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Abstract

Genetic algorithms (GAs) are now established search and optimization techniques employed in a diverse range
of applications. The run-time and hence quality of solutions produced by GAs is related to the choice of genetic
operators, the size of the population, the application, and the manner in which the algorithm is implemented,
Recently there has been considerable activity in accelerating GA performance by exploiting the explicit parallelism
of the evolutionary mechanism both on general purpose parallel architectures and more recently on special purpose
devices via rapid prototyping admitted by the availability of Field Programmable Gate Arrays (FPGAs). Previous
work has concentrated on migration models using partitions of the population on programmahle processors and for
hardware implementation of the fitness funetion. In this paper we present a systolic design for a simple GA
mechanism which provides high thronghput and wmidirectional pipelining by exploiting the inherent parallelism
in the genctic operators. The design compntes in O N +G) time steps nsing O(i\t’gj cells where &V is the population
size and (7 is the chromosome length. The area of the deviee is independent of the chromosome length and so
can be easily scaled by replicating the arrays or by emploving line grain migration. The array is generic in
the sense thal il does nol rely on the fitness funciion and can be used as a acceleralor for any GA applicalion
using uniform crossover between pairs of chromosomes. The design can also be used in hybrid systems as an
add-on to compliment existing designs and methaods for fitness function acceleration and island style population
managernent.



t | 4 =1 4=
ES Ti1i1viuvgaucuiuvull

Genetic algorithms (GAs) are search mechanisms thal embody the principles of natural selection to develop
golutions to a wide range of search and optimization problems. GAs have proven particularly useful for problems
where effective individual heuristic technigues are not known or where the search space is noisy or has multi-modal
properties. GAs were first presented formally by Tlolland [1], they operate by maintaining and manipulating a
population of candidate solutions, called chromosomes. The chromosomes are constructed from an alphabet of
symbols which are used to encode trial solutions to the problem at hand. In keeping with the genetic analogy,
cach individual symbol is referred to as a gene. In the canonical genetic algorithm a 2-ary alphabet is used and
the chromosomes are simple binary strings. However it is not nmncommon for more complex encoding schemes
cmploying gene alphabets of a higher cardinality to be used. Rescarch in the literature indicates that the coding
scheme should represent the problem as closely as possible. Many problems, which previously have been tackled
using binary encoding schemes have benefited from being re-encoded with a more natural, non-binary scheme
(e.g. Job Shop Scheduling [2, 3, 4]}. Conversely when binary is the natural representation of the problem such
an encoding performs very well (e.g. [0]). Tlowever non-binary encoding schemes are rather artificial and have a
limited meaning when hardware is considered. This follows because all encoding schemes are ultimately reduced
to binary representations. The concept of non-binary schemes is embodied simply by gronping bits together into
atomic units which eannot be disturbed hy the action of the algorithm. Consequently we shall concentrate on
binary representations.

In a GA cach chromosome has an associated fitness value which is a gualitative measure of how good the
chromosome is as a solution to the problem at hand. The fitness value is used to bias {or direct) the stochastic
sclection of chromosomes {normally pairs or mates) which are then used fo genorate new candidate solutions
through a process termed reproduclion. The new chromosomes replace the old ones in the population and this
process is iterated over a number of generalions until a solution is found or an acceptable degree of optimiz-
ation is obtained. Reproduction cousists of two opervations, cressover and mufafion. Crossover genervates new
chromosomes hy combining sections of two or more selected parents. In stmple One-paint crassover, two pavent
chramosomes arve cut at a random site and recombined to form a new child chromosome by swapping the tail
sections of cach chromosome. In practice more claborate crossover strategies are often used for example n-ary
point which cuts the chromosome into n + 1 picees. n-ary crossover can be extended to its logical conclusion
so that there exists a crossing point between cach gene and the new child is constricted by making a decision
Jor each gene which parent it is to come from. The decision s made by generating a raudonn binary string {or
template) and choosing a gene from parent 1 if the bit at the partieniar position is one, or from parent 2 if the bit
is zero. The second child is constructed in a similar manner with the roles of the bils reversed. Such a strategy
is called Uniform Crossover and is generally favored over other general crossover schemes in the belief that it
minimiges disturbance of the good genetic material or schema which occurs as a result ol crossover [6]. A good
general discussion on Uniform Crossover and its relative merits over other crossover schemes can be found in
Reasley et. al. [7]. Which type of crossover mechanism is adopted is largely problem dependent, aithough it can
be argued that the more chromosomes involved the more information you have to characterize good solutions.
Clearly there is a trade-off between the computational complexity of the operator and the observed offects in
the evolving popnlation but to date no general resnlts on how to exploit this correspondence have appeared in
the terature. We shall concentrate on nsing Uniform Crossover between fwo sclected parents fo produce two
children. Mutation acts on individual genes by randomly selecting genes which are then altered. For the canonical
genetic algorithm with binary alphabet this is simply a case of flipping the state of a binary digit. in general the
process is complicated by the need to ensure thatl genes mulate into valid forms in the alphabet. Mutalion is
used Lo ensure diversity. For example, when Lthe GA begins Lo converge Lowards a solution Lhe population tends
Lo separale into groups of duplicate chromosomes. In some cases the optimal solution chromosome may not be
derivable purely from the application of crossover. Mutation prevents such sub-optimal solutions frow persisting
and thus dominating the algorithm.

The fundamental aim in developing a hardware GA is to speed np the exeention of the algorithm. Accclerated
performance allows larger populations to be processed for more generations, hopefully yvielding an improvement. in
the quality of solntions for the same compntation time. We say hopefully, beeanse it is possible that the greater
mmber of iterations may give rise to some unsuspected degenerative effeets that produce no improvements to the
sohition. Alternatively, if significant performance enhancements can be obtained, it becomes feasible to consider



applying genetic algorithms to non-trivial real-time problems such as robot path planning [3]. For such dynamie
problems there is also a desire to embed the algorithm into larger hardware/software systems. A dedicated GA ‘eo-
processor’ scems a logical way to achieve this goal. The speedap offered by hardware also admits the possabality
of emploving GAs to problems where the search spaces are so large that traditional methods are regarded as
impractical.

There are a number of recent designs for hardware genetic algorithms [9, 10, 11, 12, 13, 14, 15] but these are
mostly based on the following premise. It is estimated that a sequential GA spends on average around 65 7 ol the
tota) processing time on fitness evaluation [9]. Consequently there would seem to be great incentive for performing
a number of function evaluations in parallel, or migrating the fitness function into hardware, and less incentive for
parallelizing the genetic operators. Tn this paper we argue that this approach, albeit not mis-pnided, is somewhat
naive. This argnment is based on the following ohservations. Tirstly, the evalmation of the fitness fanetion s
often a complex procedure which is not easily mapped into hardware, dictating against specialist fitness engines
or a least to hardware with lmited applicability. Sccondly, given a distributed ‘high level” parallelization, where
the fitness fanctions of chromosomes are computed in parallel batches with migration to preserve diversity, the
real bottlencck becomes the genetic operators. A simple approach wonld be to implement two orthogonal levels
ol parallelisin at the population and operator levels. However this implies architectures capable of exploiting
both medium and low level granularity with equal ellectiveness. We propose Lhal this can be achieved by using
specialist hardware for the low granularity genetic operators, combined with more general processors for the
higher levels. Below we describe the architecture for implementing the genetic operators in hardware as systolic
arrays. These arrays are generic in that they apply to all algorithms using Uniform Crossover. Similar principles
can be nsed for more algorithmically specialised operators. The systolic approach is very well snited to VLSI
implementation and can be synthesized by the application of well nnderstood algorithm engineering principles
[16] based on loop unrollings of the underlining genctic algorithm. In addition we propose a fixed sized solution
where the array size is independent of the population size or chiromosome length, Where the fitness function
is particnlarly regnlar in structure (o.g associative operators) it may be possible to incorporate onr arrays into
embedded systems with hardware based [iiness evaluation.

The systolic array design methodology has traditionally been used Lo design special-purpose VLSI devices.
Although systolic designs are generally aimed at VLSI, we are mindful to remember the benefits offered by using
FPGAs as the implementation technology instead. FPGAs not only provide a means of rapid prototyping of
VTL.ST designs but many devices offer the advantage of reconfignration. With the range of genetic operators that
can be used in GAsg, veconfiguration allows alternative aperatars to he develaped and "plugged in’. We therefore
shall consider both VLST and TPGAs implementations when considering our systolic design.

The rest of the paper is organised as follows. Scetion 2 presents the systolic array genetie algorithm in detail
inclnding cell definitions for the array clements. In Section 3 we perform an arca-time complexity analysis of the
design and compare this with the serial case. Section 4 explores the abifity to scale the arrays to improve the
genetic performance. Conclusions are presentoed in Section 5.

2 Systolic Array Genetic Algorithm

Moldovan [17] points out ‘VLSI is a raw technological environment which requires new ideas in computer organ-
ization, theory of compnting and other related ficlds’. Systolic arrays were proposed by Kung {18, 19 and others
in an attempt to address some of the problems associated with the design of special-purpose systems in VLS.
The systolic array principle is to distribute the computation over a number of computational units which are
locally connected Lo form an array. Each unit or cell conlains simple computational logic with a [ew regisiers
acting as local memory. DNata is fed through the array from the boundary cells and ‘pumped’ through the cells in
a pipelined fashion (the analogy between pumping data throngh a array and pumping blood thremgh the hody
explains why the array is termed ‘systolic”). As data is only fetched from memory at the boundary cells, it is
re-nsed extensively within the array. The pipeline exploits coneurreney, which in combination with data re-use
greatly reduces the overall execution time of the algorithm. Many systolic arrays exploit the pipelined principle
in more than one dircetion, resulting in two and three dimmensional array structures. The regular array structura
and the simple computational functions of the cell resnlts in a data-Aow which is likewise simple and regular.
This kind of data-flow has substantial advantages in terms of design and implemnentation over comphieated ir-



regular communication. Primarily long commmnication lines can be almost completely avoided as each cell is
connected locally, The array also results in devices which reguire nmch less effort in design snd implementation.
The nature of the array means the design is both modular and expandable and in combination with modern
photo-lithographic processes they are comparatively casy (and therefore comparatively less expensive) to design
and implement than traditional ASICs,

Designing systolic algorithms is principally concerned with ideniilying the daia and conirol dependencies which
exist in an algorithm. These dependencies define the order in which tasks have 1o he perlormed and the absence
of dependencies indicates places in the algorithm where parallelism can be exploited. The dependencies can be
expressed mathematically, as a series of recurrence relations which can be used to define an array structure to
implement the algorithm throngh the process of synthesis. Work combining systolic arrays with genetie algorithms
can be found in Chan and Mazumder [9]. They propose a systolic array fo assess the fitness for the hypergraph
parfitioning problem. We sce this work as being of significance although we are concentrating on implementing
the genetic operators (rather than the fitness fimetion) for the reasons given above.

The systolic genetie algorithm we propose is based around a munber of systolic arrays arranged as a macro-
pipeline as shown in Fig 1a. An immecediate advantage of using the systolic array approach is that we can seale
the array in accordance with the population size and use the concept of pipelining and dala re-use Lo ‘pump’ the
chromosomes through the array. The rationale behind this decision is that we can implement populations as a
number of sub-populations (usually referred to as demes) and use the coarse-grained parallel genetic algorithra
model [20] in a Jocally parallel, globally sequential [23] mode. Such a model wonld allow each deme to be either
processed serially through the device or for the whole design to be replicated a number of times over the siticon
arca and realize a true coarse-grained parallel genetic algorithm. The size of cach deme can be chosen arbitrarily,
ecither in relation to GA theory [22] or depending on the amount of silicon resouree available {this is particularly
applicable to FPGA implementations where gate density is rapidly being improved). The design follows from a
particular projection of the un-rolled data dependence graphs of the varions genetie operators such that a} they are
mutually compatibic for uni-dircetional pipelining, and b) that the array is independent of the chromosome fength.
Such a design is not at all obvious from the usual GA specifications. Consequently we can construct hardware
without having to use wide data registers which would require sophisticated control lagic to accommaodate varying
lengths of chromosomes. We also do not need to resort Lo distributing the optimization ol the chromosoine over a
number of fixed length sections {as in [t4, 15]), which may not take into account the interaction {ov epistasis} of
the genes. Uni-directional pipelining assists in designing a fault-tolerant device [23]. Tt also simplifies the design
of extensions to the pipeline such as alternative genetic operators.

2.1 The Macro - Pipeline

The array itself is arranged as a macro pipeline of seven distinct functional units pipelined together. The seven
arrays are as shown in Figure 1,

Tlach of the seven systolic arrays performs some manipulation of the chromosomes as they pass through along
the horizontal axis of the array. Crossover and nmtation are each achicved in a single systolie array while seleetion,
which in this ease is roulette wheel selection 124], is distributed over the remaining five arrays. Sclection is achiowed
in rather an idiosyneratic way and may require some moments of contemplation to confirm that the principles of
sclection are proserved. This feature arises as a dircet result of manipulating the data dependencios of a genoetio
algorithm to fashion the arrays and indicates that a detailed study of the algorithin at this fevel can gencrate
designs which traditional technigques may not consider. Control data which is required by the asrray is passed
down the vertical axis and skewed Lo meet Lhe chromosomes in the correct cell. Some pre-loading of registers
can be achieved before the chromosomes have propagated through the previous arrays in the design but in most
cases timing is achieved by staggering the entry times of the chromosomes. This stagger is set up hefore the
chromosomes enter the first arvay and is preserved by all the arrays in the design. Consequently the skewing {and
deskewing) can be achieved sitaply by pre- {post-} arvays of delay cells if required.

An cssential part of any genctic method is the gencration of random numbers, nsed to meot the stechastie
requirements of the algorithm. As part of the design processes we investigated the data dependencies involved
in random mumber generation [25]. We have nsed the mixed congrmential Psendo Random Number Generator
(PRNG}{26] which, conveniently, already exists in the form of a recurrence relation, #,49 = Az, + . Ona
sequential processor we would iterate this recmrrence and so generate a stream of munbers, singuiarly, at cach



Figure 1: (a) The Macro Pipeline (b) Structure of the chromosome

guccessive Lime step. To achieve a parallel RNG we have simply un-rolled the loop inlo an array and fed the lop
cell with the output of a free-running PRNG (which uses a different recurrence velation). Tach cell receives as its
geed the output of the preceding cell to generate a new random number. At the same time the cell passes ont the
result of its last calculation to the next cell to act as its seed. As time passes each cell gemerates {comcurrently
with the other cells) its own stream of random numbers. What is significant about this approach is that we are
not left with isolated PRNGs which might, dne to the deterministie natnre of the generator and poor seeding,
produce streamns of munbers which are significantly similar. As cach cell is effectively re-sceded cach time stop,
the generators follow the top RNG. Each cell disturbs the stream generated above (randomiy) to prodnce a new
independent stream below. It is true that, under certain circnmmstances, the random munbers generated may begin
Lo repeal but this repetition is distributed across all of the cells and so does not allect the independence of the
gireams generaled with each cell in respect both to themselves and all other sireams in the array. This design can
be seamlessly incorporated into the arrays (e.g. Mutation, see Fig 9) without having to use long communication
lines from a central PRNC.

A chromosome is structured as illustrated in Fig 1b. Preceding the ‘genetic’ portion of the chromogsome are
the two ficlds, fitness and scleet, TFitness holds the fitness valne of the chromosome, derived from some fitness
evaluation routine. This arrangement divorces the design from any problem-specifie fitness funetion. The Seleet
ficld is nsed internally as a non-stationary seratch register, primarily to store the mimber of times (if any) a
parficnlar chromosome has been sclected for reproduction, hence its name. The five sclection arrays primandy
deal with these fields and set up paths for the ‘genctic’ portion of the chromosome to follow through the arrvay.
For clarity of description both of these values can be regarded as whole numbers which are commmumicated in
parallel. In the linished design, data will be passed between cells either bil or byte-serially. The genetic portion
of the chromosome follows these values bit-serially through the arrays. I is this section of the chromosome which
is manipulated by the genetic operators.

The recurrence relations we have identified arve given below in the form of systolic array cell definitions. A
diagram of each array accompanies these definitions as well as a description of the functionality of the particular
arrays. The fitness and seleet registers will be referred to as T and 8 respectively in the cell definitions. The
relation X5, € I conld be read © X, 1s a fitness valne’.

1=



Figure 2: The Roulette Wheel Array with a snapshot of of the data after four time steps

2.1.1 Roulette Wheel

Rouletie wheel seleclion is based on the idea that each chromosome occupies a section of a rouletie wheel. The size
of each section is proportional to the fitness of each chromosome in terms of the percentage fitness w.r.t the total
fitness of the population. The wheel is ‘spun’ (which corresponds to the selection of a random number between (
and 1) and the section wheve the hypothetical ball lands indicates the chromosome ta he chosen for reproduction.
As the size of each scetion of the wheel is proportional fo the fiftness of the chromosome i represents, there is
a bias towards sclecting fit chromosomes but it is important to note that sclection is achioved stochastically.
In the array (Fig 2) the roulette wheel is formed as follows. The array takes the fitness value from the firsk
chromosome which enters at the front of the srray at the top left cell. A total is passed vertically downward to
meet the fitness valne of the remaining chromosomes on snecessive steps. Thms as the data moves dowmwards
all the fitness values are summed and the total {itness [or the population or deme appears at the bottom of the
column. This sum is then used to scale the fitness value by synchronising with the chromosomes which have
been propagated horizontally through a batch of delay elements. The [itness value is overwritten by replacing its
percentage value w.r.t. the total fitness of the population (or deme). Clearly the population size (V) is required
to achieve this calenlation and can be passed into the array from the top or implicitly assumed by the array
cells (which requires pre-loading). The select value and chromosome fields following the fitness value through
the array remain nnaffeeted. Tig 2 also shows the position of the data after four time steps. The format of the
chromosomes can be elearly scen with the Fitness and Seleet ficlds preceding the actual chromosome {passed hib
serially). Also visible is the stagger that has been put onto the population with the top chromosome entering the
array frst and cach snceessive chromosome being delayed by one time step. This stagger is preserved by all of
the arrays in the design.

The figure and cell definitions given above describe the rouletie wheel array in an intuitive form. However
this design requires a long dala line lo communicate the sum of fitnesses (from the lefimost cells) to the fitness
scaling cells (rightmost cells). Such a line compromises the systolic principle of local communication between
cells. We can eliminate this non local communication line if we adopt the technigue of space folding [16]. The
principle of space folding is to re-map two elements {in space) onto one location. Fig 3 gives the new array
design and resulting cell definitions. The axis of the fold runs disgonally from top left to bottom right in the old
array, including the fitness summing cells but excluding the scaling cells on the far right. The fold acts to re-map
two delay eclls onfo one loeation in space. The fitness snmming, eells are inelnded in the fold as these eclls are
implicitly used to delay the chromosomes. Folding the array resnlts in the snmining and sealing cells bong placed
adjacent to cach other and so now only require a local communication line botween thoem, A hrther advantage
of this fold is to reduce the munber of delay cells reguived, as cach delay cell now operates in two dimensions.
However it is also important Lo note that this has increased the complexity of these cells, This is especially true
of the (iness summing cells which now also act as delay cells in the Y direction,

[



Figurce 3: The Folded Roulette Wheel Array

2.1.2 String Selector

This stage actually performs the roulette wheel sclection. A random nmumber (between 1 and 100) is passed 1n to
the array (Fig 4) representing the Ianding place of the *bail” on the wheel.

As the ‘ball’ value moves vertically down the array the scaled fitness of each chromosome is subtracted. The ceil
where the sum becomes negative increments the [ollowing Select field of the chromosome which is then regarded
as being selected. The principle of the rouletie wheel is observed as highly it chromosomes with accordingly
higher scaled fitness have more chance of reducing the number below zero and thus being selected. Onee the
‘ball” value becomes negative it will remain negative for any further subtractions so the sign-bit of the subtractor
can he used to increment the selection field. Tn the diagram the array has a width of NV cells. As each column
corresponds to a spin of the rontlette wheel NV selections are made, gnaranteeing enongh chromosomes to replace
the enrrent popnlation affer crossover. Nofe that it is important o realize that there is no imit 1o how many
times a partieniar chromosome ean be seleeted for reprodnetion (up to a maximum of N j. Conscquently some
chromosomes may emerge from the array with the select field still zero. As before, we assmmne that the remaining
chromosome, following the sclect ficld, passes through the colls unaffectod. This is casily achioved by a control
bit tagged to the random numbers pumped down the columns (for example making the sign bit negative before
entering the array).

2.1.3 String Sort

In this array (Fig 5) the chromosomes are sorted by select field with the most sclected chromosome emerging, from
ithe botlom lell cell. By analysing Lhe recurrences, siricily speaking il is nol necessary Lo sorl the chromosomes
al this point. However the regularity and simplicity of the rest of the desipn far cutweighs the additional cells
and latency introduced. The sort algorithm is a standard systolic version of bubble-sort [16] modified o take into
account the trailing ‘senetic’ bits. Thus the 2-1) dependence graph cannot be projected into I-1) fo produce a
standard 1-TJ array for sorting. The array is derived by wnroiling the associated two foop program which compares
clements 7 and j in a list with i = 1,2,.., N — 1L and j = i + 1, ..., N hence the triangular shape. Chromosome
strings enter the array horizontally from the left with the scleet ficld acting as the sort key. The preceding fitness
ficlds will be detached from the associated strings as a resnlt of exchanges but this poses no problems as we will
not nse its value again in the rest of the macro-pipeline. Essentially a chromosome string hitting a diagonal celf is
propagated down the associated colnmn where it encounters other strings. If we consider the ¢ th cohunn, this will



Figure 4: The String Sclector Array

Figure 5: The String Sort Array



Figure G: The String Match (Stage 1) Array

rotite the ¢ th string downwards Lo be compared with the strings i + 1, ...n. Thus column i of the array performs
the comparisons of string pairs (7.2 + 1), (&, +2), ... (2, N). Clearly with N columns all the comparisons of the
bubble-sort algorithm are performed. Next we have to convince ourselves that we can exchange two strings i and
j without corrupting the data following the select field. To do this, observe that cells act as comparators and
ronters. When two select fields enter a cell they are compared. If select; < select; we have to swap the data paths
of the two strings. This is achieved by sctting a switch and then disabling the comparator to allow trailing bits
to be ronted correctly. Alternatively we can tag a control bit to the select feld so the comparator is enabled only
when two valid sceleet fields are present in the cell. Clearly this organisation ensures that o cell only performs on
valid comparisons and that the correct ronting paths develop behind a wavelront of comparisons moving across
ihe array from lop lefl Lo botllom right.

2.1.4 String Match (Stage 1)

The next step in the algorithm is to mate the genes. From an hardware point of view it would be simpler if we
conld guarantee that mates were next to cach other in the array. Otherwise a fully connected interconmcection
scheme will be reguired to mate any string ¢ to any other string § as dictated by the probabilistic nature of the
GA. For simplicity and regularily of design we break ihis maling siep into two maiching stages, The firsi stage of
gtring matching replicates the chromosomes depending on how many times they have been selected. The second
stage randomly mixes the strings to ensure some diversity in the mating process.

In stage 1, if a string has been selected four times (i.e its select field is set to four), four copies of the string
will appear at the outputs {on the right hand side} of the array (Fig 6). The array works as follows. Strings enter
the array from the left in skewed format and move horizontally. Now consider a particular column 7 and suppose
that selecf; > 1 and selecf; = 1, for strings 1 = 2,..N. As string | enfers ecll {1, 7) {(numbered from fop Ieft)
the scleet field is examined (reeall that the fitness ficld is not in nse at this stage). Beeanse the scleet valne is
greater than one, we need to make a new copy of string 1. This is achicved by decrementing the select field and
passing the string onto cohimm § + 1 and also ronting a copy of the string vertically to row two of the array, it
with the sclect field set to one. Now consider cell {2, 7) on the next time step. String 2 enters from the left and
ihe replicated siring 1 from above. Thus siring 2 must be moved down and the new siring 1 moved right. This
procedure is repeated for all the cells i = 2, ..., N in column j so that rows 1 and 2 of the array carry copies of
string 1 with select fields select; — 1 and 1 respectively and row i carries string i — 1 from columns j to j + 1.



Ohbserve that string N was lost.

The above scenario does not define the complete functionality of the cells. Suppose we define p;; as the
string mumber entering the cell (7, 7). Associated with this string is the value of its sclect field which we shailt
denote ss select, . I no siring is present st the mput to the cell we shsll sssign s value to this Geld such thst
selecty,,, = —1. Now cousider cell (¢, 5} of the array. This cell receives input from the left and top and produces
output from the right and bottora. In particular the cell receives string p; 1 ; from the top and string p; ; | from
the left. Now, when selecty, |, = —1 we can assume that there is no string arriving from above and proceed
to examine select, . ,. If the value is greater than one we need to replicate string p; ; | as previously so that
string pi; — pij—1 and selecty, , = select, ., — I and select, | = 1. The case when sclect,, |, , = 0 indicates
a string has been pushed down from cell (i — 1.7} and the string needs to takeover vow o. Thus p;; = iy 5,
select,, = select, | and select, | = select, . Tt may well be the ease that p;_s ; Is a zero selected string
but we aim to percolate these strings through the design so that they ean he removed from the array at the
bottom boundary. TFor the case where select,, - = —1 and seleet,, ., =0 or 1, no replication occurs in cell
(i, 7). By virtne of the skew on the inputs to columm § the cells (4, §) are operated in the sequence i = 1, .., N.
Thus if string p,; is replicated, all strings p,; where r = ¢+ 1,..., NV will be shifted down one row with any string
requiring duplication being shilted rather than replicated. As a result of this shift, string py; s shiflted off the
bottom of the array and lost. It also follows that if string p;; is replicated, all strings p,; where r = 1...,i — 1
have select fields set to one and therefore no replications have occurred to these strings in column j. Tf we set
select,,, = —1 to force correct behaviour at the boundary of the array each colwmm can replicate at most one
string. Thus N — 1 columns are required to replicate N strings and, as each column can shift only one string off
the bottom, we lose at most NV — 1 strings. Indeed it 18 easy to see that the array satisfies an invariant sneh that

L

N
S; = stﬁ(_‘tm =N and S;=5;_., for j=1..N-1
i=1

Trom which it [ollows that il we are Lo avoid losing any selected strings, input to the array should be ordered
according to select; > select;, for ¢ = 1, .., N. That is, strings must be sorted before entering the array with
the most selected string entering row one and the least selected string entering row N. 1f any string is selected
more than once the invariant implies that there must be a zero selected string in the bottom row of the array so
that shifting to replicate the string canses no loss of useful information. This also justifies the use of the sorting
array described abhove.

The cell definitions given express the operation of the array in terms of one of three partienlar states the eclls
can adopt. By virtue of the skew on the incoming chromosomes and by the fact that cach cell preserves this skew
by passing strings to the left, a wavefront is established which moves diagonally through the array starting at cell
(1,1). In combination with this wavefront and by remembering which partienlar state a cell adopts, the trailing
chromosomes can pass through the array and be subject to replication where desired.

2.1.5 String Match (Stage 2)

The chromosomes cmerging from the stage one array need to be paired for crossover. To prescerve the notion of
local communication of data within the arrays, it wonld be advantageons to mate pairs of chromosomes which
arc physically next to cach other. Unfortunately a block of strings replicated > 0 times will be emerging in a
contiguous block of v + 1 strings. Applyving crossover to a group of these sirings within the block has no effeck
because identical genelic material is exchanged. Thus the purpose of the stage 2 array {Fig 7) is Lo randomly
ghuflle the chromosomes so that effective crossover can occur between neighbouring chromosomes, Essentially
the shuffling is achieved by overwriting the fitness field (no longer in use) with a random value between 1 and
N inclusive and then sorting the strings using the random values as a keys. The arvay consists of two parts.
The first part is the first column of the array, which is jnst a lincar unrolling of the PRNG recurrence where the
cells are angmented with control signals to overwrite the select field of a string, this leaves the trailing ‘genetie’
information nnchanged. Allowing for the skew of the input data a simple tag bit added to the input sced at tha
top of the colnmn will provide the correct activation as it moves down the cobunn. The second part of the array
is a copy of the sorter disenssed above.



Figure 7: The String Match (Stage 2) Array

2.1.6 Crossover

The next step is to actually mate the selected strings. Following the previous discussion, mating is achicved hy
applying the standard crossover operator to pairs of strings entering odd and even numbered rows of the array
(Fig 8). In praciical terms this requires a single column of N/2 cells with itwo inpuis and iwo ouipuis. The string
on the odd numbered row is delayed by one step to align the two strings heflore entering a switch unit; then the
even nutnbered string is delaved to restore the skew belore the strings leave the cell. The switching unit can he
controtied in one of two ways. In the first scheme the vertical connections carry a stream of bits. A ‘17 bit entering
the cell toggles the ontput paths while a ‘0’ bit allows the string to pass throngh mnchanged. Tf we imagine the
vertical input to he a veetor of NV hits any crossover operator on two strings can be defined hy setting appropriate
elements of the vector to zero or one. Tor example a one-point erossover at any position N > r > 0 wonld require
a one bit in the r th position of the vector with the rest all zero (i.e and clemental veetor). Similarly two-point
crossover at positions r and ¢ would require one bits only at positions » and ¢, Uniform Crossover would nse all
of the bits i this vector to repeatedly cross over the two streams. A possible drawback to this scheme is tht
the same crossover is applied to all pairs of strings as the bit-vector fibers down the cobunm of cells. A more
sophisticated method involves random numbers generated at each cell.

In this scheme we overlay an unrolled PRNG on the column of cells. A (seed) random number is entered
vertically and is used to generate random numbers in all of the crossover cells. The seed value is used to caleulate
& new random mumber (using the Mixed Congruential recurrence) which is passed to the next cell to act as a
seed. The result of this is a random number generated in each cell at each step. For n-ary point crossover we
need fo store » random mumbers and compare them with the length of the chromosome (which we can alse pasg
down the array) fo determine where the erossover points ocenr. This method is suitable for one or fwo poink
crossover. However the scheme hecomes cnmbersome for large values of »noas » registers are required to store
these random mumbers. The scheme really comes into its own when it is nsed to implement Uniform Crossover.
Uniform Crossover makes a choice between parents for every gene in the child and this can be achioved in a
bit-serial [ashion. The advantage here is thal we do not need Lo store Lthe crossover sites. The random numbers
can be used and discarded every time step removing the need to pass the length of the chromosomes down the
array. We have discussed the eflfectiveness of this scheme in comparison with other, general, crossover strategies
and thevefore Uniform Crossover is the logical choice for implementation. This is veflecied in the figure which
contains cell definitions for a Uniform Crossover aperator.
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Figure 8: The Crossover Array {(Uniform Crossover)

2.1.7 Mutation

The final stage of the pipeline provides some random perturbation of the bits of the chromosome. The array {Fig
9) is trivial, being jnst a colimm of N cells again based on the nnrolled form of the PRNG. A (sced) random
number is entered into the topmost cell; successive cells then generate a new random number down Lo the next cell.
The decision whether to mutale or not is taken by comparing a random number with the mutation probability
Frwi- This is passed to all mutation cells and is stored by the cell to be used as a measure of whether to mutate
or not. The value of P,,,; can be varied depending on the problem being tackled or dynamically as the poputation
begins to converge towards a solution. The systolic random number generator described above ensures that each
mntation cell generates its own independent stream of random mimbers to ensnre no hiasing factors can affeet
the independence of the mmfation. A comparison between the random mumber and Po..e 3s made as overy gene
passes throngh the cell. If the random number is smaller than P,,.r then mmtation ocenys, othorwise the zene
carrics on through the cell unaffected.

3 Area-Time Complexity

Assuming the population is size N, the arca.time complexity of cach array is as follows:

In the Roulette wheel array (Fig 3) we have a triangular array in which the first colmmn computes the sum,
the bottom row scales the fitness and the rest of the array rontes data. The first chromosome enters the array
one cycle on and percolates down the column in N steps to emerge [rom the array after N + 1 steps, Subsequent
chromosomes strings are skewed by i — 1 cveles for the ith row so the lasgt siring starts to enter the array aller
N cycles and takes N — 1 steps to reach the scaling cells. If we let & be the length of the strings {including the
fitness and select fields) the artay completes computations after T} cycles and has A, cells where

N

N NZ 3
T, =2N -+ 1 A = P+ N =(—)N+1 N = 4.1
i + 4+ 1 ;? + ( 9 \i( + } + 3 + 3 { )

In A, the first term is the number of cells in the triangular part of the array and the sccond the size of the
sealing colinnn,
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Figure 9: The Mutation Array

The selection array (Fig 4) uses a column of cells to make one selection. Since we want to make at most N
selections so that the next generation has the same number of strings we require N colimns. Tt follows that the
delay through the array is N cyeles so that the first row of the array outputs date after N cyeles, the last row
starts output after 2NV eyeles and the complefe selection process finishes after Ty cyeles. The array is a square
array having As colls where

1=nN? (4.2}

(] =
E

ngZN—Q—G AQZ

Il
wh

Il
-

=14

The string sorter is a standard triangular array for sorting lists of N items (Fig 5). The first string enters
the array on the first cycle and filters down the first column Lo emerge on step N + 1. The last string enters the
bottom row of the array on cvcle N and moves horizontally for N — 1 steps producing a vesult after 2N steps
(the time for sorting a Jist of integers). Becanse we are dealing with strings rather than single mimbers the sort

array finishes after Ty cveles. The array has 45 cells,

al N
Ty =2N+G A=) i = (W +1) =
i=1

The Matching arrays consist of two parts. The first stage (Fig 6) is restricted form of ronter in which strings

N2 N
9 U

(4.3)

can only be moved down. Althongh the exact data flow of the strings depends on the problem instance (in facth
the random number used in selection) we observe that the input/ontput format is identical and that the skew is
preserved from colnmm to cobnmm in the array. Conscquently the detay through the array is N eveles and alfowing
for the skew gives a total output time of Ty. The munber of cells (A4) is cquivalent to As.

Ti=2N+G Ay =4, =N? {1.4)
The second stage (Fig 7) is to randomly mix the population ready for mating. This is achicved by a single
cohimn of cells which assigns a random value to the seleet field with once eyele delay and N eells followed by a
sorting array identical to the one above with time 2N + G and A3 eells so
N? 3N
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The next stage of the array involves the actual crossover (Fig 8) which requires ouly a single colun of K,
macro cells (cach cell equivalent to one cell in the rest of the design). During crossover the skew between odd
and cven strings is removed before and then restored after application of the operator. Consequently the delay
throngh the cell is two cycles. Thus crossover is complete after

) N
T,;:N—i—(:—f-Q .4(323 (46)

Finally, Mutation can be achieved at each step as the chromosome passes through the mutation array (Fig 9).

Mutation therefore has a time complexity of one eyele and N cells. That is

T — 1 A =N (4.7)

Putting the varions component parts together we find a total delay through the array a follows. The values
of T} to Tr give the total time for a string to fully pass through the arrays. The total time for the pipeline is
the snmmation of these times, however as the arrays are pipelined, the next array in the pipeline receives inpit,
as the first chromosome emerges and therefore the N + G steps required to fully empty the previous array ocenr
concurrently with the first N + @ steps of the following array. In the calenlation of the total time we need to
adjust the figures Ty to 7% to reflect this. This can be achieved by removing o factor of N 4+ (7 from each 77 to
Tr. So that the total time for the whole pipoline becomes,

T=5N+5 (1.8)

We still need to reflect the stagger of N steps hefore the Nth chromosome exits the pipeline and the further
(7 steps reguired to fally cmpty the srray, The total ime reguived for the pipoline s thevelore

T=BN+5+N+GE=06N+5+G {1.9)

The total number of cells is given simply by

1N .
A:Ai+‘42+A3+A1+A5:3N?+T (4.10)
In terms ol orders ol complexily the Time complexity ol the algorithm is Q(6/N) and the Area complexity is

O[(3N?).

The sequential computation time can be evaluated as follows. We break down the GA into the three aperationg
of selection, crossover and mutation and as the algorithm is being run sequentially we simply sum the times for
each of these operations. In selection the first task is to calculate the total fitness of the population in arder ta
proportion the roulette wheel. If we confinue to assume we have N member in the population, this will take N
steps. In a serial, software GA there is no need fo physically scale cach individual fitness by this figure as this
can be achicved by scaling the range of the random munber used to sclect slots on the wheel, Onee this mamber
is gencrated, the population is searched to find the chromosome which corresponds to the chosen section of tha
wheel. This will take on average g steps Lo achieve assuming a linear search of the population (a binary search
can be used here, see [27]}. To [ully replace the population, N — 1 further chromosomes need to be selected and
go the total time taken in selection is

N*a
Locteer = N+ N(N/2) = -+ N (1.11)

Once a pair of chromosomes have been selecied, they need Lo be subjected Lo crossover. In some GAs there
ig a stochastic probability that crossover between mates may not occur but for the sake of simplicity we shall
asswine thal crossover occurs between all pairs of selected chromosomes, The time Laken (o achieve crossover
{(Uniform) is proportional to the number of genes in the chromosome, i.e. its length which we shall call . {not to
be confused with G as used in our design as this includes the fitness and select registers in addition to the actual
chromosome). We will assume that 1 time step is required fo generate the random nimber required to select the
parent. gene and a further time step is required to copy the gene to cach offspring. Therefore 3L time steps are
reguired to produce the two children. This operation is repeatoed % fimes fo fully replace the generation.
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The total time for crossover is therefore,

- N(3Z) .
icrossovm‘ = T (112)
Mutation is achicved by making a bit-by-hit decision on whether or not to mmtate. For each chromosome this
takes L unils of time where L is the number of genes in a chromosome. Ii is possible Lo use sialistical meihod
al the chromaosome level Lo ealeulate which genes need to be muiated. However we shall ignore these methods in
order 1o make a comparison with the hardware device. Every gene in every chromosome can potentially mutate
so therefore the total time required to perform mutation is

Tmutation =LN (41'5)

The total time in the serial case is therefore.

N?  N(3L) N BLIN

Consequently the complexity of the sequential algorithm is O{N?). It is important to note the effect of nsing
ronlette wheel sclection on both the serial and the systolic form of the algorithm. The serial algorithm’s time
complexity of O(Nz} is as a dircet result of using the scheme, which only selects one chromosome for every pass
throngh the population. The systolic algorithm manages a more desirable O(N) time complexity. However this is
at the expensc of an O(N?) arca complexity which results from the need to have global access to the population.

(1.14)

There are a nmber of ways to improve the performance of the roulette wheel selection scheme [28, 27]. It is also
important Lo point out that roulette wheel selection, as well as other proportionate selection schemes are much
glower than other techniques such as ranking or tournament selection [27]. Tournament selection is also a likely
candidate for parallel implementation as it does not rvequire glabal access to the population. We are using the
Roulette Wheel scheme for two reasons, firstly it is a well understood scheme which is often used to describe the
GA in the major texts on the subject. More impartantly, Roulette Wheel selection preserves the glabal nature of
the scleetion fonnd in the original sequential algorithm. Tournament selection does not base 8 scleetion on the
fitness relative to allthe individuals in the population and in many eases a binary tournament is used where tha
fitness of only one other chromosome is known. It is as yet unclear what the effeet of global versus local fitness
knowledge is on the algorithm however recent rescarch tends to be in favour of global sclection schemes [29].

4 Scalability

One of our motives for using systolic arrays is to produce a design which can be scaled easily, We have deliberately
designed the algorithm so that it can be secaled in accordance with the desired population sive (allowing chro-
mosome length to remain independent of the design) and at this stage it is important to assess the imphcations
of this decision. The area/time complexity calculations sbove indicate that, although we achieve a considerable
speed-up over the serial genetic algorithm, the area complexity of the design (particularly in the selection stages)
is O(N?). Such a figure is perhaps un-surprising considering that we are using unrolled two- dimensional array
structures and can be somewhat outweighed by the performance gains achieved by using massive parallelism and
locally connected cells. TTowever such an large increase in area usage with population will have a bearing on the
gize of the deme which can be implemented and this raises the question of how small demes will affect the genetie
performance of the algorithm. Empirical evidence suggests that better overall solntions can be achieved by using
mnltiple small popnlations rather than a single large one [30]. The benefit for onr design in nsing mmltiple smalt
populations can be expressed mathematieally. i we were to double the size (N) of a partientar popnlation so
that we have 2N chromosomes in total, doubling the size of a single population wonld involve (24’\")2 = 4ANZcolls.
However doubling the population size by the addition of N chromosomes in a separate population would involve
2(N)? = 2N7 cells, i.e. hall the additional number of cells than for the single large population.

When considering scalability and the creation of a deme-based population, il is significant to note thal our
design allows Lhe population Lo extend over a nuwmber of VLSI devices as a collection of demes. This allows
problems which demand very large overall populations, which could not be accommodated on a single device,
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Figure 10: (a) Trivially Parallel model using multiple devices. (b) Tsland Model using an Inter-connection Network

to be tackled. In order to achieve this an interconnection scheme needs Lo be defined which links the individuat
devices with the population members held in memary. Two examples of interconnection schemes ave given in
Fig 10. Tn the scheme depicted in Fig 10a each device is allocated a deme and processes the same deme aver
successive generations. Tn this model the demes remain independent from each other {A model which Graham and
Nelson have called the trivially parallel model [11]). If we include a more sophisticated inferconnection network,
as in Tig 10b, we can achieve the goal of migration of chromosomes between demes and achieve a island based
coarse-grained parallel genetic algorithan, ln this scheme we can huother impose migration schemes so that, for
example chromosomes can only migrate to deviees within a certain ‘distance’ from cach other.

The exploitation of scalability also extends to the individual pipeline clements within the macro pipeline
of Fig 1. We can scale certain arrays so that, in conjunciion with the design’s policy of replicating multiply
gelected chromosomes, we can employ some interesting population management strategies, Two examples are
given in Fig 11. Additional columns have been added to the select array so more than N chromosomes are
selected each generation. The Matching (Stage one) array has also been scaled to allow for these extra selections
to be converted into actnal copies of the chromosomes. Tn Fig 1la, only the top N chromosomes progress onto
crossover and mmtation, biasing these operators in favonr of the fit chromosomes. In Tig Lib, the extension is
continied to inclnded the re-sizing of the matching stage 2, and erossover arrays so that the extended population
progress through to crossover before being truncated. The top half of the chromosomes are then mutated and
cvaluated /returned to memory. Since the sccond matching array mixes the population prior to crossover, the
cffeet on the emerging population is less biased towards the fit chromosomes. Instead the new population should
inclnde a higher proportion of it schema. Of course such extensions will have an affect on both the area and
iime complexities of the algorithm. Suppose, for each extension, we wish Lo make an additionsl R seleciions. For
the first extension, the chromosomes would require and additional Tseeer = B cycles to clear the select array,
which would require Agufect = N R additional cells. The Matching (stage 1) arvay would delay the chromosome
by a further Thyqeers = R cycles and would require Apzasen; = (N + B.)? — N% = R? + 9N R additional cells. The
total additional time requires for the first extension becomes Tri.) = 2H cycles, With Arprara) = 2L NR
additional cells. For the second extension the delay and cell connt is increased further as a vesnlt of scaling the
second Matching and Crossover artays. Thjarche = R cycles and Ayarchz = (N + R'}z— N? = RZL2N R additional
cells are required for Matching (stage 2} Acppssoner = "‘;R additional cells arve required in the crossover array, note
that the delay throngh the sealed crossover array is the same as that for the nn-scaled array. The total fime and

arca increases associated with the second extension becomes Trpgquy = 31 eyeles and Aqpp0 = 2R+ BNR+ NQR
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Figure 11: Tixtensions to the design achieved by scaling the individual pipeline elements (a) Fitter Chromosomes
(b) Fitter schema

cells. The increases in number of cycles and cells required are outweighed if an improvement in the algorithms
performance (i.e. convergence) can be obtained which reduces the size of the total population {(i.e. the total in
all of the demes) or requives tewer iterations (penerations) to be processed.

5 Conclusions

The primary aim of this paper has been to accelerate the aperation of the generic algorithm to reap the henefits
of being able to tackle larger prablems or reduce the processing time before an acceptable result is obtained. The
systolic array genctic algorithm has been designed as a result of isolating the generie aspects of a genetie algorithm
and exploring how these can be officiently implementoed in hardware. This is in confrast to most enrrent rosearch
which concentrates on fitness function evaluation or production of specialized genctic operators. By concentrating
on just the genctic operators we are able to design arrays which can aceclerate these operators considerably. The
task of fitness evalnation, which is by its nature application specific, has been Ieft for implementation at a higher
level. This allows the use ol general purpose processors which can be programmed Lo express the complexity of
these functions using high level programming languages.

Our analysis of the algorithm has concentrated on investigating the data dependencies in the algorithm allowing
us to design regular (systolic) arrays for these operators which exhibits many generic features. The rumber of
cells is independent of the length of the chromosomes and the array ig scalable according to population aize.
Modular designs for GA processing result from appropriate usce of migration schemes where the population of
cach "island” ean be chosen to mateh the deviee size.

Traditionally regnlar array design has been aimed at VLST implementation. Our design is modnlar and can
cffectively exploit the emerging techuology of Field Programmable Gate Arrays (FIPGAs). In particular the
aspeets of dynmnic reconfiguration and flexibility of means that a FPGA implementation of onr generie array
conld form a viable basis for an evolvable hardware system for realising s wide range of optimization algorithms.

We have simulated the macro-pipeline using the occam programming language and conlirmed the operation of
the genetic algorithm. We are in the process of protolyping the pipeline for implementation onto FPGA. As part
of this process we have already designed and implemented the mutation array, which includes the systolic random
mumber generator. Tt is our belief that the cells in this array will require the greatest number of clock cveles o
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excente and so will dictate the overall exeeution speed of the pipeline. The cell design exeeuted in 9 clock cycles
albelf using a basic generator where A = 3 and g = 5. Experimental resnlts derived from simmlating the mmtation
array on a Xilinix XC40061*C84-4 indicated a clock speed of 12.5 MHz, This corresponds to 720ns por mutation
or 1.38 million mutations per sccond. To put this figure into perspective, a population of 100 chromosomes, with
a length of 100 genes can be processed by this array in under 8 ws,
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