Photoperiod sensitivity affects flowering duration in wheat

It is advisable to refer to the publisher’s version if you intend to cite from the work.

To link to this article DOI: http://dx.doi.org/10.1017/S0021859616000125

Publisher: Cambridge University Press

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement.

www.reading.ac.uk/centaur
CentAUR
Central Archive at the University of Reading
Reading’s research outputs online
PHOTOPERIOD SENSITIVITY AFFECTS FLOWERING DURATION IN WHEAT.

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Journal of Agricultural Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>AGS-2015-00237.R3</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Crops & Soils Research Paper</td>
</tr>
<tr>
<td>Keywords:</td>
<td>anthesis, Ppd, near isogenic lines, heat stress, flowering period</td>
</tr>
</tbody>
</table>
Photoperiod sensitivity affects flowering duration in wheat.

H.E. JONES¹, M. LUKAC¹, B. BRAK¹, M. MARTINEZ-EIXARCH¹,², A. ALHOMEDHI¹, M.J. GOODING¹, L. U. WINGEN², S. GRIFFITHS²

¹School of Agriculture, Policy, and Development, University of Reading, RG6 6AR, UK
²Extensive Crops Programme, Institute for Food and Agricultural Research and Technology (IRTA), Crta. Balada, 43870 Amposta, Tarragona, Spain.
³Department of Crop Genetics, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
⁴Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, CZ-16521 Prague, Czech Republic

To whom all correspondence should be addressed. Email: h.e.jones@reading.ac.uk

KEYWORDS
anthesis, Ppd, near isogenic lines, heat stress, flowering period

SUMMARY
Flowering and successful pollination in wheat are key determinants of both quantity and quality of grain. Bread wheat line ‘Paragon’, introgressed with single or multiple day length insensitivity alleles was used to dissect the effects on the timing and duration of flowering within a hierarchical plant architecture. Flowering of wheat plants was observed in a series of pot-based and field experiments. Ppd-D1a was the most potent known allele affecting the timing of flowering, requiring the least thermal time to flowering across all experiments. The duration of flowering for individual lines was dominated by the shift in the start of flowering in later tillers and the number of tillers per plant, rather than variation in flowering duration of
individual spikes. There was a strong relationship between flowering duration and the start of flowering with the earliest lines flowering for the longest. The greatest flowering overlap between tillers was recorded for the *Ppd-1b*. Across all lines, a warmer environment significantly reduced the duration of flowering and the influence of *Ppd-1a* alleles on the start of flowering. These findings provide evidence of pleiotropic effects of the *Ppd-1a* alleles, and have direct implications for breeding for increased stress resilient wheat varieties.

INTRODUCTION

Timings of wheat developmental stages such as the onset of reproductive development, meiosis, anthesis, and grain filling are adaptive traits (Slafer *et al*. 2009). Genetic control of vernalisation requirement with *Vrn* alleles, earliness per se (*eps*) and photoperiod sensitivity (*Ppd*) (Reynolds *et al*. 2012) all contribute to resource capture, dry matter partitioning and stress avoidance during critical developmental stages for grain yield formation in different environments (Barber *et al*. 2015). With regards to anthesis, early flowering can confer an advantage if excessive heat or drought stress is likely to develop during maturation such as in Southern Europe (Worland and Law 1986; Worland *et al*. 1998;). In such conditions, early development can reduce the risk of negative effects on: gamete development prior to anthesis; photosynthate supply during floret development; pollen release and fertilization; and grain filling (e.g. (González *et al*. 2011; Kato and Yokoyama 1992; Saini and Aspinall 1982). Early development in short days can be conferred by photoperiod insensitivity (PI). *Ppd-D1a* is the most potent known PI allele and the dominant source of PI in European (Snape *et al*. 1991) and Asian cultivars (Kiss *et al*. 2014; Yang *et al*. 2009). Two further *Ppd-1* homeologous genes have been mapped to the short arm of group 2 chromosomes in wheat and alleles conferring PI have been identified: *Ppd-A1a* allele, as for *Ppd-D1a*, is associated with an
upstream deletion within a pseudo response element (Beales et al. 2007; Wilhelm et al. 2009) and predominates in modern durum wheat (Bentley et al. 2011); Ppd-B1a is a result of an increased gene copy number (Díaz et al. 2012; Kiss et al. 2014), carried by 22% of wheat genotypes from Europe, Asia and America, and therefore the second most important Ppd-1a allele in global wheat germplasm (Kiss et al. 2014).

Effects of Ppd-1 alleles on mean flowering date are well documented and in the field are likely to depend on day length progression during different growth stages, and hence interact with latitude, sowing date, temperature and other genetic components of developmental rate such as Vrn and eps status (Snape et al. 1991; Foulkes et al. 2004; González et al. 2005; Kiss et al. 2014). As well as mean flowering date, however, an adaptive trait that has received little attention to date is the extent to which duration of flowering i.e. the duration by which pollination may occur within and/or between ears might be related to yield stability, e.g. extending the period over which a crop flowered would mean that a damaging spike in temperature would disrupt the fertilization of a smaller proportion of florets (Lukac et al. 2012). Modelling studies have demonstrated the importance of flowering duration for estimating the impact of brief periods of high temperature on crop yield (Challinor et al. 2005). Conversely, Barber et al. (2015) suggest variable growth stages between stems of a poorly geographically-adapted crop may be associated with poor grain set and increased susceptibility to stress.

Wheat varieties are known to vary for flowering duration (Hucl 1996; Matus-Cadiz et al. 2004) but little is known concerning the effects of Ppd alleles on the duration of flowering. This study has particular relevance to increase the knowledge of the potential adaptive traits of Ppd alleles beyond the known PI. Here we compare the effect of Ppd-1 alleles in near isogenic lines (NILs) in pot and field experiments with regards to flowering time and duration.
within and between stems, and also present a novel ‘overlap index’ to characterise the coincidence of flowering on different stems.

METHODS

Plant material

NILs, carrying photoperiod insensitivity alleles Ppd-A1a, Ppd-B1a, Ppd-D1a from different germplasm in a photoperiod sensitive ‘Paragon’ background, were used in the experiments. Single NILs or introgression lines carried either Ppd-A1a (‘GS-100’), Ppd-B1a (‘Sonora64’) or Ppd-D1a (‘Sonora64’) (Bentley et al. 2011). Two triple introgression lines (Ppd-1a on all three genomes), developed from the single NILs (Shaw et al. 2012) were also used. The first triple Ppd-1a introgression line (Triple1) carried the same alleles as the single introgression lines, but jointly in one line (Ppd-A1a+Ppd-B1a+Ppd-D1a = Ppd-1a). The second triple Ppd-1a introgression line (Triple2) was the same but for the Ppd-B1a allele coming from ‘Chinese Spring’. ‘Paragon’, which had the photoperiod sensitive allele at all loci (Ppd-A1b+Ppd-B1b+Ppd-D1b = Ppd-1b), was also included.

Pot experiments

Pot-based experiments were carried out at the Plant Environment Laboratory facility, the University of Reading, UK (51°24’41.8222”N, 0°56’31.634W). Individual wheat plants were grown in 12.5 cm diameter pots filled with a 4:4:2:1 mixture of steam-sterilized 6 mm gravel, medium vermiculite, 3 mm sharp sand and peat based potting compost. Osmocote Pro 3-4 months (Scotts, UK) was added to the mixture at the rate of 2 kg per cubic metre to provide plant nutrition throughout the experiment. Pots filled with the planting medium were soaked with water for 24 h prior to sowing with single seeds to a depth of 2.5 cm.
The first pot-based experiment henceforth referred to as the ‘pot-based ambient (A) experiment’; was carried out with plants grown in outside conditions. Four replicate pots per line were randomly distributed in an outside enclosure in 2011 and 2012 the first batch sown on 25 February 2011 (2011 growing season) and the second sown on 9 December 2011 (2012 growing season). All pots were initially kept in an unheated polytunnel and regularly assessed for growth stage (GS, Zadoks et al. 1974). Plants were transferred to an open area protected by bird netting at GS 31. Pots were raised on frogged bricks to allow for free drainage and irrigated daily through an automatic drip system to full water capacity. All plants were treated against powdery mildew as required with Flexity (300 g/litre (25.2% w/w) metrafenone; BASF Plc, UK in 0.5 l/ha). Temperature data was recorded at half hour intervals (Supplementary table 1).

The second pot-based experiment utilised controlled environment growth cabinets to subject plants to two different temperature regimes throughout their life cycle. Henceforth referred to as the ‘controlled environment (CE) experiment’, it was sown on 23rd December 2012. The plants were initially kept in a polytunnel as outlined above and transferred to controlled environment Saxcil growth cabinets (photon flux 650 µMol m^{-2} s^{-1}; 70% relative humidity; 390 ppm atmospheric CO_{2}) when plants reached the double ridge stage (Kirby 1981). Sixteen replicate pots per line were randomly distributed between and within six growth cabinets, eight in ambient (cool) and eight in warm (ambient +5°C) cabinets. The day and night temperatures in the cabinets followed ‘cool’ (ambient) and ‘warm’ (ambient + 5°C) weather patterns as informed by the Waddington Meteorological station 53º10’10.6476”N, 0º32’7.962”W) from 2012 (Met Office, 2012, contains public sector information licensed under the Open Government Licence v2.0). Similarly, day length adjustment took place at weekly intervals and was based on UK daylight variation (Supplementary table 2).

Flowering assessment in pots
All plants were allowed to develop four tillers in addition to the main stem, any further tillers
were removed. Tillers were labelled consecutively according to order of emergence, where
Tiller 1 refers to the first ear coming into flower after the main stem. The spikelets on each
ear were numbered from the collar upwards, the lowest being ‘1’ and the subsequent numbers
alternating between sides such that one side of the ear is ‘odd’ and the other ‘even’. All ‘odd’
spikelets were assessed for flowering progress on each of the emergent tillers. Five florets
within each spikelet were identified, following the scheme of Kirby and Appleyard (Kirby
and Appleyard 1984). The first floret from the lower glume was labelled as ‘A’, with
subsequent florets up the spikelet alternating between sides such that floret ‘B’ and ‘D’ were
on the same side. Flowering assessments started when tillers reached growth stage GS 57 and
continued until all flowering stopped on the last tiller.

Observations started at 10:00 h and were consistently completed before 15:00 h. Care
was taken to vary the first set of plants to be assessed each day to avoid any systemic bias due
to any potential diurnal pattern of flowering activity. Scoring of a spikelet was initiated when
the lower glume could be opened easily with a thumbnail and flowering assessment in the A
and CE experiment followed that described by Lukac et al. (2012). Each floret that could be
opened was scored using four developmental stages of both anthers and stamens. In the “A”
experiment in 2012, each spike was split into top, middle and bottom third and
presence/absence of active flowers was assessed as defined in Lukac et al. (2012). For the
purpose of this analysis, only data relating to active flowering were used. Anthers were
declared ‘active’ when showing signs of pollen dehiscence, whereas stigmas were
considered ‘active’ when receptive to pollen. Flowering was deemed to have started at the
presence of the first dehiscent anther and/or receptive stigma, flowering finished when all
anthers and stigmas for a given spike had passed the active stage. For the purposes of this
paper, ‘male’ flowering refers to anther activity, and ‘female’ flowering refers to stigma activity.

Field Experiment

Plots (minimum 2 x 5m) were drilled (300 seeds/m²) into a free-draining sandy loam overlying coarse red–brown sand of the Sonning series (Jarvis 1968), following a clover-rich grass ley at the Crop Research Unit, Sonning, University of Reading, UK (51°28'38.9305"N, 0°54'0.3831"W) Paragon (Ppd-1b) was compared with NILs incorporating Ppd-A1a, Ppd-B1a and Ppd-D1a in four randomised blocks. The Triple 1 and 2 lines were not included due to a limited volume of seed. Plots were maintained with fertilizer, fungicide and herbicide applications as per local agricultural practice. Flowering was assessed in three randomly-placed 0.1m² circular quadrats per plot from when the first plots started to extrude anthers to when all anther extrusion had finished, indicated by an absence of yellow anthers on all tillers. The quadrat position avoided plot edges, and all tillers within the quadrat were assessed. Ten to fourteen assessments were carried out per allele per plot over the duration of flowering.

Statistical analyses

Pot-based experiments

Analysis of the “A” experiment used REML with a random model of year/replicate and a fixed model of Line and for the “CE” experiment the REML analysis comprised a random model of Cabinet/Pot and a fixed model of environment x line. All analyses were carried out using Genstat (13th Edition, VSN International Ltd). REML was used to account for a minimum amount of missing data for individual plants where the full number of 5 tillers did not develop.
In addition to flowering duration, a simple metric - the Flowering Overlap Index (FOI) - was defined expressing the degree of overlap of flowering at the plant level. FOI is zero if there is no overlap of flowering time between any pair of tillers considered and is plus or minus one if all tillers considered flower on exactly the same days. First, for each pair of ears (i,j), the Flowering Overlap Index FOI (i,j) is calculated using the start (Fs) and end (Fe) dates of flowering as follows:

\[
\begin{align*}
\text{if } & \text{MIN}(Fe(i), Fe(j)) < \text{MAX}(Fs(i), Fs(j)) \quad \text{FOI}(i,j) = 0 \\
\text{if } & \text{MIN}(Fe(i), Fe(j)) \geq \text{MAX}(Fs(i), Fs(j)) \quad \text{FOI}(i,j) = \frac{\text{MIN}(Fe(i), Fe(j)) - \text{MAX}(Fs(i), Fs(j)) + 1}{\text{MAX}(Fe(i), Fe(j)) - \text{MIN}(Fs(i), Fs(j)) + 1}
\end{align*}
\]

For example, if an ear on the main stem (MS) flowers from day 1 to 4 and an ear on first primary tiller (T1) flowers from day 3 to 5 then FOI (MS,T1) = 2/5 = 0.4. For a given plant, FOI is then calculated as the mean of the FOIs of all possible pairs of tillers considered, e.g. if only the first three tillers are considered:

\[
\text{FOI}_3 = \frac{\text{FOI}_{1,2} + \text{FOI}_{1,3} + \text{FOI}_{2,3}}{3}
\]

A script was written in Fortran to calculate the Flowering Overlap Index for the first three flowering tillers (FOI_3) and for all five tillers (FOI_5) using the algorithms as described above.

Field Experiment 2013

Percentage of ears in flower over time was fitted with a Gaussian curve for each separate field plot with constant omitted for each plot to provide estimates for duration of flowering (Gaussian S = standard deviation), time of peak flowering (Gaussian M = time scalar) and the area under the time x flowering curve (Gaussian B). The model parameters thus derived were then subject to an ANOVA for a balanced, randomised block experiment.
RESULTS

Controlled environment experiment

Male flowering

The delay in flowering over the different tillers from MS to T5 is evident in Fig. 1b-f. The earliest lines to flower were those where the three \(Ppd-1a \) alleles had been combined. Where only one insensitivity allele was present, \(Ppd-D1a \) was the most potent, the respective NIL being significantly earlier to flower than either those carrying \(Ppd-B1a \) and \(Ppd-A1a \). The \(Ppd-1b \) control was the last to flower. This pattern in timing of flowering was broadly evident on all tiller classes. The differences among the \(Ppd \)-insensitivity alleles tended to be less distinct in the warmer environment; an observation that contributed to significant (\(P<0.05 \)) environment x line interactions for the start or end of flowering on the mainstem (Fig. 1b) and T4 (Fig. 1e).

When all tillers were considered, there was no evidence of a main effect of \(Ppd \) allele on duration of flowering within a spike (Table, 1; \(P=0.22 \)), nor interaction between allele and environment (\(P=0.70 \)). Increasing temperature, however, did reduce the duration of flowering within a spike from 2.7 to 1.0 days (S.E.D. = 0.12; 4 d.f.; \(P<0.001 \)). When the whole plant was considered flowering occurred over a shorter period for \(Ppd-1b \) than for any line carrying a PI allele. This effect of \(Ppd-1b \) is quantified in Table 1, but is also most evident by comparing the timings of flowering of the mainstem (Fig. 1b) with those of T5 (Fig. 1f). i.e. flowering duration of a plant is dominated by the differences in start of flowering between tillers, and also the number of tillers present, rather than flowering duration within spikes. The FOI of the first 3 and the first 5 tillers to flower showed no effect of environment in contrast to the female flowering results (Table 2) or interaction between line and environment.
However, there was a significant ($P = 0.01$) effect of line for 5 tillers with the greatest mean overlap of tiller flowering for the $Ppd-1b$ control which is likely to be the dominant factor resulting in the shortest plant flowering time (Table 2). No significant difference in FOI was recorded for the male flowering for the first 3 tillers.

High temperature did tend to reduce the differences in flowering duration among alleles and the environment x line interaction was not particularly strong ($P=0.10$). In contrast, the main effect of environment was highly significant: high temperature reducing flowering duration over plants from 13.2 to 8.3 days (SED=0.43; d.f.=3; $P=0.006$) but this effect was dominated by reducing flowering duration within spikes (Fig. 1, 2) rather than altering the flowering overlap between tillers.

Female flowering

With the described scoring method, female flowering started on the same day (grand mean: days after sowing = 162.5, s.e.=0.39) as male flowering (day = 162.7, s.e.=0.28). Effects of $Ppd-1$ allele and environment on the time of female flowering were similar to those seen with male flowering (Fig. 2). Again, there were significant environment x line interactions for the start or end of flowering on the mainstem (Fig. 2b) and T4 (Fig. 2e). Duration of female flowering, however, tended to be longer than that for anther dehiscence (Table 1), and in contrast to the anthers, duration of female flowering within a spike was influenced by $Ppd-1$ allele: i.e.significantly longer for all three lines carrying $Ppd-D1a$ compared with the $Ppd-1b$ line. Warm conditions reduced duration of female flowering within spikes from 3.8 to 2.0 days (S.E.D.=0.15, d.f.=4), and within plants from 13.8 to 9.6 days (S.E.D.=0.64). As with the timing of pollen dehiscence, the effect of $Ppd-1$ allele on female flowering duration did not interact with environment. However, the FOI indicated that environment had a significant effect on the overlap between tillers ($P=0.01$) for the first 5 tillers with the warmer
environment reducing the overlap from 0.22 to 0.18 days (SED=0.01798), no such effect was observed when considering the first 3 tillers only. Line had a significant effect on FOI, \textit{Ppd-lb} had the greatest overlap between tillers, but it was only significantly greater than Triple 1. In contrast, considering just the first 3 tillers to flower (Table 2), although \textit{Ppd-lb} had the greatest overlap, it was only significantly greater than \textit{Ppd-B1a} (P=0.017).

There was a highly significant relationship between duration of flowering and thermal time to the start of flowering (P<0.001), indicating that the duration of flowering was longer in earlier flowering lines (Figure 3). There was an effect of environment (P=0.05) with a greater change in duration relative to start of flowering in the cooler environment. There was no significant difference in the slope between male and female flowering.

Field experiment 2013

\textit{Ppd} allelic state did not influence the total amount of flowering over time (Gaussian B; Table 3). As in the CE experiment \textit{Ppd-D1a} lines were early, and \textit{Ppd-lb} lines were late to flower (Gaussian M; Table 3; Fig. 4). In contrast to the CE experiment, however, there was a clear distinction between the flowering time of \textit{Ppd-A1a} lines, which were almost as late to flower as \textit{Ppd-lb} lines, and that of \textit{Ppd-B1a} lines, which were as early as \textit{Ppd-D1a} lines (Fig. 4). Consistent with the CE experiment for flowering durations over plant, all photoperiod insensitivity alleles increased flowering duration in plots (Gaussian S; Table 3; Fig. 4) compared with \textit{Ppd-lb} lines.

Pot-based ambient experiment

All PI lines flowered earlier than \textit{Ppd-lb}, with \textit{Ppd-D1a} the most potent allele to induce flowering at the lowest mean thermal time of 1281Cdays (SED = 15.51; Table 4). Under pot-based ambient conditions \textit{Ppd-B1a} line and Triple 2 had the longest male flowering duration.
within spikelets (P<0.001) compared to all other lines. For the whole plant flowering
duration, lines carrying Ppd-1b, Ppd-B1a, Ppd-D1a and Triple 2 flowered for about twice the
duration of all other lines (P<0.001; Table 5).

DISCUSSION

The effect on flowering of single or triple Ppd-1a insensitivity alleles introgressed into a
common genetic background was the subject of this study. The relative potency of Ppd-1a
insensitivity alleles in terms of flower initiation is in agreement with previous literature: the
greatest effects were consistently caused by the Ppd-D1a introgression (Worland et al. 1998;
Bentley et al. 2011).

In wheat, induction of flowering involves the CONSTANS (CO) gene which has peak
transcription under long day conditions which activates the FLOWERING LOCUS T (FT)
expression, causing flowering. The deletion upstream of the PRR coding region in the Ppd-
D1a allele was found to be associated with expression of a floral regulation FT under short
days, and has been suggested to be involved in the circadian clock (Beales et al. 2007). In this
study, the potency of the Ppd-1a alleles varied, with the earliest flowering line also having the
longest flowering duration. Significant cross-talk between numbers of signalling pathways is
highly likely, and the single deletions afforded by the Ppd-1a alleles may result in earlier
flowering but less control on the actual start of flowering, potentially leading to greater
variability between tillers. The longer flowering duration in the earlier flowering lines was
found to be largely attributed to less overlap between tillers. Indeed, the effect of Ppd-1a
alleles on flowering duration was less pronounced in the warm compared to the cooler
environment. In addition, it may be suggested that the FT transcripts may have a pleiotropic
effect on the induction of flowering in successive tillers, potentially by cross talk through the
sugar or hormonal pathways.
The most rapid method for assessing start of flowering is to consider a population of tillers, as in a field trial, and determine the mean across that population, with 50% anthesis stated when half of all tillers are extruding anthers (e.g. Griffiths et al. 2009). This method prohibits any differentiation between the main stem and subsequent tillers and thus provides a level of uncertainty relating to the variation in number of tillers per plant and therefore the duration of flowering per plant. To better characterise this variation, a fixed number of five tillers were scored per plant in a pot based and a controlled environment experiment. Analysis of flowering duration for individual tillers, and the timing of the start of flowering between subsequent tillers has revealed a pleiotropic effect of the \textit{Ppd-1a} alleles that is independent of environment. The presence of all \textit{Ppd-1b} alleles led to the greatest overlap between tillers, such that at any one time during anthesis there were a greater number of open florets, whether considering dehisced anthers or receptive stigma, compared to the presence of one or more \textit{Ppd-1a} alleles. This greater overlap is likely to have been the major factor in reducing the overall time of flowering for an individual plant, with the dominate effect caused by the fourth and the fifth-flowering tiller. The relative timing of floret development and flowering between individual tillers may have particular relevance to floret survival and ultimately grain yield. Gonzalez \textit{et al.} (2011) demonstrated using multiple data sets that the initiation of floret death was linked to the demand for assimilate from the start of maximum stem extension. No detail is given as to the number of tillers per plant. To provide insights into whether a greater distribution of tillers across time would be advantageous for greater floret survival and thus seed number, experiments controlling the number of spikes per plant under different environments are needed. It can be hypothesised that the lower the floret overlap the greater the spread of assimilate demand across multiple spikes, resulting in higher seed numbers particularly under stress conditions.
In agreement with other literature (Greenup et al. 2009) the Ppd-1a lines demonstrated temperature responsiveness for start of flowering, but also reduced the duration of flowering in the warmer environment. Of particular relevance, is that under the warm controlled environment regime the difference between Ppd-1a alleles became less marked. There was a tendency for flowering duration for the whole plant to be shorter with increasing thermal time to flowering, with Ppd-1b lines flowering the latest and for the shortest duration, which was particularly pronounced in cooler conditions.

Stigma receptivity may occur over a number of days (Lukac et al. 2012) whereas anther dehiscence can be identified to a single day. This may favour recording of anther dehiscence over the opening of florets and inspection of the stigma as a tool to score varieties. Indeed, visual assessment of the start of flowering commonly relies principally on the visible appearance of protruding anthers and has the advantage of being more rapid and not requiring the opening of individual florets compared to stigma assessments. In the controlled environment experiments, the stigma receptivity exceeded the duration of anther dehiscence. This analysis did not take into account the number of florets that flowered earlier, but did agree with findings of Lukac et al. (2012) who identified a level of asynchronous behaviour between the maturity of stigma relative to the anther. The longer duration of stigma receptivity may have been caused by either (i) a delay in fertilization as a consequence of the stigma being receptive earlier than the time of pollen is release and/or (ii) an influence of the environment which delayed the arrival of the pollen on the active stigma. The relative synchrony in flowering was hypothesised by Lukac et al. (2012) to be linked to increased stress resilience due to greater probability of cross pollination between heat damaged plants. The difference identified in female flowering duration relative to male duration in this paper between all three lines carrying Ppd-D1a compared with Ppd-1b lines provides an opportunity to further test this hypothesis under extreme stress environments.
The presented study allows the comparison of field based, ambient pot-based and controlled environment experiments. This had the advantage to allow for management of tiller number and detailed floret assessments in comparison with field based assessment which integrates full plant development under agricultural conditions. The broad agreement between field based and pot based data validates data from the controlled environment, but the pot based work provides a means of a greater resolution of flower analysis. Furthermore, the difference in the start of flowering between $Ppd-1a$ and $Ppd-1b$ lines results in flowering starting on different calendar dates. In the field this can result in genotype by environment (G x E) interaction; for example one line which starts flowering on a warmer day would result in a shorter duration flowering than a line which starts anthesis one or two days later under cooler conditions. Under controlled environment conditions, the G x E effect can be controlled. Furthermore, the relative timing of the flowering of male compared to female floret parts has been suggested to be more closely linked to environmental effects than genotype (reviewed in Waines and Hegde 2003). Thus the controlled environment experiments prevent anomalous results which are a risk in the field under conditions of drought or heat stress.

CONCLUSION

In conclusion, this paper has quantified the differential effect of the three broad classes of PI alleles on spatial and temporal distribution of flowering in wheat. A further, as yet unexplored, variation in flowering phenology may exist for the individual haplotypes of these alleles. Work presented in this paper is relevant for the major challenges of crop adaptation to climate stress. Based on the evidence from ‘Paragon’ introgressed with three separate $Ppd-1a$ alleles, we claim that (i) $Ppd-D1a$ is the most potent photoperiod insensitive allele (ii) field, ambient pot-based experiments and controlled environment experiments have their own
relative merits in terms of dissecting a flowering phenotype as a consequence of the
practicalities of scoring a large number of ears, and the relative control of the environment
(iii) flowering duration varies with genotype principally at the whole plant level (iv) the Ppd-
la alleles resulted in lines flowering closer together under warmer conditions; and (v)
flowering overlap index demonstrates a significant level of variation between genotypes
which may interact with growth environment and can vary with the number of tillers per
plant.

ACKNOWLEDGEMENTS

This work was funded by the Biotechnology and Biological Sciences Research Council
(project H012176-1) with the exception of the field trials which were part of AA’s PhD
project, funded by the Saudi Government. The authors gratefully acknowledge the technical
assistance of Caroline Hadley, Laurence Hansen and Richard Casebow.

REFERENCES

regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum

Table 1 Effect of Ppd-1 allele on duration of flowering in controlled environments. Results are averages over two environments.

<table>
<thead>
<tr>
<th>Line</th>
<th>Introgressed alleles</th>
<th>Duration of flowering (d)</th>
<th>Within a spike</th>
<th>Within a plant</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Male</td>
<td>Female</td>
</tr>
<tr>
<td>Ppd-1b (‘Paragon’)</td>
<td>-</td>
<td></td>
<td>2.0</td>
<td>2.4</td>
</tr>
<tr>
<td>Ppd-A1a NIL</td>
<td>Ppd-A1a</td>
<td></td>
<td>1.7</td>
<td>2.4</td>
</tr>
<tr>
<td>Ppd-B1a NIL</td>
<td>Ppd-B1a</td>
<td></td>
<td>1.5</td>
<td>2.8</td>
</tr>
<tr>
<td>Ppd-D1a NIL</td>
<td>Ppd-D1a</td>
<td></td>
<td>2.1</td>
<td>3.3</td>
</tr>
<tr>
<td>Triple1</td>
<td>Ppd-A1a, Ppd-B1a (Sonora64) Ppd-D1a</td>
<td></td>
<td>1.7</td>
<td>3.3</td>
</tr>
<tr>
<td>Triple2</td>
<td>Ppd-A1a, Ppd-B1a (Chinese Spring) Ppd-D1a</td>
<td></td>
<td>2.0</td>
<td>3.1</td>
</tr>
<tr>
<td>SED (80 d.f.)</td>
<td></td>
<td></td>
<td>0.26</td>
<td>0.33</td>
</tr>
</tbody>
</table>

Table 2 The effect of Ppd-1 allele on the mean Flowering overlap index (FOI) for male and female flowering duration for the first 3 and for 5 tillers per plant. SED is given for the interaction between environment and line.

<table>
<thead>
<tr>
<th></th>
<th>Warm</th>
<th>Cool</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3 tillers</td>
<td>5 tillers</td>
</tr>
<tr>
<td>Male</td>
<td>Female</td>
<td>Male</td>
</tr>
<tr>
<td>Ppd-1b</td>
<td>0.2414</td>
<td>0.2872</td>
</tr>
<tr>
<td>Ppd-A1a</td>
<td>0.2838</td>
<td>0.2870</td>
</tr>
<tr>
<td>Ppd-B1a</td>
<td>0.1550</td>
<td>0.1683</td>
</tr>
<tr>
<td>Ppd-D1a</td>
<td>0.2290</td>
<td>0.3726</td>
</tr>
<tr>
<td>Triple1</td>
<td>0.2060</td>
<td>0.4780</td>
</tr>
<tr>
<td>Triple2</td>
<td>0.2805</td>
<td>0.2786</td>
</tr>
<tr>
<td>SED (5 d.f.)</td>
<td>0.0826</td>
<td>0.0835</td>
</tr>
</tbody>
</table>

Table 3 Effect of Ppd-1 allele on amount, time and duration of flowering in field-grown spring wheat.

<table>
<thead>
<tr>
<th>Allele</th>
<th>Flowering x time (d) (Gaussian B)</th>
<th>Flowering time (d) (Gaussian M)</th>
<th>Flowering duration (d) (Gaussian S, standard deviation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ppd-1b</td>
<td>332</td>
<td>112</td>
<td>3.95</td>
</tr>
<tr>
<td>Ppd-A1a</td>
<td>398</td>
<td>110</td>
<td>4.38</td>
</tr>
<tr>
<td>Ppd-B1a</td>
<td>400</td>
<td>105</td>
<td>5.64</td>
</tr>
<tr>
<td>Ppd-D1a</td>
<td>386</td>
<td>106</td>
<td>4.76</td>
</tr>
<tr>
<td>SED (9 d.f.)</td>
<td>28.8</td>
<td>0.4</td>
<td>0.318</td>
</tr>
</tbody>
</table>
Table 4 The effect of Ppd-1a allele on thermal time from sowing to male flowering in a pot-based ambient environment. Results are a mean of two years.

| Thermal time to flowering (°C days) |
|-----------------------------------|---
| Ppd-1b | 1426
| Ppd-A1a | 1293
| Ppd-B1a | 1348
| Ppd-D1a | 1281
| Triple1 | 1327
| Triple2 | 1351
| SED | 15.51
| d.f. | 5

Table 5 Effect of Ppd-1a and Ppd-1b alleles on duration of flowering in a pot-based ambient environment. Results are averages over two years with the exception of Triple 1 and Triple 2 which are for one year only.

Line	Duration of flowering (d)	
	Male	
	Within a spike	Within a plant
Ppd-1b	4.518	8.617
Ppd-A1a	3.909	4.119
Ppd-B1a	5.615	8.831
Ppd-D1a	3.809	8.350
Triple1	2.861	3.200
Triple2	5.638	9.080
SED (d.f. 5)	0.7468	1.902

Fig. 1. Effect of Ppd-1 allele and average temperature (panel a) on timing and duration of male flowering on different tillers in the CE experiment. Panels b-f correspond to main stem, T2, T3, T4 and T5 respectively. Grey and black lines are for warm and cool environments respectively. Error bars are one SED (80 d.f.) for comparing the start (○) and end (■) of flowering for the different alleles within each temperature and tiller. Points (○, ■) are the mean start and end of flowering for each tiller.
Fig. 2. Effect of Ppd-1 allele and average temperature (panel a) on timing and duration of female flowering on different tillers in the “CE” experiments. Panels b-f correspond to main stem, T2, T3, T4 and T5 respectively. Grey and black lines are for warm and cool environments respectively. Error bars are one SED (80 d.f.) for comparing the start (●) and end (■) of flowering for the different alleles within each temperature and tiller. Points (●, ■) are the mean start and end of flowering for each tiller.
Fig. 3. Relationship between the start of flowering and the duration of flowering of whole plants varying in photoperiod insensitivity alleles. Squares and dashed lines refer to female activity and circles and solid lines refer to male activity. Open and solid symbols are cold and hot environments respectively. Labels above female points refer to Ppd-1 allele (male alleles rank similarly for start), except T1 and T2 refer to triple combinations of A1a+B1a+D1a. Error bars are one S.E.D. for comparing female (F) and male (M) points. Fitted lines have slopes of -0.2750 d/d (s.e. = 0.0511) for cool environment and -0.0969 d/d (S.E. = 0.0270) for hot environment.
Fig. 4. Effect of Ppd-1 allele (○, solid line = Ppd-1b; ▲, long dashes = Ppd-A1a; ■, dotted line = Ppd-B1a; ●, short dashes = Ppd-D1a) on temporal flowering pattern in field-grown plots. Fitted curves are Gaussian, constant omitted, parameters shown in Table 2. Horizontal bar is one SED (9 d.f.) for comparing time of peak flowering. Points are means of four blocks.
Supplementary table 1: Mean monthly temperature data (°C) for ambient pot-based experiment.

<table>
<thead>
<tr>
<th>Month</th>
<th>Min T</th>
<th>Max T</th>
<th>Mean T</th>
</tr>
</thead>
<tbody>
<tr>
<td>December</td>
<td>-8.32</td>
<td>7.67</td>
<td>1.495281</td>
</tr>
<tr>
<td>January</td>
<td>-4.55</td>
<td>12.21</td>
<td>4.04883</td>
</tr>
<tr>
<td>February</td>
<td>-2.55</td>
<td>13.28</td>
<td>6.486079</td>
</tr>
<tr>
<td>March</td>
<td>-5.07</td>
<td>17.42</td>
<td>6.423333</td>
</tr>
<tr>
<td>April</td>
<td>1.83</td>
<td>27.43</td>
<td>12.4005</td>
</tr>
<tr>
<td>May</td>
<td>0.25</td>
<td>24.37</td>
<td>12.73957</td>
</tr>
<tr>
<td>June</td>
<td>4.24</td>
<td>29.83</td>
<td>14.58879</td>
</tr>
</tbody>
</table>

Supplementary table 2: Temperature for the cool regime (ambient) and warm regime (ambient + 5°C) in the CE experiment with day length change (hours). Temperatures and day length change were carried out on a weekly basis; the day at which the change took place is indicated. Temperatures were extrapolated from the Waddington weather station. Contains public sector information licensed under the Open Government Licence v1.0 (Met Office, 2012)