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Abstract

We establish a methodology for calculating uncertainties in sea surface

temperature estimates from coefficient based satellite retrievals. The un-

certainty estimates are derived independently of in-situ data. This enables

validation of both the retrieved SSTs and their uncertainty estimate using

in-situ data records. The total uncertainty budget is comprised of a num-

ber of components, arising from uncorrelated (eg. noise), locally systematic

(eg. atmospheric), large scale systematic and sampling effects (for gridded

products). The importance of distinguishing these components arises in prop-

agating uncertainty across spatio-temporal scales. We apply the method to

SST data retrieved from the Advanced Along Track Scanning Radiometer

(AATSR) and validate the results for two different SST retrieval algorithms,

both at a per pixel level and for gridded data. We find good agreement

between our estimated uncertainties and validation data. This approach to

calculating uncertainties in SST retrievals has a wider application to data

from other instruments and retrieval of other geophysical variables.
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1. Introduction1

Uncertainty is inherent in all geophysical measurements and must be ap-2

propriately characterised for their scientific application. Data providers have3

a responsibility to communicate the levels of uncertainties associated with4

their products and inform data users of the correct methodology for using5

uncertainty information provided. Within the Sea Surface Temperature Cli-6

mate Change Initiative (SST CCI) project (Hollmann et al., 2013; Merchant7

et al., 2014) we aim to provide an uncertainty budget for every SST value8

provided in products (skin temperature, SST at 0.2 m depth and spatially9

averaged SST). We aim to derive uncertainty estimates independently of SST10

validation datasets, allowing validation of both the SST values and their as-11

sociated uncertainty.12

The terms ‘error’ and ‘uncertainty’ are sometimes used interchangeably,13

but have distinct standard definitions that will be adhered to throughout this14

paper. Error is the difference between a measured value and the true value of15

the measurand (JCGM, 2008; Kennedy, 2014). In practice we know neither16

the true value nor therefore the error for a particular measurement. However17

the distribution of the errors can often be estimated and this distribution18

characterises the uncertainty in the measured value. Formally, uncertainty19

is a parameter characterising the dispersion of values that could reasonably20

be attributed to the measured value (JCGM, 2008). To quantify uncertainty21

in this paper we quote one standard deviation of the error distribution.22
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It is common to provide generic uncertainty estimates for remotely sensed23

SST derived via comparison with in-situ datasets during validation activites.24

The standards of the Group for High Resolution Sea Surface Temperature25

(GHRSST) specify the provision in all datasets of single sensor error statis-26

tics (SSES). For pragmatic reasons, SSES are defined to comprise the mean27

difference and standard deviation of remotely sensed SST matched to a ‘refer-28

ence’ dataset (GHRSST Science Team, 2010). Drifting buoy SSTs are often29

used as the ‘reference’. Mean and standard deviation validation statistics30

are often provided as globally invariant dataset specific values (May et al.,31

1997; Reynolds et al., 2002; Casey and Cornillon, 1998). An additional field32

indicating the retrieval quality level can be specified at pixel resolution pro-33

viding information on the likelihood of cloud contamination, noise lamplifi-34

cation at extreme satellite zenith angles or input data quality (Donlon et al.,35

2007; Kilpatrick et al., 2001). An extension of this approach is the MOD-36

erate Resolution Infrared Spectrometer (MODIS) algorithm, which provides37

validation-based uncertainty information stratified by season, latitude, sur-38

face temperature, satellite zenith angle, a selected brightness temperature39

difference, SST quality level and day/night (Castro et al., 2010).40

Sources of uncertainty in remotely sensed SST are intrinsic to the retrieval41

process and the data utilised. Uncertainties vary from pixel to pixel due to42

local changes in instrument noise, satellite viewing geometry and atmospheric43

conditions. We present here a method of estimating SST retrieval uncertainty44

that accounts for these factors at the pixel level. There are a number of45

sources of uncertainty in SST measurement and the need to differentiate the46

effects of random, and systematic errors has been previously noted (Reynolds47
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et al., 2002; Casey and Cornillon, 1998; Merchant et al., 2012; Kennedy,48

2014). Gridding of products introduces sampling uncertainties and a number49

of studies have considered these when constructing global or regional SST50

datasets from in-situ observations (She et al., 2007; Folland et al., 2001;51

Rayner et al., 2006; Morrissey and Greene, 2009; Jones et al., 1997; Brohan52

et al., 2006).53

In this paper, we consider uncorrelated and locally systematic effects con-54

tributing to SST uncertainty. The random or uncorrelated effects arise from55

noise in the satellite brightness temperature, which propagates into the re-56

trieved SST. Locally systematic effects cause errors that are correlated on57

synoptic scales of atmospheric variability and are related to the retrieval58

method itself interacting with changes in atmospheric properties (Minnett,59

1991; Barton , 1998; Le Borgne et al., 2011; Minnett and Corlett, 2012;60

Embury and Merchant, 2012; Merchant et al., 2012). We also discuss un-61

certainties from large scale systematic effects (spatially coherent on larger62

scales than synoptic features). In a companion paper (Bulgin et al., 2016)63

we derive a method for calculating sampling uncertainty in gridded products64

due to incomplete sampling of observations in each grid cell, primarily as a65

result of cloud cover. In this paper, we use reuslts from Bulgin et al. (2016),66

and, for completeness, show how sampling uncertainty combines with other67

components of uncertainty in gridded products.68

The remainder of the paper is structured as follows. Section 2 describes69

the theory behind the calculation of uncertainties, their propagation and how70

this is applied to different levels of SST data (orbit data and gridded prod-71

ucts). Section 3 describes how an initial uncertainty budget is constructed72
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from errors originating from random, locally correlated and sampling effects.73

In Section 4 we present a validation of our uncertainty budget and in Section74

5 provide a discussion of the results. We conclude the paper in Section 6.75

2. Uncertainty Calculation and Propagation76

We construct an uncertainty budget for SST measurements in CCI prod-77

ucts comprised of uncertainty components arising from random, locally sys-78

tematic, large-scale systematic and sampling effects. The full equation for79

the propagation of uncertainty in a variable y, (u(y)), given that y is related80

to input quantities xi via y = f(x1, .., .., xn), is defined as equation (1) in the81

Guide to the Expression of Uncertainty in Measurement (GUM) (JCGM,82

2008).83

u2 =
n∑
i

(
∂f

∂xi

)2

u2i (xi) + 2
n−1∑
i=1

n∑
j=i+1

(
∂f

∂xi

)(
∂f

∂xj

)
u(xi, xj) (1)

Uncertainty is expressed with respect to (y) in the GUM, and we repro-84

duce this notation throughout the paper. However, in Earth Observation,85

we conventionally relate a retrieval estimate x̂ to observations y ie. x̂ = f(y)86

which is the reverse convention. The first term in equation (1) describes the87

propagation of uncertainties from uncorrelated errors. These can be added88

in quadrature with the differential term (∂f/∂xi) defining the sensitivity of89

the total uncertainty to each uncertainty component. The second term de-90

scribes the propagation of uncertainty terms arising from correlated errors.91

This term sums the uncertainty components from correlated errors for each92

pair of input variables (xi and xj) found as the product of the sensitivity for93
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both xi and xj and the covariance between them, u(xi, xj). The factor of ‘2’94

is included, as for each pair, each is equally correlated with the other.95

Equation (1) can also be written in the form of equation (2) where the96

uncertainty is expressed as the sum over all pairs of input variables and the97

covariance term is expressed as the product of the standard uncertainty in98

xi, written ui, in xj, written uj, and of the correlation of errors in xi and xj,99

written rij.100

u2 =
n∑

i=1

n∑
j=1

∂f

∂xi

∂f

∂xj
uiujrij (2)

Equation (2) applies fairly generically to any transformation y = f(xi, ....xn)101

for which the sensitivity parameters (∂f/∂xi) are adequately constant over102

the range xi − ui to xj + uj; it is a first order approximation. Because we103

will use the results later, we illustrate the use of equation (2) for calculat-104

ing the uncertainty in the mean SST from a number of observations. If105

f =
∑n

i=1 xi/n, where each xi is a contributing SST value, then the sensitiv-106

ity parameter is ∂f/∂xi = 1/n giving:107

u2 =
1

n2

n∑
i=1

n∑
j=1

uiujrij (3)

We can consider three limiting cases. First assume errors are uncorrelated108

between pixels. We can then put rij = δij, where δij = 1 for i = j, and δij = 0109

for i 6= j. In this case, the uncertainty in the mean is scaled by the familiar110

‘ 1√
n
’ reduction in uncertainty, because111

u2 =
1

n2

n∑
i=1

n∑
j=1

uiujδij (4)
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=
1

n2

n∑
i

u2i (5)

Second, consider the case rij = 1, which means errors fully correlate112

between contributing SSTs. Equation (3) becomes113

u2 =
1

n2

n∑
i=1

n∑
i=j

uiuj (6)

=
1

n2

(
n∑

i=1

ui

)2

(7)

implying u = 1
n

∑n
i=1 ui ie. the uncertainty is the average uncertainty of114

the contributing SSTs.115

Third, consider the case rij = δij + (1 − δij)r - all SSTs have the same116

error correlation with other SSTs. Substituting into equation (3) gives117

u2 =
1

n2

n∑
i

n∑
j

uiuj[δij + (1− δij)r] (8)

=
1

n2

n∑
i

n∑
j

uiuj[r + (1− r)δij] (9)

=
r

n2

(
n∑

i=1

ui

)2

+
(1− r)
n2

(
n∑

i=1

u2i

)
(10)

This form yields the previous results as special cases (r = 0 and r =118

1). Constant rij for i 6= j is in practice unlikely to be exact for a real119

situation, but may be a useful approximation in some cases, avoiding the120

need to estimate rij for every contributing pair.121
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3. Uncertainty Budget Components122

3.1. Uncorrelated Effects123

Random errors in SST estimation from satellite data arise from noise124

in the satellite observations. The signal recorded by a typical radiometer125

is a voltage measured across a detector, digitised and recorded as counts.126

In the operational calibration, a linear radiance is calculated in the form127

radiance = gain× counts + offset where the gain and count parameters are128

calculated during instrument calibration (Smith et al., 2012). A non-linearity129

adjustment is then applied to the longwave channels (Smith et al., 2012) for130

which the associated uncertainty has not been calculated. In this analysis131

we simply take the detector noise in the measured counts and propagate this132

into our geophysical retrieval. In a coefficient based retrieval, SST is calcu-133

lated from a pre-defined linear or nearly linear (Anding and Kauth (1970);134

Deschamps and Phulpin (1980); Kilpatrick et al. (2001); May et al. (1997);135

McMillan and Crosby (1984), and further references within Merchant (2013))136

combination of the observed brightness temperatures. Brightness tempera-137

ture uncertainty is characterised using channel-specific noise equivalent dif-138

ferential temperature (NEdT). This uncertainty is then propagated into the139

SST retrieval uncertainty.140

We illustrate the propagation of errors from random effects using data141

from the polar orbiting Advanced Along Track Scanning Radiometer (AATSR)142

aboard the Envisat satellite. Envisat was in a sun synchronous orbit with143

an equator overpass time of 10.00 am. AATSR made observations in seven144

spectral bands covering the visible and infrared spectrum at two viewing ge-145

ometries: nadir (0− 22◦) and forward (52− 55◦). SST can be derived using146
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the nadir infrared channels only, or using both the nadir and forward views.147

We consider here the propagation of uncertainties through two different re-148

trievals: ‘N2’ using the 11 and 12 µm channels in the nadir view only and149

‘D2’ using the 11 and 12 µm channels in both views. The formula used here150

for estimating coefficient based SSTs from satellite data is:151

x̂SST = a0 +
∑
k

akyk (11)

Where yk refers to each channel used in the retrieval, a0 is an offset and ak152

are channel specific coefficients. Note that here x̂ = f(y), in contrast to usage153

in Section 2 (as previously noted). These coeffcients vary with the context in154

which the observation is made, according to the viewing geometry and total155

column water vapour (TCWV), but are predefined. The error (difference156

between the measured value and true value) for a given SST can be defined157

as:158

eSST =
∑
k

akeyk (12)

This is a linear combination of the errors in the brightness temperatures159

in each chanel (denoted by ‘k’) multiplied by the coefficient used in the160

retrieval. In practice, we do not know the true SST value nor therefore the161

error on each individual measurement, but we can simulate a ‘typical’ error162

field from our knowledge of the NEdT in each channel. We illustrate this in163

panels 1 and 2 of Figure 1 which show simulated error fields for the nadir164

view of the 11 and 12 µm channel at pixel resolution (1 km at nadir for165

AATSR). These are constructed using a Gaussian random number generator166

selecting values from a distribution with 0.0 ◦C mean and 0.05 ◦C standard167
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Table 1: Coefficients for each channel used to calculate SST in the ‘N2’ and ‘D2’ retrievals

in Figure 1.

Retrieval Channel Sec(Sat Zenith Angle) a1 coefficient

N2 11 µm 1.0 2.04314

N2 12 µm 1.0 -1.02542

D2 11 µm 1.0 4.65371

D2 11 µm 1.76 -1.65009

D2 12 µm 1.0 -3.27043

D2 12 µm 1.76 1.27186

deviation representing NEdT estimates for the two channels (Embury and168

Merchant, 2012). Errors vary in magnitude from pixel to pixel and can be169

either positive or negative in sign.170

Panels 3 and 4 of Figure 1 show the propagation of these simulated error171

fields in a N2 and D2 retrieval. For the purpose of this illustration we assume172

a fixed view angle and TCWV (23 kg m−2) across the image giving coefficients173

(ak) dependent only on channel, as shown in Table 1. Under normal retrieval174

conditions these would vary slightly on a per-pixel basis. The coefficients175

are specified to five decimal places (Merchant and LeBorgne, 2004). Further176

discussion of error inherent in the retrieval process is provided in Section177

3.2. As indicated in equation (12) the uncorrelated errors in a given retrieval178

are the sum of the errors in each channel, and therefore the total errors are179

smaller in the N2 retrieval than the D2 retrieval (which uses four channels180

with generally heavier weights).181

Many users require gridded Level 3 products generated from full reso-182
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lution data. When generating gridded products, the average SST can be183

calculated using the arithmetic mean:184

x̂GriddedSST =
1

n

n∑
i=1

x̂SST (i) (13)

Where n is the number of observations (i) in the grid cell. The alternative185

would be to calculate a weighted mean based on the per-pixel uncertainties,186

but we choose the arithmetic mean as it gives equal weight to all measure-187

ments across the grid cell and therefore represents a mean across the geo-188

physical variability within the grid cell. Panels 5 and 6 show the arithmetic189

mean of the errors over a 5 x 5 pixel grid cell, approximately representing the190

creation of 0.05◦ Level 3 products. The range in the mean error is naturally191

smaller in the gridded product, but remains larger for the D2 retrieval than192

the N2 retrieval.193

In practice, when retrieving SST from satellite observations we don’t ex-194

plicitly know the error in either the brightness temperatues or SST. We need,195

however, to estimate the uncertainty in the SST retrieval. Given estimates196

of NEdT, this is an example of standard uncertainty propagation. ‘Standard197

uncertainty’ is the standard deviation of errors in each channel brightness198

temperature, estimated to be of the order of 0.05 K for both the 11 and 12199

µm channels of AATSR (Embury and Merchant, 2012). The propagation of200

uncorrelated uncertainty components is shown in equation (5) where uncer-201

tainties are added in quadrature. Applying this to equation (11), in the first202

instance to give the per pixel uncertainty, and differentiating with respect to203

each channel (yk) used in the retrieval gives:204
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ui =

√∑
k

a2ku
2
yk

(14)

For a gridded product using the arithmetic mean, the uncertainty in the205

mean of the contributing pixels is206

uGriddedSST =
1√
n

√∑
u2i
n

(15)

For fixed coefficients and a constant error in the brightness temperatures207

(0.05 K) as in Figure 1, there is an invariant uncertainty value for each re-208

trieval algorithm (N2 and D2) at the pixel level. When creating a real SST209

product, NEdT varies as a function of both channel and brightness temper-210

ature. For N2 retrievals in the example provided, this invariant uncertainty211

value is 0.11 K and for D2 retrievals 0.25 K. Uncertainties in gridded aver-212

ages reduce by 1√
n

giving uncertainty estimates of 0.02 K and 0.05 K for N2213

and D2 retrievals over fully observed grid cells. In practice, many grid cells214

in Level 3 products are not fully observed due to cloud cover. This reduces215

the number (n) of observations available and increases the uncertainties from216

random effects. This is illustrated in panels 7 and 8 of Figure 1 for N2 and217

D2 retreivals. A cloud mask has been superimposed on the simulated data at218

the per-pixel level and uncertainties propagated into the 5x5 pixel product.219

Observing only part of a given grid cell additionally introduces sampling un-220

certainty, discussed briefly in Section 3.4 and more fully in the companion221

paper (Bulgin et al., 2016).222
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3.2. Locally Systematic Effects223

Uncertainties from locally systematic effects arise from ambiguities in or224

limitations of the SST retrieval algorithm. Coefficient based retrievals for225

the ATSR instruments in Phase 2 of the SST CCI will use coefficients from226

the ATSR Reprocessing for Climate (ARC) project. These are calculated227

based on radiative transfer simulations which cover a comprehensive range of228

surface and atmospheric conditions (Embury and Merchant, 2012; Embury229

et al, 2012). Locally systematic effects therefore vary on synoptic scales230

consistent with changes in atmospheric conditions.231

We can characterise the uncertainties arising from locally systematic ef-232

fects in the retrieval scheme using simulation studies. To do this, we take a233

‘true’ SST field from Numerical Weather Prediction (NWP) data and simu-234

late the associated brightness temperatures globally as would be observed by235

the AATSR instrument using the RTTOV radiative transfer model. We can236

then use these simulated brightness temperatures as input into our retrieval237

scheme, comparing our retrieved SST with the ‘true’ SST eg. (Merchant238

et al., 2009). For any given scene, we can plot the retrieval error field using239

this methodology as shown in Figure 2. The contour lines in the top pan-240

els show atmospheric pressure and in the bottom two panels TCWV with241

the spatial distribution of the error field consistent with synoptic scales of242

pressure in hPa and total column wate vapour (TCWV) in kgm2 variability.243

However, features in the SST error field are not simply linked to TCWV244

distributions, since we see that a single contour line can run through re-245

gions of both positive and negative errors. The ARC retrieval coefficients are246

banded by TCWV and the observed errors are not simply a bias that can247
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be removed from the retrieval. Uncertainty arising from these error effects248

is characterised in the retrieval as a function of TCWV consistent with the249

coefficient banding. Panels in the left and right in Figure 2 show the SST250

retrieval error fields for different days, which vary in time as well as space on251

synoptic scales.252

Within the retrieval scheme, uncertainties are calculated as the standard253

deviation of the error distributions from the simulated data, taking the dif-254

ferences between the ‘true’ and retrieved SSTs. This is the fitting error of255

the regression when the coefficients are applied to the simulated data used256

to generate the coefficients. Figure 3 shows the uncertainties as a function of257

TCWV for retrievals using different channel combinations at different view-258

ing geometries. For the N2 retrieval using two channels (11 and 12 µm) the259

uncertainties increase as a function of TCWV, flattening at higher TCWV’s260

above 45 kg m−2. With the addition of information from multiple viewing261

angles (0-22◦ and 52-55◦) locally systematic uncertainties are significantly262

reduced to ∼ 0.1 K or lower.263

Figure 3 also shows the uncertainty from uncorrelated effects as a func-264

tion of TCWV for different channel combinations. Comparing single-view265

retrieval uncertainties with dual-view uncertainties, the dual-view capability266

reduces the systematic uncertainty at the expense of the increased retrieval267

noise. Uncertainties from uncorrelated effects are dependent on both the268

NEdT for a given channel combination and the coefficients. For the N2 and269

D2 retrievals large weights are assigned to the 11 and 12 µm channels which270

magnifies the uncorrelated uncertainty. ARC coefficients are tuned to assume271

NEdTs of 0.01 K (smaller than actual values) as they are designed to produce272
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SST products at 0.1◦ resolution. This has the effect of reducing locally sys-273

tematic uncertainties at the cost of increased uncorrelated uncertainties as274

these decrease as a function of 1/
√
n when calculating the gridded product.275

Many SST retrievals also use information from the 3.7 µm channel at276

night. The consequence of adding this third channel to the retrieval (results277

not shown) reduces uncertainty from locally systematic effects to ∼ 0.1 K or278

lower, with larger uncertainties for drier atmospheres. As TCWV increases,279

the 11 and 12 µm channels become less sensitive to the surface whilst the 3.7280

µm channel remains relatively transparent. SSTs in regions of high TCWV,281

close to the equator also show less variability which may improve the fit of282

the retrieval to the training data. For the uncertainties due to uncorrelated283

effects, including the 3.7 µm channel in the retrieval results in smaller weights284

for the 11 and 12 µm channels reducing the noise amplification.285

3.3. Large Scale Systematic Effects286

Other effects can cause SST errors that are correlated on larger scales.287

For brevity, the uncertainty associated with unknown errors correlated on288

large scales is hereafter referred to as “systematic uncertainty”. (It is taken289

for granted that any ‘known’ or ‘estimated’ systematic errors have been ad-290

dressed i.e., that any general bias has been quantified and subtracted from291

data. The systematic uncertainty therefore quantifies the degree of doubt in292

the measurements associated with what might be termed ‘residual biases’.)293

All satellite sensors are calibrated prior to launch to a pre-defined stan-294

dard. The required accuracy for SST measurements from space for climate295

applications is 0.1 K (Ohring et al, 2005). In some cases the SST algorithm296

itself is capable of adjusting for some of the systematic errors in calibra-297
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tion, for example an SST retrieval algorithm that fits regression coefficients298

to buoys directly will correct for some of the calibration biases as part of299

the fitting process. This process will also introduce an additional source of300

uncertainty from unknown errors in the buoy measurement. The buoy data301

are point measurements at depth whereas the satellite observations are area302

measurements of skin temperature. If the sensor is poorly characterised this303

additional uncertainty term can be smaller than the systematic calibration304

bias. Thermal channels on some sensors seem in practice to have a BT cal-305

ibration accuracy of 0.1 K, judging by the SST accuracy achievable using306

radiative transfer-based coefficients.307

The sensor having been calibrated to a certain level, there remain smaller308

errors, within the specified calibration accuracy, that are unknown. These309

may vary systematically with scene temperature, general instrument temper-310

ature, the thermal state of the on-board calibration target, the temperature311

of the detectors, the illumination of the sensor on the space-craft by the Sun,312

and potentially with many other factors. Sometimes, these effects are suffi-313

ciently evident in flight that they can be diagnosed and corrected for (Cao314

et al., 2005; Yu et al., 2012; Wang and Cao, 2008; Mittaz and Harris, 2011;315

Mittaz et al., 2013). There may be a gradual evolution of such systematic316

calibration effects over time, as the sensor ages, and/or as the platform orbit317

drifts, changing the illumination and thermal cycling of the sensor.318

Where satellite datasets are reprocessed, there may be some effort to319

harmonise the BTs across different sensors. “To harmonise” here means to320

reconcile the calibration of the observed BTs given the known differences321

between the sensors; it does not mean that the BTs would be the same for322
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two sensors viewing the same scene; it does mean that the differences would323

be traceable to known instrumental differences, such as different spectral re-324

sponse functions. The adjustments made to BTs in the light of harmonisation325

have their own associated uncertainty, and this also is likely to be system-326

atic as defined here. Overall, harmonisation is intended to reduce systematic327

effects, particularly relative errors between sensors.328

It is possible in principle to estimate the systematic uncertainty associated329

with calibration. There are two possible approaches. The first is to exploit330

the pre-flight calibration information where an analysis of the potential cal-331

ibration errors has been made. Where such information is available in suffi-332

cient detail in the public domain, it can form the basis of an uncertainty bud-333

get. The second is to exploit near-coincident observations in space between334

different sensors. Having accounted for instrumental characteristics, differ-335

ences in matched observations can be used to adjust a less-well-calibrated336

sensor to a better-calibrated sensor. These adjustments have a quantifiable337

statistical uncertainty, which then provides an estimate of the magnitude of338

the post-correction systematic uncertainty eg. (Goldberg, 2007).339

In general, however, calibration uncertainty is not well quantified and340

propagation of such information into the systematic uncertainty in SST has341

not been undertaken, to our knowledge. Arguably, for SSTs generated opera-342

tionally for use in numerical weather prediction and real-time oceanography,343

it has not been necessary. However, in the context of developing repro-344

cessed SST datasets for climate applications, it is an area that needs to be345

developed. Climate data records require justified uncertainty estimates, par-346

ticularly estimates of their multi-decadal stability, which implies a detailed347
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engagement with understanding and propagating uncertainty from system-348

atic effects throughout the record (Minnett and Corlett, 2012). A metrology349

(science of measurement) of Earth Observation needs to be developed, to350

bring relevant metrological principles for developing traceable chains of un-351

certainty to bear in the context of historic satellite missions.352

3.4. Sampling Uncertainties353

Many users of SST data require gridded products with SST specified as a354

mean value across the space and time represented by the grid cell. Often grid355

cells are not fully observed, typically in infrared measurements due to cloud356

cover, but also in the case of corrupted data or problems with the retrieval357

process. Data may also be removed from the subsample by conservative cloud358

detection schemes which can mask clear-sky pixels. The mean SST across359

the observed pixels may differ from the mean SST across all pixels in the360

grid cell introducing sampling uncertainty.361

We cannot explicitly calculate the difference between the SST across the362

full grid cell and the SST in the available subsample within the retrieval as363

we do not know the SST of the unsampled pixels. We can however model the364

sampling uncertainty associated with this process using fully clear-sky data365

extracts, and we do this as a function of the percentage of the total number366

of pixels available in the subsample and the standard deviation of the SST367

in the available pixels.368

The full details of the derivation of the sampling uncertainty model are369

provided in the companion paper (Bulgin et al., 2016). Here we provide only370

a brief overview, for completeness of the discussions in this paper. In Bulgin371

et al. (2016) we parameterise sampling uncertainty using a cubic function in372
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the form (ap3 + bp2 + cp + d) where a, b, c and d are coefficients dependent373

on the SST standard deviation in the subsample, and p is the percentage of374

clear-sky pixels within a given grid cell. This model is therefore applicable375

to any retrieval scheme with data at the same spatial scale provided that the376

noise contribution to the SST standard deviation has been subtracted.377

3.5. Other effects contributing to uncertainty378

The propagation of the effects of radiometric noise and the analysis of379

locally systematic uncertainty discussed has assumed the context of normal380

clear-sky conditions for each SST retrieval. This neglects the fraction of381

retrievals that will in practice be made under unusual conditions. These are382

principally retrievals made for pixels whose classification as clear-sky-over-383

seawater is doubtful, but which have nonetheless passed the cloud screening384

process. At present, we have no method for estimating this in the uncertainty385

budget.386

The first case to consider is ‘residual’ unscreened cloud contamination.387

Clouds escape detection if they are sufficiently small and low (warm) or suffi-388

ciently optically thin (e.g., some cirrus). In these cases they can nonetheless389

affect BTs at the level of several tenths of kelvin. The corresponding im-390

pact on SST depends on how different the cloud impacts on BTs are from391

the impact of increased water vapour in the atmosphere (which the retrieval392

algorithms are adapted to deal with). The probability of such cases is con-393

sidered to be greater around the edges of areas correctly identified as cloudy.394

Note that both the distribution of BT modification by cloud-contamination395

in pixels falsely considered to be clear sky, as well as the frequency of failure396

to detect are dependent on the cloud screening system. One could envisage397
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that simulation of a representative range of cloudy situations be carried out398

to generate such information, but to our knowledge, this has not been done.399

Given these pieces of information, assessment of the contribution to SST un-400

certainty could be undertaken by error propagation methods similar to those401

described earlier. At present, however, the contribution of this effect to SST402

uncertainty is not estimated.403

The second case to consider is atmospheric aerosol of a form and optical404

depth outside the range of circumstances for which the retrieval coefficients405

are designed. Again, to the degree that the aerosol affects the BTs differently406

to water vapour [e.g., Merchant et al. (2006)], SST errors may be induced407

of unknown size. While aerosol events trigger cloud detection if the optical408

depths are sufficiently great, there is a regime where SST retrievals can be409

affected, the effect in most cases being to make the retrieved SST too cold.410

Again, the contribution of this effect to SST uncertainty is not estimated.411

The third case relates to sea ice being present within the pixel for which412

SST is retrieved. If the ice is not too cold and is relatively dark (circumstances413

that often go together in the formation of new ice), the ice may not be414

detected. Similar considerations apply as to missed residual cloud or aerosol,415

and this contribution to uncertainty again is not presently estimated.416

There are a number of further effects contributing to SST uncertainty that417

are neglected in the SST CCI uncertainty model. These include differences418

in the instantaneous field of view for channels of different wavelength, and419

local to regional variations in trace gas concentrations.420
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4. Validation of the Uncertainty Budget421

Having constructed an initial uncertainty budget for remotely sensed422

SSTs independently of in-situ data, we can now use these in-situ data to423

validate our uncertainties (as well as the retrieved SST). In Section 3, we424

characterised two quantifiable components of uncertainty relating to SSTs425

calculated from satellite data at a pixel level (a random component due to426

noise in the data and a locally systematic component arising from uncertain-427

ties varying on a synoptic scale within the retrieval) from which we construct428

our initial uncertainty budget. We validate this budget using data from the429

AATSR instrument spanning four years (2006 - 2009 inclusive) considering430

both the N2 and D2 retrievals. The data used in the validation are taken431

from the SST CCI multi-sensor match-up system (MMS) (Corlett et al.,432

2014) where drifting buoy and satellite observations are matched globally433

under clear-sky conditions (Corlett et al., 2014).434

Matches are filtered to include only the closest in-situ match in time to435

the satellite observation and to check the quality of the in-situ data. Matches436

can have a maximum time difference of 4 hours and maximum spatial sepa-437

ration of 10 km. Bad quality in-situ data are removed based on the following438

criteria 1) absolute difference between NWP and in-situ SST greater than439

10 K, 2) standard deviation of the in-situ SST history greater than 5 K and440

3) standard deviation of the in-situ latitude history greater than 10 degrees.441

Validation of satellite data using in-situ data necessitates a comparison be-442

tween a point measurement and the satellite footprint. There are uncertain-443

ties in this process arising from comparing two different types of observation444

and geolocation errors in both the satellite and in-situ data. The filtering is445
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therefore necessary to minimise both spatial and temporal separation of the446

satellite and in-situ observations (Minnett, 1986; Donlon et al., 2002; Corlett447

et al., 2006).448

For each match up, the uncertainties in the retrieved SST are calculated449

as follows. The noise in a given observation is a function of both the channels450

and associated brightness temperature, and is calculated by monitoring in-451

orbit blackbody temperature signals (Smith et al., 2012). For AATSR, the452

NEdT is fairly consitent throughout the lifetime of the mission. These NEdT453

values are are used to calculate the uncertainty due to uncorrelated effects454

at L2 using the methodology presented in Section 3. The uncertainty from455

locally systematic effects is quantified as a function of the TCWV consistent456

with the banding of the retrieval coefficients. In both cases the uncertainties457

are then propagated into the gridded product for validation of data in L3458

format. For the gridded products, a sampling uncertainty is also calculated459

due to the presence of cloud preventing observation of all pixels within a460

given grid cell (Bulgin et al., 2016). This is an additonal uncertainty due461

to uncorrelated effects that is introduced in the gridding process. At both462

the per pixel and gridded scales the uncertainty components are added in463

quadrature to give a total uncertainty.464

The validation data for the N2 and D2 pixel level retrievals are shown465

in the top two panels of Figure 4. Here we plot the standard deviation of466

the SST difference (retrieval minus drifting buoy) against the SST retrieval467

uncertainty which we have calculated independently represented by the thin468

black lines in Figure 4. The dashed lines indicate the uncertainty model we469

would expect to see based on retrieved SST minus drifting buoy differences.470
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There is a lower limit on this model of +/− 0.15 K which represents the471

uncertainty in the drifiting buoy measurements. We chose the time period472

of 2006-2009 inclusive for our validation as the drifting buoy uncertainty473

has been stable at around 0.15 K over this period (Lean and Saunders ,474

2012). The blue line on the plots indicate the median difference between the475

retrieved and in-situ SST across all match-ups in each uncertainty bin (width476

0.02 K). The standard error in this value is represented by the error bars.477

Red lines at the end of the black bars indicate the statistical uncertainty in478

the calculated standard deviation and are visible primarily for bins where479

the number of contributing cases is small.480

For the N2 pixel level data we find that our uncertainty estimates closely481

match the expected uncertainty model below a total uncertainty of 0.25 K.482

Above this threshold, our estimated retrieval uncertainties are too high: a483

better fit would be obtained if the bins shifted to lower estimated uncertainty484

values. For the D2 retrieval, we see that our uncertainties calculated within485

the retrieval process show excellent agreement with the expected uncertainty486

model. At a per-pixel level the dominant terms in the uncertainty budget487

come from the uncorrelated and locally systematic effects, assuming that a488

good cloud detection algorithm is used. Therefore the validation indicates489

that our estimate of these components is well constrained.490

We also consider the validation of uncertainties for gridded N2 and D2491

retrievals across a 5x5 pixel domain approximately corresponding to 0.05◦.492

In this case we also include the sampling uncertainty component in our initial493

uncertainty budget (Bulgin et al., 2016). The results for this validation are494

shown in the bottom two panels of Figure 4. When considering gridded495
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data we find a larger range of estimated uncertainty than for the per pixel496

data. This is because SST varies across the gridded domain, and for cells497

that are not well sampled, the uncertainty on the mean SST increases. For498

the N2 gridded data we see a similar pattern to the N2 per pixel data with499

uncertainties being slightly overestimated. For the D2 gridded retrieval the500

overall uncertainties are smaller, but we underestimate the total uncertainty.501

5. Discussion502

Overall, we see that our independent uncertainty estimates show good503

agreement with validation data using in-situ drifting buoy measurements.504

The best agreement is for the D2 retrieval at a per-pixel level. For the N2505

retrievals we see a similar over-estimation of uncertainties above 0.2-0.25506

K in both the pixel level and gridded products. The uncertainty budget507

constructed is based on the errors that we currently have the capability to508

estimate and propagate through the retrieval. Some of the sources of error509

discussed in the earlier sections such as residual unscreened cloud contam-510

ination, failure to detect clear-sky pixels and aerosol are not yet included.511

These may be larger across a gridded domain if they affect multiple pixels.512

In this validation, the estimation of large scale systematic uncertainties513

has also been excluded, but in the SST CCI Version 1 products this is set514

to an invariant value of 0.1 K per pixel as a best estimate of the magnitude515

of this component, and then added in quadrature to the uncertainty budget516

(Merchant et al., 2014).517

Although at present the uncertainty budget can not be fully constrained518

due to the limitations described in the Section 3, we are able to characterise519
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well the components resulting from random, locally systematic and sampling520

effects across a range of retrievals for the ATSR instruments as evidenced521

by the good validation statistics. On the relatively short spatial and tem-522

poral scales (pixel to gridded averages at 0.1◦ and instantaneous measure-523

ments) the uncertainties from uncorrelated and locall systematic effects are524

the dominant terms in the uncertainty budget. The contributions from the525

‘missing’ components are therefore relatively small under these SST retrieval526

conditions. Empirical systematic effects (biases) are within the estimated un-527

certainties and these uncertainties can sucessfully distinguish more and less528

certain SSTs. The approach outlined in this paper has a wider application to529

coefficient based SST retrievals using other algorithms and data from other530

instruments. If the data provider or user knows the NEdT distribution for531

each channel used in the retrieval they can propagate this through the algo-532

rithm to obtain the uncertainty due to uncorrelated effects in the retrieved533

SST. Data providers can use simulation studies to characterise the locally534

systematic uncertainty in their retrieval scheme, and the sampling model is535

applicable to any SST retrieval on the same spatial scales as discussed in536

this paper provided that the uncertainty due to noise is removed first. Provi-537

sion of uncertainty information as part of the retrieval process then enables538

validation of these uncertainty estimates, as well as the SST, using in-situ539

data.540

Figure 5 maps mean uncertainty estimates for 2010. The uncertainty541

maps show the square root of the mean of the error variance across all days542

with observations. Where more than one observation is available for a given543

day, the smallest error variance has been used. The uncertainty from uncorre-544
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lated effects (a) contains the noise and sampling uncertainty components and545

when added to the uncertainty due to lcally systematic effects (b) in quadra-546

ture, produces the total uncertainty map (c). Total uncertainties typically547

range between 0.1-0.25 K globally, with the highest values predominantly in548

equatorial regions and some northern hemisphere high latitudes. The uncer-549

tainty due to uncorrelated effects is the larger contributor to this signal, and550

in these regions scattered or patchy cloud cover increases sampling uncer-551

tainties. Figure 5 (d) also shows the ratio of the retrieved SST variability to552

the uncertainty, calculated by dividing the standard deviation of the SST in553

an given location over the whole of 2010 by the total uncertainty. The high-554

est ratios are seen in mid-latitude regions where SSTs show greater seasonal555

variation.556

6. Conclusions557

In this paper we present a framework for the provision of uncertainty558

estimates in coefficient based SST retrieval from satellite data, based on559

propagation of noise, simulation of noise-free retrieval errors, and empirical560

characterisation of sampling effects. The uncertainty estimates can be val-561

idated in their own right, in addition to validating the retrieved SST. We562

provide a detailed discussion of different sources of uncertainty in the SST563

retrieval and how to propagate these through the retrieval process. We derive564

three uncertainty components here and in the companion paper; uncertain-565

ties due to uncorrelated, locally systematic and sampling effects. We apply566

our derivation to AATSR data within the context of the SST CCI project567

and find that our uncertainties validate well against in-situ data for both per568
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pixel and gridded products, and for two different retrieval algorithms.569
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Figure 1: Uncorrelated random errors and uncertainties in brightness temperature obser-

vations and SST retrieval. Panels a) and b) show simulated errors in the 11 and 12 µm

channels. Panels c) and d) show these errors propagated into SST retrievals for N2 and

D2 retrievals. Panels e) and f) show the mean error at a 5x5 pixel resolution with a cloud

mask superimposed on the data. Panels g) and h) show the associated uncertainty fields

at a 5x5 pixel resolution.
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Figure 2: AATSR retrieval errors for two different days from simulation studies (left and

right). Plots show the difference between the ‘true’ and retrieved SST field. Plots in the

upper panels show pressure contours hPa, and plots in the lower panels TCWV contours

kg m−2.
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Figure 3: Uncertainties from a) locally systematic and b) uncorrelated effects as a function

of total column water vapour for different channel combinations.
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Figure 4: SST uncertainty validation against drifting buoy in-situ data. Top panels show

pixel level uncertainties for N2 and D2 retrievals. Bottom panels show grid cell uncer-

tainties (5x5 pixels approximately corresponding to a resolution of 0.05◦) for N2 and D2

retrievals. Dashed lines show ideal uncertainty model accounting for uncertainties in the

buoy data and geophysical uncertainties arising from a skin to depth comparison and colo-

cation. Solid black lines show one standard deviation of the retrieved minus buoy SST

differences, and blue lines the median satellite minus buoy SST difference. Error bars

show the standard error in these differences. Uncertainties in the retrieval uncertainty are

indicated by red bars at the base and top of the solid black lines.
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Figure 5: Annual means in SST retrieval uncertainties calculated from AATSR L3C data

in 2010. Mean uncertainties are derived by adding all uncertainty observations in a given

cell in quadrature, dividing by the number of observations and taking the square root. a)

Shows uncertainty due to uncorrelated effects (noise and sampling uncertainty), b) shows

noise due to locally systematic effects and c) total uncertainty. d) Shows the ratio of the

SST standard deviation over 2010 to the total uncertainty.
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