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Abstract 26 

Accurate knowledge of species’ habitat associations is important for conservation planning and 27 

policy. Assessing habitat associations is a vital precursor to selecting appropriate indicator species 28 

for prioritizing sites for conservation or assessing trends in habitat quality.  However, much existing 29 

knowledge is based on qualitative expert opinion or local scale studies, and may not remain accurate 30 

across different spatial scales or geographic locations.  Data from biological recording schemes have 31 

the potential to provide objective measures of habitat association, with the ability to account for 32 

spatial variation.  We used data on 50 species of British butterfly as a test case to investigate the 33 

correspondence of data-derived measures of habitat association with expert opinion, from two 34 

different butterfly recording schemes.  One scheme collected large quantities of occurrence data (c.3 35 

million records) and the other, lower quantities of standardised monitoring data (c.1400 sites). We 36 

used general linear mixed effects models to derive scores of association with broad-leaf woodland 37 

for both datasets and compared them with scores canvassed from experts.  38 

Scores derived from occurrence and abundance data both showed strongly positive correlations 39 

with expert opinion.  However, only for occurrence data did these fell within the range of 40 

correlations between experts.  Data-derived scores showed regional spatial variation in the strength 41 

of butterfly associations with broad-leaf woodland, with a significant latitudinal trend in 26% of 42 

species. Sub-sampling of the data suggested a mean sample size of 5000 occurrence records per 43 

species to gain an accurate estimation of habitat association, although habitat specialists are likely to 44 

be readily detected using several hundred records.  Occurrence data from recording schemes can 45 

thus provide easily obtained, objective, quantitative measures of habitat association. 46 

Key words: spatial variation, recording scheme, citizen science, latitudinal gradient, biological 47 

indicators  48 
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1. Introduction 49 

Associations between species and habitats are one of the basic principles of ecology (Aarts et al. 50 

2013; Yapp 1922).  As habitat loss remains the primary cause of global biodiversity declines (Brooks 51 

et al. 2006; Thomas et al. 2004) identifying such associations accurately is important for 52 

conservation planning, policy and research. Where species are in decline, accurate information on 53 

habitat associations is required so that investigations into likely causes, and subsequent 54 

implementation of conservation efforts, can be targeted correctly. Likewise, if a particular habitat is 55 

undergoing change, well characterised associations enable predications to be made about which 56 

species are most likely to be affected.  Accurate knowledge of associations is also vital to selecting 57 

appropriate indicator species for use in prioritizing sites for conservation, monitoring environmental 58 

conditions or assessment of habitat quality  (Carignan and Villard 2002).  59 

Although the habitat associations of some taxa are well characterised, most species are poorly 60 

studied.  Even for well-studied taxa there may be limitations to our understanding of habitat 61 

associations at large spatial scales (Gregory and Baillie 1998) as many studies are carried out at a 62 

local level in response to specific conservation issues (e.g. Knight and Arthington 2008; Loeb et al. 63 

2000; Rouquette and Thompson 2005).  As a result, information on wider scale habitat associations, 64 

including that which forms the foundations of much conservation policy, is often extrapolated from 65 

such studies or from qualitative descriptions based on expert opinion (Reif et al. 2010).  This is 66 

potentially problematic, as both habitat associations and expert perceptions of them have been 67 

demonstrated to vary with location (O'Leary et al. 2009; Oliver et al. 2009), spatial scale (Mayor et al. 68 

2009) and environmental change (Pateman et al. 2012).  It is thus important to test existing 69 

knowledge on habitat associations against quantitative methods.  These have the potential to 70 

operate at a range of spatial scales, and to take into account spatial or temporal variation.  Such 71 

methods also have the potential to uncover cryptic requirements or previously unknown plasticities 72 

in habitat association. 73 

National or international biological recording and monitoring schemes provide a valuable source of 74 

data for analysing large scale patterns in time and space (Bishop et al. 2013; Thomas 2005). Large 75 

sample sizes and extensive spatial coverage make them well suited to use in detecting habitat 76 

associations.  However, monitoring scheme data vary in quality and quantity, from simple 77 

occurrence data (i.e. georeferenced records of species’ presence) to detailed demographic data from 78 

standardised protocols.  Whilst datasets at all points along this spectrum have their value for specific 79 

applications, it is important to test which are most suitable for detecting habitat associations, 80 

especially as increasing levels of information come at a cost of time and effort in collection, and, 81 

consequently,  in the number and spatial coverage of records (Bishop et al. 2013). 82 
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This study used two different butterfly recording scheme datasets - one comprising large quantities 83 

of occurrence data and the other, lower quantities of abundance data from a standardised 84 

monitoring scheme - alongside data on the extent of British broad-leaf woodland.  Butterflies are a 85 

useful test case for determining habitat associations.  They are frequently used as indicator species 86 

(Thomas 2005) as their host plant specificity and temperature-dependent development and 87 

behaviour make them sensitive to environmental changes, whilst their short life cycles ensure that 88 

they respond quickly (Oliver et al. 2009; Pateman et al. 2012; Warren et al. 2001).   In Britain, they 89 

are well recorded, giving sufficient data for analyses, and well-studied, such that expert opinions are 90 

likely to be well-founded and consistent and thus a good yardstick by which to measure the 91 

performance of data-derived measures of habitat association.  We compared data-derived methods 92 

for calculating metrics of habitat association from the two butterfly datasets with expert opinion, 93 

including their ability to account for spatial variation in association, and assessed the applicability of 94 

these methods to other taxa for which data-derived methods might form the only means by which 95 

to assess species’ habitat associations. 96 

2. Methods 97 

2.1. SPECIES DATA 98 

We obtained data on 50 butterfly species in Great Britain (GB) from two monitoring schemes – 99 

Butterflies for the New Millennium (BNM) and the UK Butterfly Monitoring Scheme (UKBMS).   100 

Species nomenclature follows  Agassiz et al. (2013).   101 

BNM is a national scheme which collates butterfly records (i.e. species occurrence at a location), 102 

with the aim of maintaining an up-to-date database of butterfly distributions  (Asher et al. 2001).  103 

This study included only BNM records with spatial resolution of 1 km x 1 km Ordnance Survey grid 104 

cell or finer.  Duplicate records of the same species in the same cell were removed, resulting in a 105 

dataset of approximately 3 million butterfly occurrence records.  The study used records from 1990 - 106 

2010, to decrease the likely effect of changes over time in woodland extent or habitat association on 107 

the results. 108 

The UKBMS differs from BNM in aiming to monitor population trends through a standardized survey 109 

method involving weekly visits between April and September (Pollard and Yates 1993).  Although 110 

this allows calculation of abundance throughout each survey year and thus analysis of population 111 

trends and phenology, it is relatively labour intensive and there are records from far fewer sites than 112 

in BNM (data from 1433 sites were included in our analysis).  113 

Although the spatial scale of GB reflects an artificial imposition onto an ecologically meaningful 114 

hierarchy of scales, being neither the full range of a species nor of an individual butterfly, it reflects 115 
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the scale at which national policy for particular species and habitats tends to be formulated (Roy et 116 

al. 2007) and at which biological recording schemes tend to be coordinated. 117 

2.2. HABITAT DATA 118 

Broad-leaf woodland data were obtained from the Land Cover Map 2007 (LCM2007, Morton et al. 119 

2011). We chose this habitat because it is well characterised in LCM2007 and includes various 120 

habitats which are prominent in UK planning and policy (e.g. ancient broad-leaf woodland, DEFRA 121 

2011). The proportion of broad-leaf woodland was calculated for every 1 km grid cell in mainland GB 122 

and for a 500 m radius around each UKBMS site centroid, giving a consistent scale of analysis 123 

between datasets.  This scale also reflects the relatively coarse resolution at which much large scale 124 

habitat data is readily available. These analyses were performed in ArcGIS (v 9.3.1 © 2010 ESRI, 125 

Redlands, California). 126 

2.3. SCORING HABITAT ASSOCIATION FROM BIOLOGICAL RECORDING DATA 127 

Analyses were performed independently.  To distinguish ‘genuine’ absences for each species from a 128 

1 km cell in the BNM data, as opposed to pseudoabsence generated by lack of recorders or non-129 

detection (Prendergast et al. 1993), we applied a threshold of species detection.  Cells in which more 130 

than five butterfly species were recorded (i.e. c. 10% of the total UK species pool, following Hickling 131 

et al. (2006)) but which lacked a record of the species in question were assumed to be genuine 132 

absences, whilst others were removed from all further analyses.  We did not use more analytically 133 

complex methods of accounting for recorder effort (e.g. Hill 2012; Isaac et al. 2014; Mason et al. 134 

2015) because UK butterflies are generally well recorded, not particularly speciose, and have several 135 

ubiquitous species which are well recorded across the entire of the country.  Therefore, although 136 

there is a latitudinal gradient in butterfly species richness in the UK, the 5 species threshold is met by 137 

a relatively consistent proportion of cells per region supplementary material, Table S2).  Whilst 138 

butterfly species have been shown to vary in detectability (Isaac et al. 2011) there is little evidence 139 

for a systematic bias whereby the detectability of individuals varies with woodland area and where 140 

this relationship varies between species, which would be the only situation in which detectability 141 

would automatically influence relative habitat association scores.  To account for potential variation 142 

in species’ habitat associations across GB, data were analysed on a regional basis, splitting the 143 

dataset into 100 km by 100 km cells (from here on referred to as a 100 km region).  Regions where a 144 

species had less than 30 of each of presence and ‘genuine’ absence records were unlikely to provide 145 

robust estimates and were excluded.  We also limited analyses to species that were recorded on a 146 

minimum of ten UKBMS sites. 147 
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General linear mixed effects models (GLMM) were used to model the relationships between habitat 148 

and butterflies, using the lme4 (Bates et al. 2013) package in R (R Core Team 2013).   For the BNM 149 

data, we fitted species presence/absence to proportion of broad-leaf woodland cover in the 1 km 150 

grid cell, with a binomial error structure.  For UKBMS data the fixed explanatory variable was 151 

proportion of woodland in the 500m radius buffer whilst the response variable was total annual 152 

count, adjusted for missing visits (Rothery and Roy 2001); therefore, a Poisson error structure was 153 

specified. Due to the presence of zero counts for some species, we also tested analyses using zero-154 

inflated Poisson models or summing data across all years to reduce zero counts, but the species’ 155 

habitat association scores resulting from these models showed lower correlation with independent 156 

data from expert opinion (see section 2.4). For all models, 100 km region (BNM data) or Site ID 157 

(UKBMS data) was included as a random intercept, in order to account for spatial variation in the 158 

mean frequency of butterflies and multiple measurements across years from the same site. 159 

Preliminary analyses, comparing AIC of models with different random effect structures, also 160 

supported the inclusion of a random slope whereby the relationship between proportion of 161 

woodland and butterfly occurrence could vary by 100km region.  For both datasets, the slope of the 162 

GLMM was then designated to represent the mainland GB habitat association score, set to zero 163 

where the p value was greater than 0.05.   164 

To further investigate variation in habitat association by 100km region, we ran independent general 165 

linear models in each region.  This is more appropriate than extracting the corresponding random 166 

slopes from the GLMM because of the issue of shrinkage towards the expected mean slope in 167 

regions where the sample size is lower (Gelman and Hill 2007).  A possible driver of spatial variation 168 

in scores was investigated by performing linear regression of regional score against latitude, as 169 

latitudinal gradients affect many aspects of British butterfly ecology (Oliver et al. 2009; Oliver et al. 170 

2012; Oliver et al. 2014; Thomas et al. 1994; Turner et al. 1987). 171 

2.4. SCORING HABITAT ASSOCIATION FROM EXPERT OPINION  172 

To test the performance of the data-derived scores against established opinion, five butterfly 173 

experts from research or conservation organisations (including authors TB and RF) were asked to 174 

rank the species in order of woodland association, from one (strong negative association) to 50 175 

(strong positive association), such that each of the 50 species could be assigned a unique rank if 176 

experts deemed this suitable.  Experts were requested to base rankings on where adult butterflies 177 

might be expected to be encountered, rather than limiting association to breeding habitat. The 178 

mean and median rankings of each species were then taken to represent average expert-derived 179 

association scores for comparison with data derived scores.  180 
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2.5. DETERMINING MINIMUM SAMPLE SIZE FOR ESTIMATING HABITAT ASSOCIATION 181 

In order to investigate the number of samples required to detect habitat associations via the data-182 

derived methods we took random samples of presence records at a range of sample sizes, for each 183 

species. Abundance data was not re-sampled, as it showed lower correlation with expert scores (see 184 

results, section 3.2).  Sample sizes analysed ranged from 100 to 1000 at intervals of 100, and from 185 

1000 to 50000 at intervals of 500, with random sampling of occurrence records being repeated 100 186 

times for each sample size.  Each sample was then used to score habitat association using the 187 

GLMM, and the resultant scores for each sample size and species compared to expert scores.  The 188 

sample size required for the ranking of the mean score from the 100 re-samplings to fall within the 189 

mean range of expert scores was then held to be the minimum sample size required for estimation 190 

of habitat association for that species (i.e. the sample size at which the ranked score is no more 191 

variable than expert scorings are from one another).  We then compared these minimum sample 192 

sizes between species, and to the sample sizes typically available for species from other British taxa, 193 

applying the same selection criteria to these records as to those drawn from the BNM data (i.e. the 194 

year 1990 onwards, with 1 km precision).  195 

3. Results  196 

3.1. VARIATION IN EXPERT SCORES 197 

Correlation between the habitat association scores from the two data-derived methods was 198 

significant and positive (Pearson’s r, r = 0.727, p < 0.001) but with much variation in the degree of 199 

association assigned to individual species (see supplementary material, Table S1, for full table of 200 

association scores). Correlations between expert scores were always significant and strongly positive 201 

(p < 0.001). However, expert opinions also showed a considerable amount of variation in ranking of 202 

individual species (Figure 1).  There was complete consensus in ranking only for the two highest 203 

ranked species, Purple Emperor Apatura iris  and White Admiral Limenitis camilla, although other 204 

species also showed little variation in ranking - for example, Brown Hairstreak Thecla betulae, Silver-205 

washed Fritillary Argynnis paphia and Adonis Blue Polyommatus bellargus.   206 

3.2. COMPARING DATA-DERIVED SCORES WITH EXPERT SCORES 207 

All correlation coefficients between each expert’s rank score and the ranked score from occurrence 208 

data (r = 0.646 to 0.849) were significantly positive (p < 0.001) and lay within the range of 209 

correlations between experts (r = 0.626 to 0.909), suggesting that this method produces rankings 210 

which are no more variable from expert opinion than variation between experts.  However, 211 

correlation coefficients between expert rank scores and the score from abundance data (0.554 to 212 

0.611) were lower than all correlations between experts, suggesting that this method produced 213 
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rankings which varied more from expert opinion than the least concurrent pair of experts.  214 

Correlations between the occurrence derived score and the mean and median expert scores (r = 215 

0.794, r = 0.748, respectively) were higher than for the abundance-derived scores (r = 0.724, r = 216 

0.699, respectively).  The abundance-derived score also showed a greater number of species where 217 

the data-derived ranked score fell outside the range of all expert scores (Figure 2b).  These included 218 

White-letter Hairstreak Satyrium w-album, which was given only an intermediate ranking by the 219 

abundance data but was amongst the highest ranked (i.e most strongly woodland associated) by 220 

experts, and Large Heath Coenonympha tullia, which was also assigned an intermediate ranking by 221 

the abundance data despite expert opinion giving it one of the lowest rankings. The occurrence 222 

data-derived score showed fewer outliers (Figure 2a) although some species were still given rankings 223 

which differed substantially from those given by experts.  For example, Brown Hairstreak was ranked 224 

higher by all experts than by occurrence data, whilst Marsh Fritillary Euphydryas aurinia was ranked 225 

lower.   226 

Most species showed variation in habitat association scores between 100km regions, which was in 227 

many cases significantly correlated with latitude (see supplementary material, Table S1).  Such 228 

variation usually affected the strength of association, rather than reversing the direction of the 229 

relationship.  An example, for Ringlet Aphantopus hyperantus, is shown in Figure 3, where 230 

associations were stronger in the south of GB and declined in strength with increasing latitude.   231 

3.3. RE-SAMPLING TO DETERMINE MINIMUM SAMPLE SIZE FOR ESTIMATING HABITAT ASSOCIATION 232 

The re-sampling of occurrence records showed that, across all species, the minimum sample size for 233 

which the mean data-derived score fell within the range of expert scores had a mean of 5480 234 

(standard error = ± 1750), equivalent to a mean of 223 occurrence records per 100km region.  235 

However, this required minimum sample size showed considerable variation between species (see 236 

supplementary material, Table S1).  Species at either extreme of woodland association as 237 

determined by the full-sample score and by expert opinion (i.e. with low or no significant woodland 238 

association, or with high woodland association), tended to require comparatively low sample sizes 239 

(100 - 1000) to come within the range of expert scores.   Those species with moderate woodland 240 

association scores frequently required higher sample sizes to come within the range of expert 241 

scores.  The mean across species was thus heavily influenced by a few species which required large 242 

sample sizes, such that the mean required sample size for the ten species which showed the 243 

strongest woodland associations (highest full-sample scores) was reduced to 1155 (standard error = 244 

± 815).   The five most strongly woodland associated species which were suitable for analysis by re-245 

sampling (Limenitis camilla, Argynnis paphia, Apatura iris, Favonius quercus, Leptidea sinapis) 246 

required even lower sample sizes, with a mean of 400 (standard error = ± 109). 247 

http://www.ukbutterflies.co.uk/species.php?species=hyperantus
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4. Discussion 248 

Our results showed that occurrence data have the potential to generate objective, quantitative 249 

habitat association scores which correlate strongly with expert opinion. Scores from occurrence data 250 

showed fewer deviations from expert opinion than did those from abundance data, especially for 251 

specialist species (i.e. those at either extreme of the spectrum of woodland association). For 252 

abundance data, the appearance of more scores which are strongly counter to expert opinion and a 253 

lesser correlation with expert rankings, suggests that, invaluable though these data are for 254 

monitoring population trends, they are less suitable for estimating habitat associations for certain 255 

species.   This may in part  be an issue of statistical power, with the number of data points for 256 

occurrence data (i.e. geographical locations) being orders of magnitude greater than for abundance 257 

data, especially for less widespread, specialist species (e.g. Large Heath, see supplementary material, 258 

Table S1).  This difference in sample sizes is due to the fact that it is less intensive in terms of time 259 

and effort, both in design of the monitoring scheme and in actual data collection, to acquire 260 

additional occurrence data than to set up additional standardised population monitoring sites  261 

(Bishop et al. 2013).  There are also other issues including potential bias in the selection of locations 262 

for standardised monitoring transects toward the highest quality or most accessible habitats. It thus 263 

appears that in the case of assessing habitat associations, it may be better to use large quantities of 264 

simple occurrence data than more detailed standardised monitoring datasets. 265 

Existing, and widely used, data-derived metrics of habitat association such as IndVal (Cáceres and 266 

Legendre 2009; Dufrene and Legendre 1997) compare abundance or frequency of species between 267 

sites showing known differences in habitat.  These rely on the location at which the organism is 268 

recorded being a true reflection of the habitat with which it is associated.  This is likely to be true at 269 

larger spatial scales, and for sessile organisms or extensive habitats.  However, many recording 270 

schemes vary in the accuracy with which locations are recorded, so that the exact habitat in which 271 

the species was observed is not known.  In addition to this, the habitat where a species is primarily 272 

found may only partly reflect the full range of resources required to complete its life cycle. In the 273 

case of butterflies these include host plants, nectar plants and roosting sites (Dennis et al. 2003).  274 

Our approach thus has the advantage of increasing the likelihood of capturing all essential resources 275 

by testing the importance of the total proportion of a given habitat type at the landscape-scale.  276 

There are still obvious limitations to this method, as not every important factor determining habitat 277 

suitability is well represented by cover of a readily mapped habitat type.  Such factors for butterflies 278 

may include microclimates for egg laying, pupation and shelter, the presence of parasitoids or larval 279 

hosts and specific resources for larval and adult feeding (Dennis et al. 2006; Dennis et al. 2003; 280 

Krämer et al. 2012).  Also, species are rarely restricted to only one type of habitat, and there is the 281 
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possibility that individuals, populations or species may adapt their habitat affinities if the primary 282 

habitat is depleted or degraded (Merckx et al. 2003; Merckx and Van Dyck 2006; Proença and 283 

Pereira 2013).  Even where this does not occur, species may also receive benefits from habitats 284 

other than the one which primarily determines their occurrence.  For example, Villemey et al. (2015) 285 

found that grassland butterfly richness and abundance were affected to a greater extent by local 286 

woodland cover than by connectivity of the primary grassland habitat. For these reasons, the data 287 

derived scores reported here should not be assumed to have captured all the information required 288 

for successful species conservation.  However, they should provide a robust method for assessing 289 

which species are most strongly associated with a particular habitat of concern and vice versa, a vital 290 

preliminary step in much conservation planning and policy. 291 

Studies comparing or combining expert opinion with data-derived methods to optimise habitat 292 

association models have shown varied results (e.g. Clevenger et al. 2002; Kuhnert et al. 2005; 293 

O'Leary et al. 2009; Pearce et al. 2001; Reif et al. 2010; Seoane et al. 2005).  This variation is 294 

potentially driven by differences in the accuracy of expert knowledge across different locations and 295 

taxa, as well as differences in the interpretation of a particular habitat type (O'Leary et al. 2009).   296 

The latter probably accounts for some of the observed differences between expert opinion and 297 

occurrence data in this study.  For example, Purple Emperor and Brown Hairstreak are both 298 

specialists of specific woodland types which comprise only a small part of the LCM2007 land cover 299 

map broad-leaf woodland class - the former of extensive, mature woodlands with a tall canopy and 300 

the latter of scrub and wood edge habitats, as well as hedgerows, which are not detected by 301 

LCM2007. 302 

Unlike many other taxa, GB butterflies are likely to be sufficiently well studied that expert opinion 303 

should be well-founded, and thus a good yardstick by which to measure the performance of data-304 

derived methods.  Despite this, scores varied to some extent between experts. This illustrates the 305 

difficulty of using expert opinion to move beyond qualitative descriptions, even to a simple, ordinal 306 

ranking for such a well-studied taxon as British butterflies. Variation amongst experts was especially 307 

notable for common, widespread or mobile generalist species which received intermediate rankings 308 

(Figure 1).  Ranking the association of such species with a particular habitat is particularly 309 

challenging, so data-derived methods may be better able to detect subtle differences in habitat 310 

association between species, especially where environmental change has created differences in 311 

habitat use which are not immediately apparent or where expert opinion is likely to be less well 312 

informed or less up to date than for such a well monitored group as UK butterflies (Pateman et al. 313 

2015; Pearce et al. 2001; Seoane et al. 2005). Experts are also likely to be most familiar with a 314 

particular geographic area and base their scorings upon this knowledge.  However, our results 315 
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(Figure 3), along with previous studies (Mayor et al. 2009; O'Leary et al. 2009; Oliver et al. 2009) 316 

show the existence of spatial variation in habitat association for some species. Thus, expert opinion 317 

is not necessarily transferable between geographic locations or spatial scales (Pearce et al. 2001), so 318 

it may be advantageous to employ data-derived methods on data gathered over large spatial scales 319 

to allow variation in habitat associations to be assessed, unless a range of experts can be canvassed 320 

whose expertise cover the entire geographic area of interest.  The observed spatial variation in 321 

habitat association also has important implications for conservation.  The Ringlet, as shown in figure 322 

3, has previously been shown to exhibit shifts to core habitats under drought conditions (Sutcliffe et 323 

al. 1997), so it is possible that sensitivity to drought drives the stronger affinity with woodland in 324 

warmer, drier (i.e. Southern) areas of Britain, as has been demonstrated for this and other species 325 

(Oliver et al. 2009; Oliver et al. 2015; Pateman et al. 2015; Suggitt et al. 2012).  Such interactions 326 

between habitat and climatic variables are important to consider in the light of ongoing 327 

environmental change and conservation efforts to mitigate its effects (Fox et al. 2014; Oliver et al. 328 

2015).  329 

Examining the association with a single habitat does have the disadvantage that it is difficult to imply 330 

causation – for example, a species showing a positive association with broadleaved woodland could, 331 

in theory, be using a different habitat type which co-varies with woodland area (Botham et al. 2015).  332 

However, whilst some significant correlations between broad habitats occurred at the regional level 333 

(supplementary material, table S2), across 100km regions, there were no consistently strong 334 

correlations between broadleaved woodland and any other land cover class (see supplementary 335 

material, table S2), suggesting that there is no overall issue with broadleaved woodland simply being 336 

a measure of some other habitat.  Although this study focussed on woodland as a test case, the 337 

methodology is equally applicable to any habitat (or, potentially, other environmental variables) 338 

with information on spatial coverage.  Analyses could thus be run for a range of land cover types to 339 

find those with the highest association for each species, or by comparing scores from independent 340 

models with increasing levels of habitat specificity (e.g. broad-leaf woodland, ancient broad-leaf 341 

woodland, ancient oak woodlands).   342 

The use of occurrence data to detect species habitat associations is likely to be most valuable for 343 

other taxa for which expert opinions are likely to be more region specific, or for which there is no 344 

consensus or insufficient study to form reliable expert opinions (Seoane et al. 2005).  In such cases, 345 

occurrence data can be relatively easily gathered from a range of sources (historical records, casual 346 

species observations or national recording schemes) and so useable sample sizes may well be 347 

available for a comparatively large number of species.  Occurrence data also have the advantage 348 

that the data collected is consistent (a species, a date and a geographical location), rather than the 349 
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broad range of methodologies employed in standardised monitoring schemes for different taxa, 350 

such that the methods described in this study are likely to be applicable across taxa.  Of course, such 351 

data is only useful alongside contemporaneous environmental data, but this is becoming increasingly 352 

plausible given the increasing availability of spatial environmental datasets, including digitized 353 

historic mapping.  Other issues associated with the use of occurrence data, particularly the need to 354 

account for biases introduced by spatial and temporal accounting for recorder effort, have also 355 

developed an extensive literature, with a range of methods now available (Hill 2012; Isaac et al. 356 

2014; Mason et al. 2015).  Such methods are likely to be a vital prerequisite in using the methods 357 

described here to estimate habitat associations for poorly recorded or highly speciose groups, or 358 

those with complex patterns of species richness or recorder effort. 359 

The differences in the number of occurrence records required to derive habitat association scores 360 

which fall within the range of those given by experts are unsurprising. It is highly likely to be easier to 361 

detect stronger habitat associations at lower sample sizes. Those species requiring the largest 362 

sample sizes for convergence with the expert scores were, accordingly, mostly widespread 363 

generalists with moderate woodland association from the full-sample scores and expert ranking (e.g. 364 

the Comma Polygonia c-album).   Not only are larger sample sizes required to detect weak 365 

relationships, but these species often showed significant spatial variation in their association scores 366 

(see supplementary material, Table S1).  So, whilst 5000 records might be required to ensure 367 

accurate detection of subtle or cryptic habitat associations, detecting those species with strong 368 

associations is likely to be possible with several hundred to 1000 records.  Such species are 369 

frequently those which habitat association analyses seek to identify, as being most vulnerable to 370 

predicted habitat change or as potential indicators.  It is also likely that robust results could be 371 

obtained from lower sample sizes if there was no reason to suspect spatial variation in habitat 372 

association, and therefore no reason to include a term allowing regional variation in the model.  373 

However, the fact that 26% of the species analysed here showed a relationship with latitude, let 374 

alone the potential for other spatial variation, suggests that accounting for spatial variation is most 375 

likely necessary at all but the smallest spatial scales (Pateman et al. 2015; Pearce et al. 2001).  376 

Comparing the sample sizes required to detect woodland association for butterflies with the number 377 

of records for other taxa in Britain (figure 4), it is clear that butterflies are a particularly data rich 378 

group (hence their use in this study as a test case).  Few other taxa are as well recorded, although 379 

around 30% Odonata and 10% of macro-moths meet the 5000 record threshold.  For other groups, 380 

although there is likely to be insufficient data to detect subtle or cryptic habitat associations, 381 

comparatively large numbers of species have sufficient data to apply this method with a strong 382 

probability of obtaining robust, quantitative scores for those species most reliant on a particular 383 
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habitat. These could then be used in a wide variety of ecological applications including the selection 384 

of indicator species, the development of indices of habitat quality by weighting aggregate species’ 385 

population trends by degree of habitat specialisation or prediction of the extent to which each 386 

species may be affected under scenarios of land-use change.  Ultimately, such analyses form the 387 

basis of much conservation policy at the species, habitat and ecosystem level. 388 

4.1. CONCLUSIONS  389 

This study has shown that analysis of recording scheme data can produce measures of habitat 390 

association which support expert opinion, whilst offering several advantages over reliance on the 391 

latter in terms of objectivity and the ability to detect spatial variation.  The better performance of 392 

readily available occurrence data over abundance data in this context confirms the value of large 393 

scale volunteer recording schemes in the light of recent discussion on their comparative  strengths 394 

and weaknesses (Bishop et al. 2013; Dickinson et al. 2010; Tulloch et al. 2013).  Although further 395 

work is required to confirm the transferability of the methods detailed in this study for different 396 

taxa, habitats and spatial scales, the quantitative association scores derived by the methods in this 397 

study have multiple applications in conservation research. 398 
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Figures 558 

 559 

Fig.1 Plot of variation in expert rankings of butterfly woodland association scores.  The mean expert 560 

ranking is plotted on the x axis, with the associated rankings given by each expert plotted on the y 561 

axis. Vertical black lines indicate the range of rankings across all five experts for each species.  562 
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 564 

 565 

Fig. 2 Plots of a) Rank score from occurrence data and b) Rank score from abundance data against 566 

mean expert ranking.  Open circles are species for which the ranking of the data-derived score did 567 

not lie within the range of the rankings assigned by experts. 568 
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  570 

Fig.3 Regional variation in the association of the Ringlet butterfly Aphantopus hyperantus with 571 

broad-leaf woodland across Great Britain (GB), as detected from occurrence data. (a) Map of GB 572 

showing relative strength of association in 100 km regions. Unshaded regions had insufficient data 573 

for analysis. (b) Plot of association scores against latitude, measured as distance north from grid 574 

origin (Northing). Filled points indicate example regions where the relationship is shown in panel (c), 575 

an example of a strong, positive relationship with broad-leaf woodland and panel (d), an example of 576 

a weaker relationship with broad-leaf woodland. 577 
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 579 

Fig 4. Comparisons of proportions of species in different GB taxa which meet various thresholds in 580 

number of unique occurrence records with 1 km or better precision. Numbers to the right of bars 581 

indicate total number of species within each taxon. Sections of bars are shaded by number of 582 

species meeting thresholds: black sections = 5000 records, dark grey sections = 1000 records, light 583 

grey sections = 500 records.  584 
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Supplementary material 585 

Additional supplementary material may be found in the online version of this article: 586 

Table S1 Results of scoring species association with broad-leaf woodland for 50 butterfly species in 587 

mainland GB, from abundance data, occurrence data and expert opinion.   588 

Table S2 Pearson’s correlation coefficients from correlations between broadleaved woodland and 589 

other land cover classes from the UK land cover map 2007, by 100 km x 100 km region. 590 


