last part of this section where Lüneburg’s appeal to
consimilarity makes the assumptions explicit.

B. Similarity transformation

Much later, Kostinski and Boerner [6] considered the rules
of transformation for field vectors, antenna heights and scat-
tering matrices. The rules they applied were,

E
′

R = UER

E
′

T = UET

h
′

= Uh

(6)

from which they deduced a transformation rule that is not a
congruential transformation, but a similarity:

S
′
= USU−1. (7)

While acknowledging a second representation obtained by
transforming the voltage law, which yields the usual congru-
ential transformation (5), Kostinski and Boerner stated a pref-
erence for the similarity transformation, even though, as they
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noted, the transformation rule they deduced for the voltage
equation (2) now apparently fails to transform covariantly:

V = h
′T · UTUE

′

R. (8)

Mieras [7] criticized this choice, preferring the congruential
rule. He argued that it would be preferable to work with
the voltage equation without reference to the received field.
Nevertheless, Mieras accepted the derivation of (8) as alge-
braically valid. From a mathematical point of view, however,
an expression such as (8) as the outcome of a basis change is
anathema. A scalar relation should be algebraically invariant
under transformation, because this is the whole rationale of
basis change.

In all the arguments presented so far, there has been an im-
plicit assumption that (1) transforms alike on each side under
unitary basis change. By assuming it, Graves in fact made no
algebraic distinction between field vectors and antenna heights
and, as we noted, introduced without question or justification
the scalar product between two field states to obtain the
voltage. From (6) it can be seen that essentially Kostinski
and Boerner made the same assumption. Given their starting
point they were not incorrect to state that the scattering matrix
connecting transmitted fields should transform as a similarity.
In doing so they were abandoning Graves’ use of directional
Jones vectors, and applying globally the same transformational
rules for all fields. In effect, they were applying the principles
of tensor algebra, in which linear relationships are supposed
to be expressible regardless of basis. Working in a regime of
Cartesian vector analysis one normally has no need to make
any kind of distinction between different kinds of vector, the
reason being that inner products are invariant under rotation,
(or other Euclidean isometries). Actually, (8) does transform
satisfactorily if one restricts to rotations (for which UT =
U−1), but not under general unitary transformations. Lack of
general unitary covariance2 in (8) stems from the assumption
that the last relation in (6) is valid, namely that antenna height
vectors transform generally in the same way that field vectors
do. To question this, however, appears to throw into doubt
the apparently fundamental assumption of (1). In fact there
is a good theoretical reason why, although (1) is true when
expressed in a linear basis, it does not generalise under unitary
transformation. This is because the fundamental derivation of
(1) arises by applying the free-space dyadic Green’s function←→
G to the elementary current element:

E(r) =

∫∫∫ ←→
G · J(r′) dr′3 =

=

∫∫∫
(
←→
I + k−2∇∇) e−jkR

R
J(r′) dr′3, (9)

where R = | r− r
′ |, k is the wavevector magnitude, J is the

current density which is the source of the field and
←→
G is the

dyadic homogeneous Green function given by

←→
G =

(←→
I + k−2∇∇

) e−jkR

R
, (10)

2Covariance of a law is the invariance of the form of the law under
coordinate transformations.

e−jkR

R is the scalar Green function and
←→
I is the unit dyadic.

The integration in (9) takes place over the entire antenna. In
the spatial Fourier domain, the dyadic factor in the Greens
function takes the form,

←→
I − 1

k2
←−
k
−→
k (11)

which has the form of a projection operator that projects out
the longitudinal components of the current vector and ensures
that the far field is transverse. If the equivalent antenna height
is already presumed to be transverse, the second term in (11)
may apparently be omitted with impunity leaving only the unit
dyadic, which may, in a purely conventional derivation also
be omitted. However, the unit dyadic is not invariant under
unitary SU(2) congruential transformation. From a tensorial
point of view, the unit dyadic is really a covariant Euclidean
metric tensor3,

←→
I =←−ex−→ex +←−ey−→ey +←−ez−→ez (12)

built with the basis and the reciprocal basis, and it is only
invariant under Euclidean isometries. In tensor language, we
say that (in either time- or spatial- frequency domain) the
Green’s function operator lowers the index of the vector it
operates on. Thus, if it operates effectively on the antenna
height vector (in tensor language an upper index contravariant
vector), it produces a lower index covariant vector which
shows that the electric field has the same tensor character as
that of the gradient of a potential, which it has in the static
case. Tensor-invariant descriptions require that contravariant
and covariant objects transform contragrediently - essentially
by mutually inverse transformations. To express this in matrix
algebra requires in addition a transpose in one of the matrices
as matrix multiplication occurs always from the left. This is the
essential missing ingredient in the argument that erroneously
leads to (8).

As Mieras [7] correctly noted, the covariant transformation
law of the voltage equation is fundamental. The widely ac-
cepted form of transformation law for the backscatter matrix as
a congruential relation can be properly explained by defining
the backscatter matrix via the relation (see [22]), (absorbing
the range factor into the scattering matrix),

V (hR,hT) = hR · S hT = hT · S hR (13)

for unit current excitation. The symmetry of S is obviously
implied by reciprocity, and the congruential transformation
rule is consequently automatic. Understanding S as a bilinear
form is conceptually quite different from the usual meaning of
S as a linear operator on the incident field; indeed, it would
probably be more proper to call the operator in (13) something
other than the scattering matrix, even if, componentwise it is
equal to it. We should also note that application of (13) is
not restricted to backscatter; then, of course, the matrix is
no longer symmetric (since the antennas are not co-located)
although reciprocity is reflected in the interchangeability of

3In fact dyads extend vectors to provide an alternative description to second
rank tensors and the use of dyadics is nearly archaic since tensors perform
the same function but are notationally simpler.
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transmission and reception when the value of the form van-
ishes [23].

What has not yet been accomplished, however, is an ex-
planation of how Graves’ rule applies to the scattering matrix
proper, and we address this in section IV.

C. Consimilarity transformation

At this point, it is appropriate to consider the proposal
of Lüneburg that the BSA form of the backscatter equation
should be considered to transform as a consimilarity relation
[24]. We need seriously to examine whether Graves’ rule for
scattering matrices proper turns out indeed to be a special
case of consimilarity. The mathematics of consimilarity is
described in Horn and Johnson [25]. In arguing for this as
a principle, one is saying in effect that the fundamental rule
for transforming the scattering matrix is the consimilarity,

S
′
= ASĀ−1. (14)

This relation implies (as did Graves) that the counterprop-
agating waves transform conjugately with respect to each
another. Lüneburg’s argument is that wave reversal can be
made equivalent to time reversal (justified by the symmetry
of Maxwell’s equations in vacuo under time reversal) via the
relation [26]

Re [Eej(ωt−kz)]
T : t→−t−→ Re [Ee−j(ωt+kz)] = Re [Ēej(ωt+kz)],

(15)
where T stands for the time-reversal operator. The stated
position here is that conjugation effects wave reversal without
change in the polarization label. Lüneburg’s equations there-
fore explicitly include an antilinear operation (T: time reversal,
or conjugation), which implies [26],

T (αu+ βv) = ᾱ T (u) + β̄ T (v). (16)

In the end Lüneburg notes that, for unitary transformations
A → U / ŪT = U−1, we have that

Ā−1 → UT (17)

so arriving at Graves’ rule (14). Lüneburg therefore effectively
formalises Graves’ treatment, by clarifying that an antilinear
operation is required as a formal operator in the scattering
equation, but reverts to the congruential form of Graves’ rule
in the unitary case. Physically, however, arguments in favour
of an antilinear operation are not acceptable in the sense
that (7) is regarded as a special case of a consimilarity. The
problem with this is that time-reversal is only a symmetry of
Maxwell’s equations in vacuo or at any rate in certain lossless
media, in other words when unitarity is guaranteed. In real
media, however, such as the atmosphere, the presence of an
anisotropic lossy medium (e.g. when precipitation is present
on the path) is an important factor to consider; for weather
radars in particular, an unignorable factor. There it has long
been established rigorously [27], [28] that Graves’ rule is a
special case of the active transformation,

S′ = ASAT (18)

where A is the propagation matrix between target and radar
acting on the received field. This holds for a medium ex-
hibiting reciprocity, includes the case of multiple forward
scatter (coherent propagation). At S-band frequencies, it was
shown [29] that the effective scattering matrix transformation
induced by forward propagation through rain is very close to a
unitary one of this form. Approximate time-reversal symmetry
appropriately describes phase conjugation, a technique that is
realised in modern optics to reverse a wavefront so that it sub-
stantially retraces its path. This requires non-linear processes
(a non-linear medium, together with optical pump-waves). In
such a medium, exhibiting for example the high-frequency
Kerr effect [30], the dielectric tensor describes interactions be-
tween the incident wave and pump waves, such that one must
use the full representation of the signal, not just the analytic
representation. In essence, then, frequency conversion may
occur through non-linear processes such that the component of
the real signal associated with the conjugate phase propagates
with the reversed wave vector. Nieto-Vesperinas [31] uses
in effect the same device as Lüneburg (15) to describe the
conjugated wave. It must be clear, however, that this can
only occur through non-linear interactions which are not a
part of normal radar scattering theory. Moreover, the usual
realizations of phase-conjugate mirrors employ degenerate (or
near-degenerate) four-wave mixing (DWFM), in which the
incident wave is scattered by a time-dependent Bragg grating
oscillating at twice the nominal signal frequency. Thus, for
an incident wave at frequency ωi and a pump signal at
ωp ≈ ω, the scattered signal is at ωs = 2ωp − ωi resulting in
sideband reversal, which is not a feature of linear scattering. A
phase conjugated wavefront also propagates differently from a
normal one in an inhomogeneous medium, so from almost all
perspectives, consimilarity applied globally does not describe
the physics. In addition, equation (16) does not respect the
expected linear superposition rule. We can hardly emphasise
sufficiently strongly that, in dealing with linear systems, the
introduction, whether explicitly or implicity (e.g. via partial
conjugation of a term) of antilinearity lacks any physical jus-
tification. It may be noted that we have restricted attention so
far (apart from in the preceding example) to media exhibiting
reciprocity. In discussing generalizations we must be aware
that there are partial and fuller generalizations concerning
the effects of propagation. In the context of remote sensing
it is reasonable also to consider effects of non-reciprocity
arising from propagation through the ionosphere, i.e. Faraday
rotation. As it turns out, although Faraday rotation is a unitary
process, a medium exhibiting this phenomenon does not have
time reversible symmetry, as the imaginary components of the
Hermitian constitutive tensor reverse [31]. The implications
for the congruential rule, on the other hand, are that whilst in
a reciprocal medium the propagation matrix is insensitive to
direction, the sign of anisotropy induced by magnetic Faraday
rotation depends (in any coordinate system) on the projection
of the wave vector along magnetic field. For example, in a
linear basis, if the Faraday rotation is represented by a rotation
matrix R(α) where α is the rotation measure, then,

S
′
= R(α)S RT (−α), (19)
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while in a circular basis, we have,

S
′
=

(
ejα 0
0 e−jα

)
S

(
ejα 0
0 e−jα

)T

. (20)

In each case, the effect of rotation measure accumulates over
both outward and return paths. This is no longer a congruential
rule, but is a straightforward generalization similar to the
situation in bistatic scattering, where the propagation factors
on each path generally differ. As usual, the presence of the
transpose is nothing more than an artefact of left-right ordering
in matrix algebra.

IV. A LINEAR THEORY OF GRAVES’ RULE

Having dismissed the premises on which Graves’ rule was
traditionally based, we now turn to providing an alternative
explanation that requires no suggestion of antilinearity. That
is, we explain, how the relation

E
′

R = SET (21)

in matrix algebra comes to have a congruential transformation
rule. Now that we have explained how, fundamentally, we
should come to regard the field vectors as covariant (see
section III-B), the congruential rule for transforming S appears
strange. There is still a requirement to introduce some form
of directional Jones vector, such that the fields have different
representations, however this cannot match the requirements
of the BSA convention by means of a simple spatial rotation.

An example provided in Mott’s text [22] is very instructive
in this. Although Mott does not give a general rule for basis
transformation, he describes a relation for transforming from
a linear to a circular basis [22] (p236) as,(

Ex − jEy

Ex + jEy

)
R

=

(
ARR ARL

ALR ALL

)(
Ex + jEy

Ex − jEy

)
T

, (22)

by substituting on the left hand side in terms of the original
matrix elements, so obtaining a symmetric matrix in terms
of them. Because this is not expressed explicitly as a matrix
transformation, it is easy to see in this instance that the end
result is obtained by assuming from the outset that the Carte-
sian representations for left and right handed polarizations are
exchanged on reversal. It should be particularly noted that
there is no explicit suggestion of conjugation here, it is purely
a question of representation.

Now we move on to address the more general case of
arbitrary basis change. To do this, it is necessary to introduce
some aspects of spinor analysis, which we intend to bring into
play much more extensively in our new approach of Geometric
Polarization. This, we believe provides a very satisfactory
explanation for the change in representation from a geometric
perspective and which was suggested as an alternative to tensor
representation in this context in [32]. To illustrate how such
methods can justify the algebraic procedures, we need only
to introduce some of the most basic spinorial concepts that
help to show how the geometry of space can be described
in terms of objects even more basic than ordinary vectors.
The origins of spinor techniques in physics goes back to the
origins of relativistic quantum mechanics as new mathematical

methods were required to explain quantum mechanical spin,
in particular the fact that the wave function of a ’spin-12 ’
fermionic particle changes sign on rotation by 180◦, a fact
that cannot be explained by conventional vector and tensor
analysis alone [33].

Spinors were introduced by Cartan [34] in a geometric
context. They are not vectors, but vectors can be constructed
from products of spinors. Spinors can therefore be seen as in
some sense more fundamental. From the polarimetric point of
view it is important to consider that ultimately both the fields
in which we are interested and the reference frame in which
their components are expressed can be related unambiguously
to a common spinorial reference system, a spin-frame, com-
prising an ordered pair of spinors. Polarimetry is as much
about geometry as it is about electromagnetics, and it is a
major strength of the spinor approach that it it gives such a
tight relationship to the spatial geometry of the frame, not just
to the plane of polarization.

Woodhouse [35] provides a very succinct introduction to
spinors, Payne [36] describes spinors in an elementary way
using trigonometry, while Penrose and Rindler [37] provides
a very comprehensive description and is generally regarded
as a standard reference. We adopt the same notation as these
authors, as it now appears to be a de facto standard in the
physical literature. Our usage differs in one respect alone,
owing to the fact that our analytical signal signature which
conforms with the majority usage in the engineering literature
is the opposite of that generally adopted in the theoretical
physics literature. Since they also use the symbol ’i’ for the
imaginary unit, we can consistently translate everything by
replacing our imaginary ’j’ for ’−i’. The connections between
spinors and space-time 4−vectors mirror in a way that we can
regard as non-accidental that between Jones vectors and Stokes
vectors, so the basic geometric concepts are in principle easy
to assimilate from a knowledge of polarimetry.

Often space-time is considered to be spanned by unit
vectors,

t̂ =


1
0
0
0

 , x̂ =


0
1
0
0

 , ŷ =


0
0
1
0

 , ẑ =


0
0
0
1

 , (23)

along the time and orthogonal Cartesian spatial axes. Matters
are greatly simplified if time and space are measured in
the same units, which is rather what radar engineers do, in
converting time into distance, and physicists’ language for the
same process is to say we choose units such that the speed of
light is unity.

An alternative, but admissible basis, frequently adopted in
the spinor literature, uses instead four null-vectors,

l = t̂− ẑ

n = t̂+ ẑ
m = x̂− jŷ
m̄ = x̂+ jŷ

. (24)

They are self-orthogonal, but not all mutually orthogonal,
although l and n are orthogonal to m and m̄.
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The Lorentz metric tensor of special relativity,

gab =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (25)

is required to describe the squared distance or interval between
space-time points as,

ds2 = dt2 − dx2 − dy2 − dz2 =

=


dt
dx
dy
dz


T 

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1



dt
dx
dy
dz

 (26)

which is a symmetric quadratic form. By convention, timelike
intervals are positive, while spacelike intervals are negative
(note that many, especially older, texts apply the reverse sign
convention). The vanishing intervals are referred to as lightlike
as this condition effectively says that two points so separated
mark the start and endpoint of a path segment of a light signal.
By virtue of (26) we have, the analytical verification of the
nullity of the basis vectors in (24),

uagabu
b = 0, where uagabu

b ≡
3∑

a=0

3∑
b=0

uagabu
b (27)

when ua describes in tensor index form any of the null
basis vectors. Here we are adopting as standard the Einstein
summation convention where a summation sign over index
values 0− 3 is implied where there are repeated indices, one
in the upper position (denoting a contravariant index) and one
in the lower position, (denoting a covariant index). All these
vectors lie on the so-called light-cone (all light-ray trajectories
through the spacetime origin [37]), which is a double cone
whose vertex is the origin which separates its past and future
parts as shown in Fig. 1. This language can be helpfully

u
a u

b
gab = 0

t

Fig. 1. The light-cone.

applied to the problem of scattering, as we might say that
the signal incident on a scatterer propagates on its past light-
cone, while the scattered wave lies on its future light-cone.
By extension any multiples of a null-basis vector also lies
on the null-cone although, generally speaking, arbitrary linear
combinations of them do not. Real null-vectors are also said

to be isotropic [33], and Cartan [34] effectively developed the
idea of spinors in three dimensions as representations of such
vectors by ordered pairs of complex numbers.

The reason for adopting a null-tetrad as a basis is that
in a spinorial description these have a particularly simple
representation. Spinors are simply complex 2−vectors that
span spin-space, their first application in physics being by
Pauli [38] in terms of spin matrices, also well-known in
modern polarimetric theory [39]. Conventionally, the basis
vectors of this space are denoted,

oA ≡
(
o0

o1

)
=

(
1
0

)
, ιA ≡

(
ι0

ι1

)
=

(
0
1

)
. (28)

Here the uppercase index A conventionally takes values 0 and
1. Furthermore, we require the conjugates of these (which
are numerically equal, but must be treated as belonging to
a distinct conjugate representation of spin space),

oA
′
≡

(
1
0

)
, ιA

′
≡

(
0
1

)
. (29)

The use of a prime
′

on the index is a book-keeping device
to ensure that objects so labelled are transformed conjugately
with respect to unprimed indices.

The spinor representations of the null-vectors can be taken
as [37],

l → oAoA
′ ≡

(
o0o0

′
o0o1

′

o1o0
′

o1o1
′

)
=

(
1 0
0 0

)
n → ιAιA

′ ≡
(
0 0
0 1

)
m → oAιA

′ ≡
(
0 1
0 0

)
m̄ → ιAoA

′ ≡
(
0 0
1 0

)
. (30)

These are rank-one (singular) matrices, their singularity being
equivalent to the nullity of the corresponding vectors.

To complete the material necessary to our analysis, we also
need to mention the ’metric’ spinor, which unlike that of
space-time is skew. The metric spinor, in both contravariant
and covariant forms, is given by,

εAB ≡
(

0 1
−1 0

)
, εAB ≡

(
0 1
−1 0

)
(31)

and can be viewed either as a computational device to make
an inner product between pairs of covariant spinors or pairs of
contravariant spinors, or as a means of converting a spinor of
one type into one of the other (in which case, one often retains
the identifying symbol to show it as a mapping or equivalence
relation. Thus,

oB = oAεAB ≡
1∑

A=0

oAεAB =

(
0
1

)
, ιB = ιAεAB =

(
−1
0

)
(32)

represent covariant counterparts to the contravariant basis
elements. Here the summation convention operates in the same
way as with tensors, but over index values 0− 1.

We consider now the so-called priming operation discussed
in Penrose and Rindler [37] (p262) in which certain spinor
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operators may be expressed by means of a re-assignment of
the spinor indices. Here we adopt a slightly different operation,
and the primed basis spinors oÃ, ιÃ are defined as:

oÃ → −ιA, ιÃ → oA (33)

(instead of joÃ → ιA, jιÃ → oA), which has most of the
same properties including preservation of the orientation of the
spin-frame. Under this operation, the following transformation
of the null-basis vectors takes place (see Appendix):

l̃ → n
ñ → l
m̃ → −m̄
˜̄m → −m

. (34)

The interpretation of this is that the past and future null-cones
are interchanged, and (apart from an absorbable sign-change)
left and right handed null-vectors that are orthogonal to l and
n are also interchanged. Overall, because of two interchanges
there is no inversion of the orientation of space-time, and
antilinear spinor transformations are not required.

While interpreting our basis vectors as a frame suitable for
describing waves traveling along the z−axis, l and n describe
the space-time directions of constant phase trajectories of
outgoing and incoming plane waves, while m and m̄ form
a complex basis for planes parallel to the wavefront. That
interchange of m and m̄ reverses the orientation of such
a plane is evident, as (use of conventional Cartesian vector
calculus is justified by the fact that m and m̄ are purely
spatial),

m̄×m = (x̂+ jŷ)× (x̂− jŷ) = −2j x̂× ŷ
m× m̄ = (x̂− jŷ)× (x̂+ jŷ) = +2j x̂× ŷ

. (35)

The two complex basis vectors m and m̄ are eigenvectors
of matrices describing plane rotations and so we can interpret
the effect of the priming operation as exchanging the sense of
rotation or angle measure in the plane from the perspective of
a fixed orientation.

The final step required in the argument to explain Graves’
rule, is to note the effect of the priming operation (33) on
matrix representations.

In spinor algebra, matrix operations on covariant spinors
take the form [35]

ηA =M B
A ξB . (36)

Such matrices map covariant spinors to covariant spinors. We
can form a basis for all such matrices from outer products of
the basis spinors, the first of each pair in covariant form, and
the second contravariant. A basis is therefore obtained using
the set,

oAo
B , oAι

B , ιAo
B , ιAι

B . (37)

Note that the conjugated bases do not appear in these expres-
sions. Note, also that these are matrices not scalars because
summation is not implied due to the index labels being
different (summation would give the matrix trace). Under the
priming operation we form an equivalent basis,

oÃo
B̃ , oÃι

B̃ , ιÃo
B̃ , ιÃι

B̃ . (38)

Via this equivalence relation, a general matrix transforms as
(the algebra of expressions (36) - (39) is expanded in full in
Appendix A.) (

α β
γ δ

)
→

(
δ −γ
−β α

)
. (39)

This operation described in matrix language is the transpose of
the adjugate. Note that it is a completely linear mapping. If we
restrict attention to unimodular, or a fortiori, unitary matrices,
this becomes the mapping4,

U → (U−1)T . (40)

Thus, it can be seen that under this mapping, if U describes
the unitary matrix that effects a basis change on the received
field vector, then for the voltage equation to be invariant, the
antenna height vector must transform via the inverse transpose.
But if the priming operation describes the change of reference
for Graves’ outgoing directional Jones vector, we see that the
representation of the transmit field transforms in the same way
as (receive or transmit) antenna height vector. Then, since

V = hT
R S hT ⇒ ER = S hT, (41)

then identification of the components of ET and h in any one
basis implies that they are equal in any.

To summarize, the priming operation, as a linear mapping,
allows (1) and (2) to be simultaneously true. The story is
rather more complicated than if we had simply described the
scattering process as a bilinear form, but we can express con-
cepts of basis invariance without violation of either physical
or mathematical principles.

V. EXAMPLES AND RESULTS

A. Wave reversal

First, we demonstrate how the spin-frame manipulations
can be handled for representing the antenna height, and for
the propagating fields in reception and transmission. The
case of circular polarizations is among those most likely
to engender confusion, so we work this through in detail.
Consider as our primary object associated with a left-hand
circular polarization, the antenna state, for which we construct
the antenna height spinor representation ηA in an (H=0,V=1)
basis,

ηA =

(
η0

η1

)
=

1√
2

(
1
j

)
=

1√
2

(
oA + jιA

)
, (42)

where the basis spinor oA and iA are specified in (28). By
convention, the polarization state that the antenna is most
receptive to is defined to be the same as that which it transmits.
It is, in any case empirically verifiable that circular polarization
antennas receive waves of the same handedness that they
transmit. In order for the scalar voltage received at the antenna
to be invariant under unitary change of basis, it is therefore

4In fact the adjugate is used to compute the determinant of a matrix:
det(M) = M adj(M). For unimodular matrices, adj(M) = M−1.
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clear that the spinor representation for the unit covariant LHC
electric field state incident on the antenna must be,

ψA =

(
ψ0

ψ1

)
=

1√
2

(
1
−j

)
=

1√
2
(−ιA − joA) . (43)

Then, the contraction gives, both numerically and formally,
the voltage:

V = ψAη
A = ψ0η

0+ψ1η
1 =

1

2

(
−ιAoA + oAι

A
)
= 1. (44)

For the spinor representation of the corresponding LHC trans-
mitted wave, under Graves’ convention, whereby the represen-
tations differ for counterpropagating wave we use the primed
frame. First, lower the index of the antenna height, then apply
the priming rule:

ηA → ηA =
1√
2
(oA + jιA) → (45)

→ ψÃ =
1√
2
(oÃ + jιÃ) =

=
1√
2

[(
1
0

)
+ j

(
0
1

)]
=

1√
2

(
1
j

)
.

As expected, the same handedness circular polarization
wave has apparently the conjugate representation, which arises
through geometric and linear manipulations alone. The same
exercise can be repeated trivially for the case of RHC polariza-
tion, and one can consider the case of any linear polarization
using real combinations of the spinor basis elements. The main
difference in our approach is to regard the received wave as
primary, and the transmitted wave as the reversed direction.
Conventionally, the transmitted wave has been treated in a
sense as the primary one, the main justification being that it
could be identified with the antenna state. Rigorous application
of the formalism shows, on account of the tensor properties of
the Green’s dyadic that we can only obtain the componentwise
equality of the polarization state vectors by realizing Graves’
directional wave vector formalism in terms of placing the
antenna height vector and transmit field in different spin
frames. The received wave ψA (described as a covariant
spinor) lies in the dual space (i.e. in the same spin frame)
as the antenna height ηA (described as a contravariant), which
it must to keep the scalar received voltage invariant.

B. Basis transformations

Again, considering the case of the circular polarizations,
we can use the results above to deduce the basis transforma-
tion matrices ab initio. For (H,V)→ (L,R), we have, for the
received wave:

LHC:
1√
2

(
1
−j

)
→

(
1
0

)
(46)

RHC:
1√
2

(
−j
1

)
→

(
0
1

)

UR =
1√
2

(
1 j
j 1

)
. (47)

While, for the transmitted wave,

LHC:
1√
2

(
1
j

)
→

(
1
0

)
(48)

RHC:
1√
2

(
j
1

)
→

(
0
1

)

UT =
1√
2

(
1 −j
−j 1

)
. (49)

We add suffices R, T here for clarity to denote where the
transformation applies to the received or transmitted wave.
The scattering matrix transformation, as Graves should have
written it, then takes the form:

ER = SET → E′
R = URER = URS(UT)

−1E′
T (50)

which gives:

S′ = UR S (UT)
−1 =

1

2

(
1 j
j 1

)
S

(
1 j
j 1

)
(51)

This is always automatically of the congruential form without
any step involving a conjugation.

Given the basis transformation matrices for the received
wave:

U HV→LR
R =

1√
2

(
1 j
j 1

)
U HV→±45◦

R =
1√
2

(
1 −1
1 1

)
(52)

a set of canonical examples of scattering matrices (sphere Ssph,
diplane Sdipl and left handed helix Slhh) transforming under the
congruential rule are reported in the following:

SHV
sph =

(
1 0
0 1

) 
UHV→LR

R−→ SLR
sph =

(
0 j
j 0

)
UHV→±45◦

R−→ S±45◦

sph =

(
1 0
0 1

) (53)

SHV
dipl =

(
1 0
0 −1

) 
UHV→LR

R−→ SLR
dipl =

(
1 0
0 −1

)
UHV→±45◦

R−→ S±45◦

dipl =

(
0 1
1 0

) (54)

SHV
lhh =

1√
2

(
1 j
j −1

) 
UHV→LR

R−→ SLR
lhh =

√
2

(
0 0
0 −1

)
UHV→±45◦

R−→ S±45◦

lhh = 1√
2

(
−j 1
1 j

)
(55)

All the cases above involve unitary transformations, and
there is no difference between the congruential rule and the
result obtained by consimilarity. We now consider further
examples, including two transformations that are unitary and
one involving lossy propagation, in which the congruential
rule still provides the correct answer, but where consimilarity
throws up problems. We consider three simple targets: a
sphere, a raindrop, and a 30◦ canted dipole. The raindrop is
considered to be oriented with symmetry axis vertical, and to
have a copolar return in HH that is 3dB higher than in VV.
The raw scattering matrices in HV and LR basis are given in
the following table.
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TABLE I

SHV
sph =

(
1 0
0 1

)
SLR

sph =
( 0 j
j 0

)
SHV

rd =
( SHH 0

0 SVV

)
SLR

rd =
( SHH 0

0 SVV

)

1) Doppler shift: Consider the target to be moving with
a recessional radian Doppler frequency, ωd. Then, as a time
dependent scattering matrix, we can express the scattering
matrix in each case as equivalent to a time-dependent basis
change (the antennas receding from the target): S′ = USUT

for example in the case of the raindrop,

S′ =

(
e j ωdt 0
0 e j ωdt

)(
SHH 0
0 SVV

)(
e j ωdt 0
0 e j ωdt

)
=

(
SHH e2j ωdt 0

0 SVV e2j ωdt

)
. (56)

The well known double Doppler shift appears naturally in this
prescription. In the consimilarity representation, this comes
about by the circuitous route of inverting and conjugating the
return Doppler factor.

2) Raindrop target in presence of lossy propagation factor:
European weather radars typically operate at C-band where
absorption losses cannot be ignored. Typically multiple scat-
tering effects can be neglected, and the dominant effect is of
coherent forward scattering with a mean attenuation (which
we will here absorb into an overall scaling) and a differential
attenuation ∆τ , and differential propagation phase ∆φ [40].
Examples of this kind are not restricted to weather radars.
Targets embedded in vegetation will also be modified by the
anisotropy of scattering which may according to frequency
involve both refractive and lossy characteristics of an effective
medium. Now for the conguential rule we have, applying the
transmission matrix T to the received wave, and its transpose
to the transmitted wave,

S′ = TSTT =

=

(
eα 0
0 e−α

)(
SHH 0
0 SVV

)(
eα 0
0 e−α

)
=

=

(
SHH e2α 0

0 SVV e−2α

)
=

=

(
SHH e−∆τ+j∆φ 0

0 SVV e∆τ−j∆φ

)
, (57)

where α = −∆τ+j∆φ
2 . But if we applied consimilarity the

result would be:

S′ = TST̄−1 =

=

(
eα 0
0 e−α

)(
SHH 0
0 SVV

)(
e−ᾱ 0
0 eᾱ

)
=

=

(
SHH eα−ᾱ 0

0 SVV eᾱ−α

)
=

=

(
SHH ej∆φ 0

0 SVV e−j∆φ

)
. (58)

This predicts that the relative amplitudes are unchanged, that
is, that the return path compensates for the losses. Experimen-
tally, of course, this is not what is observed. While SHH in this

context is usually larger than SVV, the differential attenuation
is positive (i.e. more for HH than VV) and the ratio |SHH

SVV
|

as well as the absolute values is normally diminished when
attenuation is present. If we had included the mean attenuation
within the propagation matrix, this also would have been
compensated on the return path. For a fairly large raindrop
of equivolume diameter 5 mm at 5.6 GHz, the scattering
amplitudes are (in units of cm) SHH = (0.02021− j 0.01044),
SVV = (0.011885 − j 0.005359). In the case of not untypical
propagation factors with a one-way differential attenuation of
0.24 dB, and a one-way integrated differential phase of 15◦,
the modified scattering measured matrices of the raindrop S′

rd

and unit dipole S′
dp are (excluding the effects of the mean

propagation effects)

S′
rd =

(
0.02162− j 0.00462 0

0 0.01340− j 0.0002

)
(59)

S′
dp =

(
0.7047 + j 0.1888 0.433

0.433 0.2482 + j 0.0665

)
. (60)

For the raindrop, naı̈ve application of consimilarity would
have resulted in an error of nearly half a decibel in the
differential reflectivity factor ZDR = |SHH

SVV
|2.

VI. CONCLUSIONS

Graves’ conception of directional wave vectors has been
realized here using spinor representations, without recourse to
physically incorrect complex conjugations. This respects the
linearity of the scattering process, and there is no requirement
for time-reversal symmetry, as shown by examples given
where radar signals suffer (polarization dependent) attenu-
ation. The spinor priming operation provides the alternate
representation for the counter-propagating wave. Again, the
analysis clears up an anomaly in that it has generally been
presumed that the transmitted electric field and antenna height
can be identified up to dimensional or scale factors, with
the return wave belonging to the opposite directional wave
space. A critical understanding of the role of the Green’s
dyadic which is Euclidean invariant but not unitarily invariant
shows that this axiomatic start point is in fact invalid; reliance
on Cartesian coordinates in a complexified Euclidean space
disguises the true transformational properties of the objects
involved. As Mieras correctly pointed out long ago [7],
the basis invariance of the voltage equation is fundamental.
From there, it follows that the received field and antenna
height transform reciprocally. These belong to the same spin-
frame representation (one covariant, the other contravariant)
while the transmitted field in terms of Graves’ directional
wave formalism belongs to the alternative frame. The idea
of distinguishing covariant and contravariant objects is never
required in Euclidean vector spaces, because the metric is
the diagonal unit matrix preserved under (real) rotations and
reflections - the isometries. Once unitary transformations are
introduced this is no longer so. Nor can one simply evade
the problem by resorting to a Hermitian metric, because these
map vectors from a pair of conjugate spaces to scalars, and
this is inappropriate to the problem in hand. Jones vectors
were adopted in radar from optics, where there is practically
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no need to have a representation for antennas. Without any
specific provision in the formalism for their representation,
the notion of their need to transform reciprocally with respect
to fields has never fully crystallized because of the confusing
counterfactual, that their polarization vector is to be identified
with the transmitted field. As our analysis showed, their
componentwise equality arises from an appropriate choice of
the alternate spin frame, but they are not formally identical
from the geometric point of view. Use of spinor notation
forces us to realize that antennas and fields must exist in dual
spaces, and provides the formal machinery for handling them
consistently. Graves’ formulation refers to the scattering matrix
in the way that it has generally been understood as the operator
mediating between transmit and received field components.
As we showed, and as Graves intended this operator has
a domain in the space of outward propagating polarization
states, and a range in the state of inward propagating states.
It clearly makes no sense for such scattering matrices to be
concatenated, so they do not formally belong to a ring of
matrix algebra, and one would never have expected that they
would transform under similarity. The congruential rule is not
obvious either, however. By contrast, the representation of
the voltage equation as a voltage form (41) naturally does,
because it maps two antenna states in the same spin frame to
a scalar. For this reason we would advocate that the doubly
covariant voltage form be the preferred representation in radar,
particularly for backscatter, since the symmetry that follows
from reciprocity is immediately apparent, and equally, the
congruential rule is naturally explained. It has been argued
by some that the field operator form is in a sense more
fundamental, but at least for BSA Graves’ directional wave
formalism requires quite involved artificial constructions to
be expressed with mathematical and physical consistency.
We would counter that voltage form is what is actually
measured; fields can only be inferred from measurements.
There are several more reasons to favour the representations
of both Sinclair and Kennaugh scattering matrices as bilinear
forms that we hope to present in further publications. Spinor
formalism has played a crucial role in clarifying fundamental
principles in polarimetric problems from both a mathematical
and physical standpoint. Existing formalism relies on the
much more generally familiar Euclidean vector concepts but
is inadequate for making the important distinctions that are
required for the rigorous framework that polarimetry requires
if we are to get the most out of exploring the subtleties of
vector scattering that current and future technology will offer.
The adoption of spinor formalism would be as close to a
paradigm shift as radar polarimetry has seen since it was
pioneered, but it seems to be the ideal vehicle for presenting
Geometric Polarimetry as a fresh and powerful means of
problem description and solving.

APPENDIX I
THE PRIMING OPERATION AND LINEAR TRANSFORMATIONS

Let us consider first the spinor basis as in (28) and (32) in
its contravariant {oA, ιA} and covariant {oA, ιA} forms:

oA =

(
o0

o1

)
=

(
1
0

)
, ιA =

(
ι0

ι1

)
=

(
0
1

)
, (61)

oB = oAεAB =

(
0
1

)
, ιB = ιAεAB =

(
−1
0

)
. (62)

The spinor M B
A in (36) describing linear operations on

covariant spinors can be constructed from a basis for all these
matrices. This basis is easily built from the outer products of
the basis spinors oA, ιA as:

oAo
B =

(
o0 o

0 o0 o
1

o1 o
0 o1 o

1

)
=

(
0 0
1 0

)
(63)

oAι
B =

(
0 0
0 1

)
(64)

ιAo
B =

(
−1 0
0 0

)
(65)

ιAι
B =

(
0 −1
0 0

)
. (66)

The spinor M B
A can be expressed as:

M B
A = γ oAo

B + δ oAι
B − α ιAoB − β ιAιB , (67)

which using the matrix form of the outer products becomes

M B
A =

(
α β
γ δ

)
. (68)

The basis spinor oA and ιA will transform in the new spinors
κA and λA as in the following:

κA =M B
A oB =

(
β
δ

)
, κA =

(
δ
−β

)
(69)

λA =M B
A iB =

(
−α
−γ

)
, λA =

(
−γ
α

)
, (70)

and their inner product is:

κAλ
A = δα− βγ. (71)

Using instead the new spinor basis oÃ and ιÃ obtained with
the priming operation in (33)

oÃ = −ιA =

(
0
−1

)
, ιÃ = oA =

(
1
0

)
(72)

and their covariant form

oB̃ = oÃεÃB̃ =

(
1
0

)
, ιB̃ = ιÃεÃB̃ =

(
0
1

)
. (73)

Their outer products are:

oÃo
B̃ =

(
0 −1
0 0

)
(74)

oÃι
B̃ =

(
1 0
0 0

)
(75)

ιÃo
B̃ =

(
0 0
0 −1

)
(76)

ιÃι
B̃ =

(
0 0
1 0

)
. (77)
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The spinor M B
A can be expressed as:

M B̃
Ã

= γ oÃo
B̃ + δ oÃι

B̃ − α ιÃo
B̃ − β ιÃι

B̃ , (78)

which using the matrix form of the outer products becomes

M B̃
Ã

=

(
δ −γ
−β α

)
. (79)

The basis spinor oÃ and ιÃ will transform in the new spinors
κÃ and λÃ:

κÃ =M B̃
Ã

oB̃ =

(
δ
−β

)
, κÃ =

(
−β
−δ

)
(80)

λÃ =M B̃
Ã

ιB̃ =

(
−γ
α

)
, λÃ =

(
α
γ

)
, (81)

and their inner product is:

κÃλ
Ã = δα− βγ. (82)

The null basis vectors l, n, m and m̄ in (30) will transform
under the priming operation in:

l̃ → oÃoÃ
′ ≡

(
0 0
0 1

)
ñ → ιÃιÃ

′ ≡
(
1 0
0 0

)
m̃ → oÃιÃ

′ ≡
(

0 0
−1 0

)
˜̄m → ιÃoÃ

′ ≡
(
0 −1
0 0

)
, (83)

namely l̃ → n, ñ → l, m̃ → −m̄ and ˜̄m → −m as in
(34).
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