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ABSTRACT

In numerical weather prediction, parameterisations are used to simulate missing physics in the model. These can

be due to a lack of scientific understanding or a lack of computing power available to address all the known

physical processes. Parameterisations are sources of large uncertainty in a model as parameter values used

in these parameterisations cannot be measured directly and hence are often not well known; and the

parameterisations themselves are also approximations of the processes present in the true atmosphere. Whilst

there are many efficient and effective methods for combined state/parameter estimation in data assimilation

(DA), such as state augmentation, these are not effective at estimating the structure of parameterisations.

A new method of parameterisation estimation is proposed that uses sequential DA methods to estimate errors

in the numerical models at each space-time point for each model equation. These errors are then fitted to

pre-determined functional forms of missing physics or parameterisations that are based upon prior information.

We applied the method to a one-dimensional advection model with additive model error, and it is shown that

the method can accurately estimate parameterisations, with consistent error estimates. Furthermore, it is shown

how the method depends on the quality of the DA results. The results indicate that this newmethod is a powerful

tool in systematic model improvement.

Keywords: data assimilation, parameterisation estimation, parameter estimation

1. Introduction

Data assimilation (DA) is the process by which observa-

tional data are incorporated into numerical models to

improve knowledge of the trajectory, and uncertainties, of

the state. In meteorological models, DA is used to generate

an optimal initial state to be used in subsequent forecasts

through the use of prior knowledge of the state (e.g. a

previous forecast) and observational data obtained from

satellites/weather stations, etc. This combination of prior

information and observational data is commonly referred to

as state estimation.

Models have parameters that are often unobservable

quantities, such as latent heat flux, entrainment rate and

surface albedo. Using observations to infer the values that

these parameters take is known as parameter estimation.

Parameter estimation is a more complex problem than state

estimation, as even for simple, linear models, the parameter

estimation problem becomes non-linear (Evensen et al.,

1998). The majority of parameter estimation methods

are based on some form of state augmentation, where the

state vector is augmented, or extended, with a vector

of parameter values. This allows the parameters to be

estimated via the DA analysis equations in the same

manner that any unobserved prognostic variables would

be updated. In a sequential DA scheme, this would involve

updating the parameters at every observation time during

the model run.

State augmentation is an effective method of para-

meter estimation and is used to estimate optimal para-

meters with varying degrees of success (e.g. Annan et al.,

2005; Kondrashov et al., 2008; Smith, 2010). However,

the process of changing the parameters during a model run

may lead to parameters being modified to a region of

dynamical instability which may cause the model run/state

estimation to fail (Yang and Delsole, 2009; Williamson et al.,

2014). Another common problem with state augmentation

is that the parameter ensemble tends to collapse before
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an optimal parameter value is found (Santitissadeekorn

and Jones, 2014). This can be mitigated by adding a small

perturbation to the parameter in order to stop the ensemble

from collapsing before the optimal parameter is found.

However, the method of generating the perturbation to

add to the parameter value is not well understood, with

suggestions for improving the parameter ensemble in Liu

and West (2001). State augmentation methods, however,

cannot be used to estimate systematic functional errors in

the parameterisations.

Parameterisations are functions that represent simplified

forms of processes in the models that are either sub-grid

scale processes or are too complex (either due to lack of

scientific understanding or not enough computational

power) to represent explicitly. For example, in numerical

weather prediction (NWP) models, parameterisations are

used to approximate processes such as convective pro-

cesses, cloud microphysics and radiative processes.

Parameterisation estimation is even more complex than

parameter estimation, as it requires not only the estimate of

correct parameters, but also the estimate of the functional

form of the parameterisation itself. Furthermore, as para-

meters/parameterisations do not necessarily represent true

physical qualities that occur within a system, rarely are they

observed quantities.

Parameterisation estimation is often done in an ad-hoc

way by running models using the current parameterisa-

tions and compensating for errors in the functional forms

by adding new parameters or functions when they arise.

However, these new additions may not improve a funda-

mental error with the parameterisation. This is because

forecasts are often verified against reanalysis data every

1�6 hours, hence errors have time to accumulate making it

difficult to infer the source of the errors.

In this study, DA is used to obtain information about

errors in the numerical models, specifically errors that come

from incorrectly specified parameterisations. A new method

of parameterisation estimation is proposed that makes use

of the model equations that will allow for an estimate of the

structure in the model errors to be found. This new method

uses the differences between a DA analysis and an analysis

forecast to estimate the errors in the parameterisations

each space-time point. In this study, this parameterisation

estimation method is applied to an advection model with

additive model error as it is a simple model where it is

well known how changes in the functional form affect the

dynamics of the system.

This paper shall describe the DA methods used in

Section 2. Section 3 outlines the new parameterisation

estimation method that is proposed by this study, followed

by numerical results and conclusions in Sections 4 and 5,

respectively.

2. Data assimilation methods

In this section, the data assimilation method used in this

study, the ensemble Kalman smoother (EnKS), is described,

and the notation used throughout this paper is introduced.

2.1. Ensemble Kalman Filter

The ensemble Kalman filter (EnKF) was developed by

Evensen (1994) and has many different variations that are

mainly split into two groups. There are the stochastic

EnKFs, such as developed by Burgers et al. (1998) and

Houtekamer and Mitchell (1998); and the Ensemble Square

Root Filters [EnSRF, Tippett et al. (2003)], including the

ensemble adjustment Kalman filter [EAKF, Anderson

(2001)] and the ensemble transform Kalman filter [ETKF,

Bishop et al. (2001) and Majumdar et al. (2002)]. This study

shall use the stochastic EnKF [from Burgers et al. (1998)]

but any of the other methods can be used.

The EnKF is a sequential DA method that uses Monte

Carlo methods to approximate the error statistics of the

state. The evolution of the state is given by the following

equation:

x tþ 1ð Þ ¼ f x tð Þð Þ þ nðtÞ (1)

where x(t) is the N-dimensional state vector at time t,

f : R
N ! R

N represents the deterministic model and j is an

unknown model error (assumed to be random).

The EnKF approximates the forecast error covariance

matrix, Pf
t , by using an ensemble of M distinct state vectors

at time t, X(t), such that:

Pf
t ¼

1

M � 1

XM

m¼1

xf
m tð Þ � xf tð Þ

� �T

xf
m tð Þ � xf tð Þ

� �� �
(2)

where xf
m tð Þ represents an N-dimensional ensemble member

of the forecast state and � is the mean over the ensemble.

The kth set of observations (occurring at timestep tk)

denoted yk with an observation error ek is assumed to

be Gaussian, with zero mean and a covariance matrix given

by Rk 2 R
pk�pk (where pk is the dimension of yk). The

observations are related to the state by:

yk ¼ Hk xt tkð Þð Þ þ Ek (3)

where Hk : R
N ! R

pk is the kth observation operator that

maps the state vector to observation space and xt is the true

state.

The initial ensemble is created by sampling ensemble

members from a (normal) distribution centred on the initial

background state with covariance matrix, Pf
0, generated

from prior information. The ensemble is then propagated

2 M. LANG ET AL.



forward using the model equations to the observation time,

at which point the state is updated by the formula:

xa
m tkð Þ ¼ xf

m tkð Þ þ Kk yk � Hk xf
m tkð Þ

� �
þ dm

� �� 	
(4)

where xa
m tkð Þ is the mth ensemble member of the updated

analysis at timestep tk, dm is a stochastic perturbation

added to the observation operator that has the same

distribution as ek and Kk is the Kalman gain matrix for

the kth observation with the form

Kk ¼ Pf
kHT

k HkPf
kHT

k þ Rk

� ��1
(5)

where Hk is the linearisation of Hk.

The result is a new analysis ensemble of state vectors

which are then propagated forward by the model. The

process is repeated every time there is an observation.

When using the ensemble to estimate the forecast error

covariance matrix, spurious correlations can arise in the

ensemble covariance matrix that would not occur in the full

forecast error covariance matrix. The method used to

reduce the impact of these spurious correlations is localisa-

tion [see, for example Houtekamer and Mitchell (2001) and

Janjic et al. (2011)]. To do this, a localisation function, L
is defined, typically a function of distance in the spatial

domain. The localisation matrix, Li;j ¼ Lði; jÞ is defined,

where i and j are points in the domain and is applied to Pf
k

via the Schur, or Hadamard, product such that:

Pf
kloc
¼ L�Pf

k (6)

where Pf
kloc

is the localised forecast error covariance matrix

and k represents the Schur product of the two R
N�N

matrices.

2.2. Ensemble Kalman Smoother

The EnKS was developed by Evensen and van Leeuwen

(2000) and is an extension of the EnKF that aims to update

the state vector between observations. This is done by

considering the temporal cross-covariances between the

model state at the analysis timestep and the observation

timestep to update the state accordingly. The first step of

the EnKS is to run the EnKF to the observation time, tk,

to obtain the analysed state vector, xa
m tkð Þ. The ensemble

forecast cross-covariance matrices between timesteps tl and

tk are then calculated as:

Pf
kl ¼

1

M � 1

XM

m¼1

xf
m tkð Þ � xf tkð Þ

� �T

xf
m tlð Þ � xf tlð Þ

� �� �

(7)

where 0Btl Btk.

The mth ensemble member of the state vector at tl is then

updated using the following equation:

xa
m tlð Þ ¼ xf

m tlð Þ þ Kkl yk � Hk xf
m tkð Þ þ dm

� �� �� 	
(8)

where the Kalman gain matrix, Kkl, between tk and tl is

defined as:

Kkl ¼ Pf
klH

T
k HkPf

kkHT
k þ Rk

� ��1
: (9)

The difference between the EnKS and the EnKF is now

the observations influence the trajectory between obser-

vation timesteps as opposed to only at the observation

timestep.

3. The parameterisation estimation method

In this section, we discuss a new algorithm for parameteri-

sation estimation using a DA scheme. Traditionally, new

parameterisations are chosen by making a large number

of forecasts with different parameterisation versions in the

model and testing which verifies the best. The method

that we propose identifies errors in the functional form of

the model (i.e. the model equations) based upon results

obtained from a sequence of DA steps. The methodology

is general and will apply to any numerical model of any

dimension. Let the true state vector at timestep t be

denoted by x(t). Hence, the evolution of this state over

one timestep can be written as:

x t þ 1ð Þ ¼ f x tð Þ;Gð Þ þ n tð Þ (10)

where f is the deterministic part of the model, G is the

parameterisation we wish to estimate with input parameters

given by a, and j(t) is a stochastic forcing term representing

model error.

The method consists of two parts: (1) finding an estimate

of the model error at every space-time point and every

variable and (2) extract the structural part of the model

error and generate a new parameterisation.

Part I: Estimation of model errors via state estimation

(1) Given forecast state xf
0, background parameterisa-

tion Gb, with background parameters ab, and y,

perform state estimation to produce an analysis

trajectory, xa(t) for all timesteps.

(2) Define an analysis forecast variable,
~x by running

the model forward one timestep using the prior

parameterisation, such that
~xðtÞ ¼ f ðxaðt� 1Þ;GbÞ,

for all timesteps. Note that each starting point is

from the analysis trajectory, in Fig. 1b.

(3) Compute eðtÞ ¼ xaðtÞ � ~xðtÞ over the whole spatial
domain at every timestep. This is the difference

between a model forecast of one timestep and the

SYSTEMATIC METHOD OF PARAMETERISATION ESTIMATION 3



analysis, and contains information about structural

errors in the model equations.

Part II: Estimation of parameterisation errors that give rise

to model error

(4) Using any available prior information, propose a

collection of n potentially missing parameterisation

terms which may contribute to the parameterisa-

tion error.

(5) Group these terms into sets of test functions, gi,

i ¼ 0; . . . n� 1 that contain the first i�1 terms,

such that gj � gjþ1.

(6) Use an optimisation scheme to fit the differences

between the analysis and analysis forecast, e(t), to

all of the functions, gi.

(7) Use Bayesian Information Criterion (BIC) to find

the terms that contain the most information about

the model error.

(8) Reorder the terms in ascending order of BIC dif-

ferences and define a new set of functions, hi, such

that each contain the first i�1 reordered terms.

(9) Repeat Steps 5 to 7 for the new test functions, hi,

to determine the dominant terms that are missing

from the model.

(10) The function corresponding to the minimum BIC

value corresponds to the optimal functional form

of the model error, h* given the test function, g.

(11) The new estimate for the true state is Ga�Gb�h*.

(12) Fit the e(t) for each ensemble member using the

terms in the optimal functional form and h* as a

first guess to obtain an ensemble of functional

forms for the true model error. The error variance

for each functional form from the fit is averaged

over the ensemble members to obtain a final error

estimate of the parameterisation.

3.1. Explanation of algorithm

The most important ingredient of this new method is that

concentrates on estimating parameterisations at the level

of the model equations directly, and not after errors have

accumulated after several timesteps. In the latter case, it

will be very difficult to unravel the cause of the accumu-

lated model error in non-linear models.

The first step of the parameterisation estimation method

is to run a DA scheme with a prior estimate of the para-

meterisation, Gb, generating a time series of analysis state

vectors, xa(t) which represent the best estimate of the true

state through time.

Using the time series of xa(t) values generated, a new

time series representing a forecast of the analysis state,
~x tð Þ,

is generated such that:

~x tð Þ ¼ f xa t� 1ð Þ;Gb
� �

(11)

The difference between the analysis and the analysis fore-

cast at all analysis timesteps for each variable at each grid-

point is given by xa � ~x, illustrated for a single timestep in

Fig. 1, which represents the best estimate that is currently

available regarding the model error at each timestep in each

model equation. In order to extract the functional form of

this term, a test function needs to be defined to compare the

structure in xa tð Þ � ~x tð Þ.
The terms chosen in Step 3 can be arranged into a

function of the form:

gðx; bÞ ¼ b0f0ðxÞ þ b1f1ðxÞ þ . . .þ bnfnðxÞ þ n (12)

where b ¼ ðb0; b1; . . . ; bnÞ are the coefficients to be com-

puted in an optimisation scheme. The fiðxÞ are functions

of the state variable that may include derivatives of the

state. j represents the stochastic model error assumed to be

Gaussian with zero mean and covariance determined by the

fit. It is important that the terms are specified well, as this

parameterisation estimation method will only look for

possible parameterisations in the span of the function

gðx; bÞ. Without any prior information, finding a true

parameterisation is an ill-posed problem. The prior in-

formation and therefore the terms to be considered are

generally obtained with help from an expert with knowl-

edge of likely errors in the model. These may include terms

assumed negligible such as higher order terms.

Using this form, the parameterisation estimation problem

has been translated into a parameter estimation problem,

also known as regression analysis. By using an optimisation

scheme to calculate the optimum coefficients, bb, for the test
function, a functional estimate for the errors in the para-

meterisation will be found. The choice of optimisation

scheme is free; for simplicity, we have chosen linear

regression, but non-linear regression or sparse regression

techniques, etc. may be used.

This is done sequentially by using the optimisation

scheme to initially estimate the coefficient for the first

xa (t–1)

(a) (b)

xa (t–1)
xa (t) xa (t)

xa (t)–x (t)~

x (t)~

Fig. 1. A single timestep from the data assimilation trajectory

from timestep t�1 to t. Step 3 defines
~x as a single model timestep

from the data assimilation trajectory at timestep t�1 using the

model f with the prior parameterisation Gb.
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term in g, b0f0ðxÞ. In other words, the first test function is

defined as:

g0 xð Þ ¼ b0f0 xð Þ þ n (13)

and b0 is calculated by using the optimisation scheme to fit

to xa � ~x.

The test function is then updated to include the first and

second terms of gðx; bÞ and the optimisation scheme is used

again to fit xa � ~x to:

g1 xð Þ ¼ b0f0 xð Þ þ b1f1 xð Þ þ n: (14)

This is repeated until functional estimates are obtained

for all gi, i ¼ 0; . . . ; n.

To verify the quality of the functional estimates calcu-

lated in the above step, the BIC (Schwarz, 1978) is used.

The Akaike Information Criterion AIC, Akaike (1974) can

also be used and produces similar analysis. The BIC is

given by:

BIC ¼ k logðNÞ � 2 logðLÞ (15)

where k is the number of parameters used in the test

function, N is the number of points in xa � ~x and L is the

maximised likelihood function, pðxa � ~xjgðbbÞÞ. The BIC

represents the trade-off between how well the functional

estimate fits xa � ~x against the complexity of the model.

The BIC is a quantification of Occam’s razor states that

the optimal form of the parameterisation is the sim-

plest form of the parameterisation that fits the data well.

As the regression produces a better fit to xa � ~x, the log-

likelihood term (logðLÞ) increases, resulting in a decrease in

BIC. However, as the number of terms in the functional

estimate increases, the BIC increases, hence punishing

overly complex models. This implies that the optimal

form of the parameterisation is given when the BIC is

minimal.

When the BIC has been calculated for all gi functions

in Step 6, the terms whose addition to the test function

coincide with the biggest decreases in BIC from gi�1 to

gi (where the decrease from g�1 to g0 is defined as 0)

will contain the most information about the structure of

xa tð Þ � ~x tð Þ.
In Step 8, the terms in g are then reordered in descending

order of terms with the greatest decrease in BIC to create

a new functional form for the model error, h(x). h(x) is then

split into sub-functions in the same way as g(x) and the

optimisation scheme is again run for each hi(x) and the

coefficients are calculated as before. As the terms are now

ordered such that the terms with most information in them

are first in the test functions, the BIC will decrease until

it reaches the optimal function and then increase for all

functional forms after that. Therefore, the minimum in the

BIC calculated for each hi(x) will correspond to the optimal

functional form of the model error, within the set that is

being considered.

By calculating the coefficients for all hi(x) individually,

we obtain a set of functions with various degrees of con-

fidence based upon the BIC (i.e. the lower the BIC is for

an estimate, the higher the confidence in that functional

estimate).

To calculate the uncertainty in the coefficients obtained

from the method, the uncertainties in the coefficients

obtained from each ensemble member are averaged over

the ensemble.

For example, for least-squares (used in the results in this

paper), the error covariance matrix for the parameters is

obtained as (Friedman et al., 2001):

CovðbbÞ ¼ ðXT XÞ�1r2
y (16)

where X 2 R
ðnþ1Þ�ðNTÞ is a matrix of all the functions, fi, in

the test function at all N gridpoints and all T timesteps and

r2
y is the variance of the resulting random errors from the

regression, such that:

r2
y ¼

1

NT � 1

XNT

i¼1

xa � ~xð Þ � dxa � ~xð Þ
� �2
� �

(17)

where dxa � ~xð Þ ¼ Xbb is the function obtained from the least

squares fit of the xa � ~x over all space-time points.

4. Numerical experiments

In this section, experiments are performed on an imperfect

1D advection model described by the following continuous

equation:

@x

@t
þ a

@x

@s
þ G ¼ nsðtÞ (18)

where s is the space dimension, t is time, a is the linear

component of the advection velocity and nsðtÞ is a stochastic
term representing the model error present in the system. x(t)

is the quantity being advected, and is a scalar at each point

in space-time. In the notation outlined in the previous

section, x(t) is the collection of x at all gridpoints at time-

step, t. G is an additive parameterisation of the � possibly

non-linear � model error present in the advection equation

and is the parameterisation that we shall estimate in the

following experiments.

The advection model is applied to a sine wave advected

for 100 timesteps over a periodic domain on the interval

[0,1] with 101 gridpoints spread uniformly across it, such

that Ds �0.01.

The initial true state is defined as:

xtð0Þ ¼ sinð2psÞ þ n0
s (19)

SYSTEMATIC METHOD OF PARAMETERISATION ESTIMATION 5



where the initial model errors are distributed normally

with covariance given by a Second Order Autoregressive

(SOAR) function, that is:

n0
s � Nð0;BÞ where Bk;l ¼ 1þ dðk; lÞ

L


 �
e�

dðk;lÞ
L (20)

where k and l are two gridpoints, d(k,l) is the shortest dis-

tance between k and l, and L �0.06 is a correlation length

scale.

For subsequent timesteps, the model error, nsðtÞ is

distributed by an uncorrelated Gaussian distribution with

zero mean and error covariance, Q ¼ 0:012I1018t.
The initial state covariance of the ensemble is also given

by a SOAR function, but with a smaller correlation length

scale of 0.05. SOAR functions are used in order to

introduce cross-covariances between gridpoints.

Observations at timestep, k, are taken of the true state

directly such that:

yk ¼ xtðkÞ þ Ek (21)

where observation errors, Ek, are distributed normally with

zero mean and error covariance, Rk, where Rk ¼ 0:0052Ipk

(pk is the number of observations at timestep k). It is

assumed that each observation is independent, hence RK is

diagonal. Unless otherwise stated, observations are taken

at all timesteps and gridpoints in the following experiments.

The EnKS is used with 40 ensemble members and

localisation applied to the Pf matrix in the space dimension,

using the localisation function:

Lði; jÞ ¼ exp
�dði; jÞ2

2R2
loc

 !
(22)

where the localisation radius, Rloc, is defined as 0.1 for

these experiments.

The initial test function for use in the parameterisation

method is defined as:

gðxÞ ¼ b0 þ b1xþ b2x2 þ b3

@x

@s
þ b4x

@x

@s
þ b5x2 @x

@s

þ b6

@2x

@s2
þ b7x

@2x

@s2
þ b8x2 @

2x

@s2
:

(23)

The terms were chosen as they may appear in an advection

model, and each has a physical meaning. The x terms

represent the quantity being advected, @x
@s

is the velocity of

the advection and @2x
@s2 represents diffusion.

The optimal functional difference, as calculated by our

parameterisation estimation method for each experiment is

presented with uncertainty specified on each coefficient

calculated as the standard deviation of the parameter errors

averaged over the ensemble, as described in Section 3.1.

4.1. Linear advection model

In this section, the method outlined in Section 3 will be

applied to a simple parameter estimation problem where

the only structural/deterministic error in the model comes

from an error in a scalar parameter.

A true state trajectory, xt is generated using:

a ¼ 1 (24)

and a true parameterisation value of the form:

Gt ¼ 1
@x

@s
(25)

which we wish to estimate.

The background state/initial estimate of the true state

trajectory, xb is generated using the parameterisation of the

form:

Gb ¼ 0 (26)

Substituting these values into the true and background

models given in eq. (18) leads to a true model given by:

@x

@t
þ 2

@x

@s
þ G ¼ nsðtÞ (27)

and a background model

@x

@t
þ 1

@x

@s
þ G ¼ nsðtÞ (28)

Each model described in eqs. (27) and (28) is integrated

using a upwind Euler scheme with timestep:

Dt ¼ Ds

2:2
(29)

in order to maintain the Courant�Friedrichs�Lewy (CFL)

criterion. This value of Dt is chosen to minimise spurious

numerical diffusion in the experiments.

Using the method outlined in Section 3, the optimal

functional form of the parameterisation, G, is given by:

Ga ¼ 0:9917� 0:0051ð Þ @x

@s
þ 4:0714� 10�4 � 0:0064
� � @2x

@s2

(30)

This is very close to desired solution given in eq. (25).

The true parameterisation falls within the error, generated

from the ensemble, of the function obtained by this

method.

In addition to the simple adjustment of parameter, it can

be seen that the parameterisation estimation method also

calculates the numerical diffusion that occurs in the system.

Analytical calculations show that the expected difference

in numerical diffusion produced by the upwind scheme

between the true and background models (with no model

6 M. LANG ET AL.



error) is 0:0019 @2x
@s2 , which is within the uncertainty esti-

mated by the parameterisation estimation method.

4.2. A non-linear advection equation

In this experiment, the true state is no longer generated by

the linear advection equation, instead it is generated with:

a ¼ 4:5 (31)

and truth parameterisation:

Gt ¼ �1:5
@x

@s
þ x

@x

@s
: (32)

This leads to a true model given by:

@x

@t
þ 3

@x

@s
þ x

@x

@s
¼ nsðtÞ (33)

The introduction of the state variable into the advection

equation leads to the model becoming non-linear. The non-

linear term, x @x
@s
, has the effect of steepening the gradient of

the sine wave between the peak and trough of the sine wave,

by making the peak move faster and the trough slower.

The background model shall continue to assume that the

truth is generated by a linear advection model such that the

background parameterisation is given by:

Gb ¼ 0 (34)

Therefore, the background model becomes:

@x

@t
þ 4:5

@x

@s
þ G ¼ nsðtÞ (35)

The advection speed, a �4.5, is chosen such that the back-

ground advection velocity is approximate to the advection

velocity of the peak of the non-linear advection model in

equation.

The initial conditions are the same as the previous

experiments on the linear advection model in Section 4.1.

The value of Dt is changed to fulfil the CFL criterion of the

non-linear advection model and is now given by

Dt ¼ Dx

22:5
(36)

where 22.5 is chosen such that the system is comfortably

within the stable regime of the upwind Euler scheme.

The parameterisation estimation procedure gives an

estimate of the true parameterisation in the form

Ga ¼ �1:5101� 0:0408ð Þ @x

@s
þ 1:0313� 0:0741ð Þx @x

@s
: (37)

Comparing this to eq. (33) indicates that this is a consistent

estimate of the true parameterisation given the estimated

errors.

4.2.1. State augmentation. In this section, the new

method of parameterisation estimation is compared with

an existing method of parameter estimation, state augmen-

tation, when applied to the estimation of parameterisations.

The true and background models and observation density

are the same as in Section 4.2. It is unknown how to define

a localisation matrix such that the augmented forecast

error covariance matrix is positive definite. This is due to

the bordering entries in the augmented localisation matrix,

corresponding to the cross-covariances between the state

and parameters; setting these to be one can destroy the

definiteness of the matrix. This results in non-positive

eigenvalues occurring in the ‘localised’ augmented forecast

covariance matrix. Therefore, a 2000-member ensemble is

used in the EnKF such that localisation is not required to

account for spurious correlations in the forecast covariance

matrix.To extend state augmentation to the estimation

of parameterisations, we again assume that the true model

error terms are unknown and add the full test func-

tion defined in (23) to the background model. So that the

augmented background model for state augmentation

becomes:

@x

@t
þ 4:5

@x

@s
þ a0 þ a1xþ a2x2 þ a3

@x

@s
þ a4x

@x

@s
þ a5x2 @x

@s

þ a6

@2x

@s2
þ a7x

@2x

@s2
þ a8x2 @

2x

@s2
¼ nq:

(38)

The ai’s are the parameters to be estimated using state

augmentation, and the results obtained are summarised in

Fig. 2. The parameterisation error found through using

state augmentation is:

h	ðxÞ ¼ 0:1074� 1:2748x� 1:1892x2 þ 1:1048
@x

@s

� 0:9224x
@x

@s
þ 0:6589x2 @x

@s
� 0:0012

@2x

@s2

� 0:0027x
@2x

@s2
þ 0:0012x2 @

2x

@s2
: (39)

Therefore, the analysis model obtained from state augmen-

tation is:

@x

@t
þ0:1074� 1:2748x� 1:1892x2 þ 5:5048

@x

@s

� 0:9224x
@x

@s
þ 0:6589x2 @x

@s
� 0:0012

@2x

@s2

� 0:0027x
@2x

@s2
þ 0:0012x2 @

2x

@s2
:

(40)

It can be seen that this form of the parameterisation error

does not recreate the true model error �1:5 @x
@s
þ x @x

@s
, from

eq. (32). This is not the simplest parameterisation error

SYSTEMATIC METHOD OF PARAMETERISATION ESTIMATION 7



possible, and no information is obtained from state aug-

mentation that suggests how important the terms are

relative to one another so that the number of terms in the

test function can be reduced.

4.3. Experiments with different observation densities

The aim of this section is to show the sensitivity the para-

meterisation estimation method to the quality of the state

estimation. This is done by reducing the observation

density in space and/or time resulting in a less accurate

DA trajectory.

The experiments in this section, shown in Table 1, will

have the same true and background parameterisations as in

Section 4.2, such that the true state is generated from the

non-linear advection eq. (33) and the background state is

generated from the linear advection eq. (18). The observa-

tion error covariance matrix and stochastic model error

covariance matrix and the localisation function and radius

are the same as used in Section 4.1.

It can be seen in Table 1 that when the observation

density decreases, the parameterisation estimation method

produces less accurate estimations of the true parameter

values. This is due to the observations not being able to

fully constrain the DA analysis to the true state. When

observations are taken every three gridpoints, the diffusion

terms become more prominent. However, they are always

within the error bounds specified by our methods. When

observations are taken every gridpoint and every three

timesteps, the parameterisation estimate falls outside the

one-standard deviation error bound from the truth, but

only slightly. In all other cases the estimates are consistent.

0 20 40 60 80 100
−4

−2

0

2

4

Time

a 0

a0

0 20 40 60 80 100
−8

−4

0

4

8

Time

a 1

a1

0 20 40 60 80 100
−3

−1.5

0

1.5

3

Time

a 2

a2

0 20 40 60 80 100
−4

−2

0

2

4

Time

a 3

a3

0 20 40 60 80 100
−4

−2

0

2

4

Time

a 4

a4

0 20 40 60 80 100
−8

−4

0

4

8

Time

a 5

a5

0 20 40 60 80 100
−0.4

−0.2

0

0.2

0.4

Time

a 6

a6

0 20 40 60 80 100
−1

−0.5

0

0.5

1

Time

a 7

a7

0 20 40 60 80 100
−3

−1.5

0

1.5

3

Time

a 8

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

a8

Parameter Ensemble

Parameter Ensemble Mean

Fig. 2. Estimated parameter values from state augmentation, for the parameters described in eq. (38).
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4.4. Relation between magnitudes of stochastic model

error and stochastic observation error

In this section, we study the sensitivity of the method by

varying the relative magnitude of model error covariance

matrix, Q, and observation error covariance matrix, R.

The true model and background models are both gen-

erated using eqs. (33) and (18), from Section 4.2, respec-

tively and Dt ¼ Dx
22:5

to ensure that the CFL criterion is

conserved. The experiments are performed in the well-

observed case where observations occur at all space-time

points and the same localisation function is used as in

Section 4.1, given by eq. (22) with localisation radius,

Rloc ¼ 0:1.

Recall that in the previous experiments, Q�0.012I and

R�0.052I (i.e. Q�4R) and that the experiments in this

section should be compared directly with the experiment in

Section 4.2.

Table 2 shows that the parameterisation terms become

less accurate when R increases compared to Q, but

estimated errors also increase in a consistent manner.

Additionally, the diffusive terms become more prominent

as R increases.

This is because as the observation error covariances

increase relative to the model error covariances, the state

estimation will have more confidence in the prior model

with respect to the observations meaning that the analysis

state will be closer to the prior model equations, hence the

signal in the observations will be much weaker. As a result,

the diffusion terms become more prominent in the analysis

state. This is to be expected, as the observations do not

contain enough information to get the functional estimate

closer to the desired solution.

5. Conclusions

This study has presented a new method of parameterisa-

tion estimation that uses the model equations directly to

estimate the underlying errors in the model. This is done by

comparing the DA analysis with an analysis forecast at

every space-time point for every model variable to retrieve

errors in the model and to use this information to improve

model parameterisations. It is important to realise that the

method uses the errors at the level of the model equations

directly, instead of accumulating errors over a number

of model timesteps. In the latter case, it is difficult to find

the cause of the errors in a non-linear model, as model

equation errors will interfere with each other during the

accumulation. As the method uses the DA analysis as

the best estimate of the truth, this method is dependent on

the quality of the DA analysis.

In this paper, experiments have been shown using the

linear advection equation to estimate parameters. Existing

methods of parameter estimation are mostly based on state

augmentation, which is an online method where the para-

meters are updated along with the state. While this means

that state augmentation is potentially more computationally

efficient, there is a risk that the updated parameter values

could cause the numerical model to become unstable (e.g.

for the advection models, an advection velocity could be

updated such that the CFL criterion is violated) in the

middle of computation. For simple parameter estimation,

state augmentation may give a better estimate of the true

parameter values. However, our new method has been

developed to find overall structural errors in the model

where state augmentation cannot. There is no risk of

numerical instability with our method, as it is an offline

method. Model runs are only computed with background

parameterisations.

In the numerical experiments conducted in this paper,

when the DA analysis was poor, due to less accurate

Table 2. Analysis parameterisations from parameterisation esti-

mation method for different magnitudes of observation error

relative to model error

R�0.0052 I such that Q�4R

Ga ¼ �1:5101� 0:0408ð Þ @x

@s
þ 1:0313� 0:0741ð Þx @x

@s

R�0.012 I such that Q�R

Ga ¼ �1:4651� 0:0423ð Þ @x

@s
þ 1:0217� 0:0778ð Þx @x

@s

R�0.022 I such that Q �0.25R

Ga ¼ �1:4472� 0:0481ð Þ @x

@s
þ 1:0055� 0:0847ð Þx @x

@s
þ

�0:0023� 0:0742ð Þ @
2x

@s2

Table 1. Analysis parameterisations from parameterisation esti-

mation method for different observation densities

Observations at all space-time points

Ga ¼ �1:5101� 0:0408ð Þ @x

@s
þ 1:0313� 0:0741ð Þx @x

@s

Observations at every three gridpoints and every timestep

Ga ¼ �1:5216� 0:0555ð Þ @x

@s
þ 0:9783� 0:0902ð Þx @x

@s
þ

0:0074� 0:0967ð Þ @
2x

@s2
þ �0:0048� 0:1695ð Þx2 @

2x

@s2

Observations at every gridpoint and every three timesteps

Ga ¼ �1:4146� 0:0484ð Þ @x

@s
þ 0:8492� 0:0872ð Þx @x

@s

Observations at every three gridpoints and every three timesteps

Ga ¼ �1:4683� 0:0541ð Þ @x

@s
þ 1:0149� 0:1129ð Þx @x

@s
þ

0:0035� 0:1148ð Þx @
2x

@s2
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observations or due to a less dense observations network,

poorer estimates of the model error were obtained. This

meant that xa � ~x was less representative of the true model

error present in the system, hence the optimal equations

obtained from the regression were less representative of the

true model error. It is worth noting that the diffusion terms

become more prominent when there are fewer observations

in space, and that our method is also able to estimate the

scale of numerical diffusion present in system. Our method

does provide an error estimate on the new parameterisation

which is related to the spread in the ensemble. So a less

accurate DA result will lead to a larger error in the para-

meterisation estimate, leading to consistent estimates even

if the DA is poor.

The method introduced in this study will only find para-

meterisations within the pre-determined functional form.

Our method appeals to the BIC to select the most in-

fluential terms. The optimal equation for the true model

error corresponds to the equation with the lowest value of

the BIC.

Work still needs to be done to reduce the sensitivity of the

method to the quality of the analysis state in order to

produce better/more consistent estimates of the model error.

However, the new method of parameterisation estimation

presented in this study has been shown to estimate simple

parameterisations and has the potential to estimate func-

tional forms of model errors and hence parameterisations in

more complex models. A natural application of this method

would be to infer parameterisations for a low-resolution

model when a higher resolution model is available. In this

case, all variables can be observed which is favourable for

this method. We are currently planning to test the method

on NWP models.
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