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The use of kilometre-scale ensembles in operational forecasting provides

new challenges for forecast interpretation and evaluation to account for

uncertainty on the convective scale. A new neighbourhood based method

is presented for evaluating and characterising the local predictability

variations from convective scale ensembles. Spatial scales over which

ensemble forecasts agree (agreement scales, SA) are calculated at each

grid point ij, providing a map of the spatial agreement between forecasts.

By comparing the average agreement scale obtained from ensemble

member pairs (S
A(mm)
ij ), with that between members and radar observations

(S
A(mo)
ij ), this approach allows the location-dependent spatial spread-

skill relationship of the ensemble to be assessed. The properties of

the agreement scales are demonstrated using an idealised experiment.

To demonstrate the methods in an operational context the S
A(mm)
ij and

S
A(mo)
ij are calculated for six convective cases run with the Met Office

UK Ensemble Prediction System. The S
A(mm)
ij highlight predictability

differences between cases, which can be linked to physical processes. Maps

of S
A(mm)
ij are found to summarise the spatial predictability in a compact

and physically meaningful manner that is useful for forecasting and for

model interpretation. Comparison of S
A(mm)
ij and S

A(mo)
ij demonstrates the

case-by-case and temporal variability of the spatial spread-skill, which can

again be linked to physical processes.
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1. Introduction

Recent increases in computing power have allowed a shift

towards higher resolution numerical weather prediction

(NWP) models in which convection can be explicitly sim-

ulated. However, although these high resolution simulations

produce realistic features (Mass et al. 2002; Lean et al. 2008),

errors grow rapidly (Hohenegger and Schär 2007; Melhauser

and Zhang 2012; Radhakrishna et al. 2012), and small-scale

predictability is maintained for only a few hours. Hence, to

fully benefit from convection permitting NWP it is necessary

to understand and quantify the forecast uncertainty. Ensem-

bles have been successfully used for this purpose in larger scale

NWP (e.g. Palmer 2000, and references therein), and are now

being run at convection permitting resolutions. In particular,

convection permitting ensembles have been investigated for a

range of case studies (Hanley et al. 2011; Leoncini et al. 2013;

Clark et al. 2013; Hanley et al. 2013), nowcasting applications

(Migliorini et al. 2011), and are now run, or about to be

run, operationally at several forecasting centres (Baldauf et al.

2011; Gebhardt et al. 2011; Bouttier et al. 2012; Golding et al.

2014).

However, questions remain about the best methods for

interpreting and evaluating convection permitting ensembles.

In particular the ensemble mean, successfully used for

smoothly varying, large-scale fields, may not be physically

appropriate at the convective scale (e.g. Ancell 2013). This

is particularly true for quantities with high spatial variability,

such as precipitation forecasts; for these fields the ensemble

mean field does not retain the physical structures of the

individual member forecasts. Other open questions relate

to the interpretation of forecast uncertainty, given the tiny

fraction of realisations covered by the ensemble members,

and to methods of forecast verification. Standard verification

measures, such as the Root Mean Squared Error (RMSE e.g.

Wilks 2011) are unsuited to the convective scale as they overly

penalise spatial differences. Several more suitable methods

have been proposed for verifying deterministic forecasts

(e.g. Ebert 2008; Gilleland et al. 2009; Johnson and Wang

2012) that can now be developed for convection-permitting

ensembles.

It has been shown that the skill of convective-scale forecasts

is scale dependent, with skill increasing as a function of spatial

scale (Roberts and Lean 2008; Roberts 2008; Ben Bouallègue

and Theis 2014; Mittermaier et al. 2013; Mittermaier 2014).

Clark et al. (2011) showed this was also true for ensemble

forecasts, with ensemble skill increasing with both spatial

scale and ensemble size. Given this dependence on spatial

scale, methods have also been developed to evaluate the

differences between ensemble member forecasts, a measure

of the ensemble spread, at different spatial scales. In

particular, Johnson et al. (2014) used wavelet decomposition

to investigate perturbation growth, Surcel et al. (2014) used

spectral decomposition to investigate the filtering properties

of the ensemble mean and Rezacova et al. (2009); Zacharov

and Rezacova (2009); Duc et al. (2013); Dey et al. (2014) used

the Fractions Skill Score (FSS Roberts and Lean 2008; Roberts

2008) to develop a neighbourhood-based approach to calculate

the ensemble spread and skill spatially.

Given the scale dependence of forecast errors, it is important

to determine the scales over which forecasts should be

considered to have skill. In Roberts and Lean (2008), the

“skillful scale” was defined as the scale which gave an FSS

value of 0.5 + f0/2, where f0 is the total fraction of points

in the domain exceeding the threshold. Using idealised and

real examples, Roberts and Lean (2008) inferred that for small

rainfall coverage (small f0), the FSS equals this value when the

neighbourhood size is equal to twice the separation of forecast

rainfall features. More recently, work by Skok (2015) has shown

analytically that, for simple idealised configurations in an

infinite domain, the neighbourhood size is twice the spatial

separation of precipitation objects when the FSS has a value

of 0.5. Thus, using the FSS, the scale can be found at which a

forecast is, on average, skillful across the model domain. Using

the methodology of Dey et al. (2014), this reasoning can also be

extended to the comparison of other forecast fields, for example

in an ensemble. For this general situation the skillful scale

generalises to a believable scale, the scale at which the fields

from independent forecasts become sufficiently similar so that

This article is protected by copyright. All rights reserved.
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the forecast forms useful, trustworthy guidance (assuming the

ensemble is able to reproduce the range of possible scenarios).

The measures of skillful and believable scales of Roberts

and Lean (2008); Dey et al. (2014) can provide a compact

summary of both the domain-averaged spatial error and

spread of an ensemble. However, as highlighted in Dey

et al. (2014), by considering only one value to represent

the whole domain, differences in spatial agreement across

different parts of the domain are missed. These differences

will arise because different meteorological phenomena, such as

convective and frontal precipitation, may have an inherently

different predictability and ensemble spread. Hence, it would

be informative to examine the ensemble spatial characteristics

in a manner that preserves location-dependent information.

Using similar principles to the FSS, this paper presents

a new, location–dependent measure of the scales over which

precipitation fields (either forecasts or observations) are

acceptably similar (defined in Section 3.2). When calculated

for ensemble members, these agreement scales, denoted as

S
A(mm)
ij , indicate the area (surrounding each grid point)

over which precipitation features in the individual member

forecasts would be expected to occur. When ensemble

members are compared with radar observations, the agreement

scales, denoted S
A(mo)
ij , indicate the area (surrounding each

grid point) over which precipitation features in the member

forecasts agree with the radar observations. Note that,

independently, the S
A(mm)
ij and S

A(mo)
ij do not provide a

measure of forecast accuracy. However, by comparing the

S
A(mm)
ij and S

A(mo)
ij the spatial spread-skill relationship of

the ensemble can be investigated.

In Section 2 the neighbourhood approach is introduced,

and spatial predictability is defined. The methods used to

calculate the S
A(mm)
ij and S

A(mo)
ij are presented in Section

3, and compared to and contrasted with the FSS. For a new

method to be of use for interpreting forecast performance, it is

essential that it behaves in a sensible manner, and gives useful

and robust information. To investigate these requirements

for the S
A(mm)
ij and S

A(mo)
ij , an idealised ensemble was

employed, with simple geometric forecast fields. By considering

an idealised ensemble the method can be examined in detail

(a) (b)

Figure 1. Schematic representing precipitation forecasts from three
different ensemble members (grey circles, one per member). Each grey
circle represents an area of forecast precipitation, say with a uniform
rain rate of 0.1mm hr−1. Events are shown with different levels of spatial
predictability: (a) a spatially predictable event and (b) a less spatially
predictable event.

for a large number of cases. The idealised experiments are

described in Section 4. In Section 5 six convective case

studies are presented using forecasts from the operational Met

Office Global and Regional Ensemble Prediction System UK

ensemble (MOGREPS-UK Mylne 2013; Golding et al. 2014).

The aim is to understand how the agreement scales behave,

what information they can provide about the ensemble spatial

spread and error, and how this relates to physical processes.

We do not aim to give a statistical verification of MOGREPS-

UK. The overall conclusions are presented and discussed in

Section 6.

2. Spatial predictability and the neighbourhood

approach

Here, and for the remainder of this paper, the term

“spatial predictability” refers to differences in the location of

precipitation in the ensemble member forecasts. Cases where

the member forecasts are in close agreement that precipitation

will occur locally are termed spatially predictable, and cases

where the location of precipitation is uncertain (i.e. when

ensemble members produce rain at different places in the

domain) are termed less spatially predictable. Examples with

different spatial predictability are shown schematically in Fig.

1. Note that this definition of spatial predictability only refers

to the positional differences between the ensemble member

forecasts (i.e. amplitude errors are not included).

We use a neighbourhood based approach to quantify differ-

ences between precipitation forecasts. In the neighbourhood

approach, forecasts are compared over differently sized areas

This article is protected by copyright. All rights reserved.
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(neighbourhoods). Summary measures are then used to com-

pare the forecasts over these areas. For example, the amount of

precipitation exceeding a specified threshold, the maximum or

average precipitation value of all raining points, or the average

precipitation over all points in the neighbourhood, could be

considered.

In this paper the average precipitation rate is taken from

all points in the neighbourhood, including points with zero

precipitation (without thresholding). Hence no distinction

is made between amplitude, timing and spatial structural

differences. This method was chosen to be as generally

applicable as possible, giving an overview of the forecast

differences, and keeping the number of parameters to a

minimum. The aim is to provide a single summary measure

of the location-dependent forecast differences. Of course, this

comes at the cost of providing less detailed information about

individual components such as timing errors, although some

timing errors due to advection (rather than initiation or decay)

are naturally included in the spatial approach.

It is informative to relate the neighbourhood approach used

in this paper (which calculates the spatial agreement between

fields; to be discussed in Section 3) to the spatial predictability

as defined above. First consider the comparison of two binary

fields, for example created by setting precipitation values

to zero/one dependent on whether they are below/above

a predetermined threshold. In this case, any differences

in the neighbourhood averaged values of the two fields

will relate to differences in the location of precipitation.

Hence, in this situation, the forecasts will agree over a

smaller/larger neighbourhood for cases with higher/lower

spatial predictability. Thus, when binary fields are considered,

the spatial predictability relates directly to the neighbourhood

size. Next consider precipitation fields where no threshold

has been applied. The spatial predictability will still influence

the neighbourhood size over which the forecasts agree, but

any difference in the magnitude of the two fields will

also contribute. This is also true for other fields which,

like precipitation, have high small scale variability and a

background value of zero. Fields which vary smoothly over

large scales (larger than the neighbourhood sizes being

considered), with large scale gradients, require a different

interpretation. In these instances there is no longer a direct link

between neighbourhood size and spatial predictability. Hence,

for large scale fields the neighbourhood approach compares

only the fractional difference between the two fields.

3. Calculation of location-dependent agreement

scales

3.1. Overview of method

First we focus on calculating location-dependent agreement

scales for two different fields, say two ensemble member

precipitation forecasts, denoted f1 and f2 . At each grid point

in the domain, we search for the minimum neighbourhood size

(hereafter the scale) over which suitable agreement between

f1 and f2 is obtained. Here, and for the remainder of this

paper, the scale is defined as the number of grid points from

the centre to edge of the neighbourhood (excluding the central

grid point). For example a 3 by 3 neighbourhood would have

a scale of 1, and a 1 by 1 neighbourhood (a single grid

point) would have a scale of zero. The scale at which suitable

agreement is obtained between the forecasts f1 and f2 at this

central point (x,y)=(i,j), will be referred to as the agreement

scale S
A(f1f2)
ij . Note that the S

A(f1f2)
ij provides a measure

of the agreement between two fields, and is not a measure

of forecast performance. For example, large/small values of

S
A(f1f2)
ij indicate that large/small neighbourhoods are needed

to obtain sufficient agreement between the fields, but this

should not be interpreted as poor/good forecast performance.

The calculation of S
A(f1f2)
ij proceeds as follows:

1. One grid point in the domain is selected. Call this point

P at i, j.

2. The precipitation values from the two forecasts are

compared at point P, and their similarity assessed using

the methods presented in Section 3.2.

3. If the forecasts are found to be suitably similar (defined

in Section 3.2), then the agreement scale at point P,

S
A(f1f2)
ij , is the grid scale. If the fields are not suitably

similar, then a square neighbourhood of scale 1 (3 by 3

grid points), centred upon the point P, is considered.
This article is protected by copyright. All rights reserved.
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4. The spatial average precipitation amount over this

neighbourhood is calculated separately for f1 and f2,

as discussed in Section 2. Forecasts f1 and f2 are again

compared, this time using the average precipitation

amount over the neighbourhood, and their similarity

assessed.

5. If, this time, the forecasts are found to be suitably

similar, then a neighbourhood of size 1 is the agreement

scale. If the fields are not suitably similar, then the

scale is increased by 1 (i.e. to give a 5 by 5 grid point

neighbourhood).

6. Steps 4 and 5 are repeated, for incrementally larger

scales, until a scale has been found for which the

forecasts are suitably similar around point P. Note

that this is defined as the minimum agreement scale

for comparing these forecasts: generally, it would be

expected that the forecasts would also be in agreement

over larger neighbourhoods.

7. Steps 1 to 6 are repeated for each grid point in the

domain.

In point 6 it has been implicitly assumed that f1 and f2

always become increasingly similar as they are compared over

increasingly large neighbourhoods. Although this has been

shown to be true for precipitation fields on average (e.g.

Roberts and Lean 2008; Clark et al. 2011; Mittermaier et al.

2013), there are situations when this will not be the case,

for example when forecasts have reasonable agreement over

a small neighbourhood (say they both predict a light shower),

but as the neighbourhood increases, one field has no rain

whereas the other has large amounts of rain. This situation

will result in a noisy map of S
A(f1f2)
ij , as neighbouring grid

points could (depending on the exact field characteristics) have

very different values. However, as the S
A(f1f2)
ij are only used

after averaging over a number of field comparisons (to be

discussed in Section 3.4), this is not found to be a problem

in practice. Another instance when f1 and f2 will not become

increasingly similar with increasing scale is when the fields

have a large scale gradient. Although fields of this nature are

unlikely to be seen for precipitation, the criterion for deciding

whether the forecasts are suitably similar is designed to give a

sensible outcome in the presence of such gradients as discussed

in Section 3.2.

3.2. Criterion for assessing forecast similarity

It remains to define how the forecast similarity is assessed and

how “suitably similar” is defined. Consider the comparison of

two fields f1 and f2 for a given neighbourhood size (scale)

S, and at grid point i, j. For both fields, the average over all

points in the neighbourhood is taken: we denote these averages

as fS
1ij and fS

2ij . The fields (assuming at least one average is

non zero) are compared by taking the ratio of the squared

difference between these averages and the sum of their squares:

DS
ij =

8

>

>

<

>

>

:

(fS
1ij−fS

2ij)
2

(fS
1ij)

2+(fS
2ij)

2 if fS
1ij > 0 or fS

2ij > 0

1 if fS
1ij = 0 and fS

2ij = 0

(1)

DS
ij varies from zero to one. The numerator is a direct

measure of the difference between the fields; the denominator

a normalising factor selected such that comparison between a

forecast which captures some precipitation (fS
1ij > 0) and one

with no precipitation (fS
2ij = 0), gives a DS

ij value of one. This

is a convenient choice of normalisation: other normalisation

factors are possible and would not change the overall method

and conclusions presented here. Note that in the formulation

of Eq. 1 positive fields have been assumed.

The fields are then deemed sufficiently similar (i.e. to be in

agreement) at scale S if

DS
ij ≤ DS

crit,ij (2)

where

DS
crit,ij = α + (1 − α)

S

Slim
. (3)

The agreement scale between forecasts f1 and f2 at point

(i, j) is denoted S
A(f1f2)
ij , and defined as the minimum scale

S at which Eq. 2 is met. The minimum possible S
A(f1f2)
ij

is zero (showing agreement between the forecasts at the

grid scale) and the maximum possible S
A(f1f2)
ij is Slim

(showing no agreement between the forecasts, or no rain in
This article is protected by copyright. All rights reserved.
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the neighbourhood for at least one of the forecasts). The

interpretation of the agreement scales is further discussed in

Section 4.2.

At the grid scale (S = 0) the second term on the right-hand

side of Eq. 3 is zero and the constant α controls the acceptable

fractional difference between fS
1ij and fS

2ij . Different values of

α can be selected: 0 < α ≤ 1 where α = 0 corresponds to no

bias being tolerated at the grid scale and for α = 1 any bias is

tolerated. Slim is a predetermined, fixed maximum scale and,

by construction, Eq. 2 is always satisfied at the scale Slim.

This maximum scale is important for both computational

and scientific reasons. Computationally, it is more expensive

to make the necessary calculations at increasingly larger scales,

which is an important consideration in an operational context.

Scientifically, there is a scale above which it is no longer

appropriate to consider high resolution forecasts: for example,

when there also exists a lower resolution forecast (e.g from a

global model), better placed to assess large scale errors.

Additionally, it is necessary to separate cases where two

forecasts predict the same event, but at a different location,

from those where each forecast predicts essentially different

events. Consider the comparison of two forecasts which both

produce precipitation, but at a different location in the

domain. In some situations the forecasts will be predicting a

region of precipitation with the same physical characteristics.

In this case, we could say that the same event is predicted

by both forecasts, but with uncertainty in the location. This

is the location uncertainty that can be quantified using the

agreement scales, S
A(f1f2)
ij . However, it is also possible that

the forecasts are predicting different events entirely, such as

convective showers due to low level convergence in one, and

convection associated with a frontal system in another. In this

second situation, the differences between the forecasts are not

representative of their spatial uncertainty, and hence the values

of S
A(f1f2)
ij could be misleading. Thus, when the agreement

scales are calculated, it is an underlying assumption that the

same events are being forecast by the two fields, but at different

locations. As the scale increases this assumption is likely to be

less valid and the forecasts are more likely to be representing

different physical phenomena. Note that this assumption is
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Figure 2. Maximum acceptable fractional discrepancy between fS
1ij and

fS
2ij as a function of neighbourhood size S, for α = 0.5 and Slim = 80

(black) and 100 (grey).

needed because of the spatial neighbourhood approach where

forecasts at different locations in the domain are considered

together: it is not needed in traditional measures which

compare fields at the same grid point only.

Equation 3 is formulated so that, as forecast differences

increase, the scales of acceptable agreement tend smoothly

towards Slim. Specifically, the fractional difference between the

fields that is considered acceptable increases for increasing S

until, at Slim itself, any difference is accepted. The dependence

of the acceptable fractional discrepancy between the fields as

a function of spatial scale S is shown in Fig. 2 for α = 0.5

and Slim=80 or 100. Thus, the agreement scales close to Slim

are highly dependent on this value. However, as long as Slim is

chosen to be sufficiently large that any useful information from

the convective-scale forecasts has already been extracted, this

will not effect the overall message from the agreement scales.

In the work presented here, values of α = 0.5 and Slim =

80 have been used. For specific applications that require a

more/less stringent match lower/higher values of α could be

selected. For the forecasts analysed in Section 5, the maximum

scale of 80 grid points corresponds to a square neighbourhood

of 25921 grid points with total width 354.2 km (the model

has a grid length of 2.2 km). Note that experiments were

conducted with different values of both α and Slim but, as

these modifications did not affect the overall conclusions, they

are not presented here.
This article is protected by copyright. All rights reserved.
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3.3. Comparison with the Fractions Skill Score

It is informative at this stage to compare Eq. 2, defining the

agreement scale at a particular location, with the FSS useful

scale as defined in Roberts and Lean (2008) and given by the

neighbourhood size at which the FSS=0.5 + f0/2. Although

there are some similarities between the agreement scales and

the FSS useful scale, there are many fundamental differences.

Hence these measures should not be confused.

As detailed in Roberts and Lean (2008), the FSS

compares a forecast with gridded observations over different

predetermined neighbourhood sizes. There are three steps to

calculating the FSS between a forecast field and observations.

First a threshold is selected, either as a fixed value (e.g 4 mm

hr−1) or as a percentile (e.g top 1% of precipitation field).

The field is then converted to binary form with grid points

set to 1 for values above the threshold and 0 otherwise. Next,

a neighbourhood size is selected and, for each neighbourhood

centred upon each grid point, the fraction of grid points with

the value ‘1’ within this square is computed. This step is

completed for both fields to give two “fields of fractions”,

f and o. Finally, the FSS is calculated by comparing the

mean squared error (MSE) of the fields of fractions with a

reference MSE, MSEref , the largest possible MSE that can

be obtained from the fields of fractions. For a predetermined

neighbourhood size and domain size Nx by Ny grid points the

FSS is then given by:

FSS =
MSE

MSEref
=

PNx

i=1

PNy

j=1[fi,j − oi,j ]
2

PNx

i=1

PNy

j=1[f
2
i,j + o2

i,j ]
. (4)

where the sums are over all grid points in the domain.

There are some similarities between the method of

calculating the agreement scales (Eq. 2) and the FSS (Eq. 4).

For example, in both calculations, the difference of quantities

squared is divided by the sum of their squares. However, there

are also some important differences.

• The FSS is a score which can be used directly for forecast

verification. In contrast, the agreement scales here

provide a general measure of the agreement between

different fields and do not directly measure forecast

performance.

• The FSS gives a single domain-wide value for the

spatial agreement, whereas the agreement scales provide

a location-dependent map of the spatial agreement.

Therefore, in the FSS, the squared difference between

fields, and sum of the squares of the two fields, are

further summed over all points in the domain. This is

not the case for the agreement scales (Eq. 2), where

each location is considered separately. The denominator

of the FSS equation (Eq. 4) is the maximum possible

difference that can be obtained from two fields of

fractions, whereas in Eq. 2 the denominator is a

convenient normalisation factor.

• Scales of interest are obtained for S
A(f1f2)
ij and the FSS

when a criterion exceeds a value of 0.5 plus an extra

term. It should be stressed that these criterion do not

have the same meaning. For the FSS, the value “0.5”

relates directly to the spatial separation of precipitation

features (Roberts and Lean 2008; Skok 2015), whereas

in Eq. 2 the value α (equal to 0.5 here) controls the

bias considered acceptable. The additional terms in the

criteria also have different functions in each of the two

measures: that used for the FSS relates to the coverage

of precipitation in the domain, whereas that in Eq.

2 ensures that the search algorithm always returns a

meaningful scale.

• Although both equations consider errors both in

precipitation location and precipitation amount, these

are treated differently. In particular, the FSS is applied

to precipitation fields that have undergone thresholding

to produce binary fields. In contrast, the agreement

scales compare the precipitation amounts themselves

(Eq. 2). This is a more general approach which does not

require a threshold to be defined, and directly considers

the scale-dependent bias between the fields.

3.4. Calculations for an ensemble

Dey et al. (2014) used the FSS to estimate the domain-

averaged spatial ensemble spread and skill by comparing all
This article is protected by copyright. All rights reserved.
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independent pairs of ensemble members, and all ensemble

member-radar pairs. Here a similar approach is applied

to the agreement scales S
A(f1f2)
ij to calculate how the

spatial agreement between ensemble members, and the spatial

agreement between ensemble members and radar observations,

varies with location across the domain.

To give a measure of the location-dependent agreement

between ensemble members, the agreement scales S
A(f1f2)
ij are

calculated separately for each independent pair of ensemble

member forecasts. This gives

Np =
N(N − 1)

2
(5)

fields of agreement scales for an ensemble of N members. It

is necessary to provide a summary value of all these fields

to quantify the overall spatial uncertainty of the ensemble at

each point in the domain. Here, to get an agreement scale

representative of the ensemble, the mean is taken, at each grid

point in the domain, over the Np values of S
A(f1f2)
ij . Hence,

for an ensemble of twelve members, 66 agreement scales would

be separately calculated (Np = 66), and the mean of these 66

fields would be taken at each grid point in the domain. As

the distribution of the Np agreement scales was found to be

uni-modal, the mean is an appropriate value to characterise

the distribution of individual scales. This mean field indicates

the average agreement scale between the ensemble members

at each grid point, and is denoted S
A(mm)
ij . It represents

the scales over which the ensemble should be evaluated

(believable scales), and the area over which individual features

seen in the member forecasts should be expected to occur.

Mathematically, the S
A(mm)
ij are given by

S
A(mm)
ij ≡

1

Np

N−1
X

f1=1

N
X

f2=f1+1

S
A(f1f2)
ij . (6)

In a similar manner to S
A(mm)
ij , we can also characterise

the average spatial differences between ensemble members and

radar observations, denoted S
A(mo)
ij . It is necessary to use

radar observations for this comparison due to their high spatial

coverage. To calculate the S
A(mo)
ij , the mean is taken, at each

grid point, over the fields of agreement scales calculated from

comparing all N member-radar pairs:

S
A(mo)
ij ≡

1

N

N
X

f=1

S
A(fo)
ij . (7)

Therefore, for an ensemble of twelve members, there are

66 pairs contributing to the S
A(mm)
ij , but only twelve pairs

contributing to the S
A(mo)
ij .

The S
A(mm)
ij and S

A(mo)
ij are consistently defined, and

measure respectively the average agreement between ensemble

members, and the average agreement between ensemble

members and radar observations. As the average agreement

between ensemble members should, for a well spread

ensemble system, be representative of the average difference

between ensemble members and observations, the ensemble

performance can be verified through comparing the S
A(mm)
ij

with the S
A(mo)
ij . In Section 4, an idealised system is used

to show this comparison does indeed give useful information

about the ensemble system.

It is informative to relate the comparison of S
A(mm)
ij and

S
A(mo)
ij to the traditional ensemble spread-skill relationship,

which has proved useful for the analysis of synoptic scale

ensembles (e.g. Buizza 1997; Leutbecher and Palmer 2008,

and references therein). In the present context we relate

the S
A(mm)
ij to the spatial ensemble spread and the S

A(mo)
ij

to the spatial ensemble skill (skillful scales). Here, and for

the remainder of this paper, the comparison of S
A(mm)
ij

and S
A(mo)
ij will be referred to as the spatial spread-skill

relationship.

The spatial spread-skill relationship defined above differs in

several key ways from the traditional spread-skill measures

of ensemble standard deviation and RMSE as used, for

example, by Buizza et al. (2005); Kong et al. (2007); Bouttier

et al. (2012); Baker et al. (2014). In particular, the RMSE

compares the ensemble mean to observations, and hence a

minimum possible RMSE of zero can be obtained when the

observations equal the ensemble mean. In contrast, the S
A(mo)
ij

compares the observations directly to each ensemble member.

For any situation where the ensemble members differ spatially

or in magnitude, the S
A(mm)
ij will be non-zero. Hence the
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minimum S

A(mo)
ij will also be non-zero: this is limited by,

and related to, the ensemble spread. Note that this is a

general feature of spatial analysis and would also be true of

other spatial comparison methods; for example, any method

which considers the differences in location of forecast features

between observations and individual ensemble members.

4. Idealised experiment

To investigate the properties of the S
A(mm)
ij and S

A(mo)
ij ,

an idealised experiment was performed. This allows links

between the precipitation distribution and agreement scales

to be explored for configurations with known properties.

Additionally, by using this simple setup, the method’s

interpretation could be tested using many runs and

configurations. Synthetic ensembles were created that were

defined to be either spatially well spread, over spread or

under spread, allowing the validity of the spatial spread-skill

comparison between S
A(mm)
ij and S

A(mo)
ij to be tested.

4.1. Overall setup

To mirror the analysis of the real cases (to be discussed in

Section 5) a domain of 193 by 242 grid points was created.

Initially all points in the domain were set to zero, representing

zero rain everywhere. To simulate precipitation, approximately

circular areas (‘rain blobs’) within the domain were each set

to an arbitrary value (> 0). To represent an ensemble of N

forecasts at a given time t1, the centres of N rain blobs were

randomly positioned within a square ‘rain area’ of side L and

lower left corner at point (X, Y ). Similarly, to represent the

radar observation at t1, one rain blob was positioned within

a square ‘observation rain area’ of length Lo and lower left

corner at point (Xo, Yo). To represent different draws from the

ensemble distribution, or equivalently different forecasts of the

event, multiple random draws were made for the ensemble and

radar positions.

The standard ensemble configuration considered 13 different

draws of a 12 member ensemble in order to mirror the number

of times and members considered for the real cases (analysed

in Section 5). In the standard setup the ensemble member and

radar rain areas were set to L = Lo = 50 grid points positioned

towards the centre of the domain with the lower left corner at

(60, 60). The standard rain blob radius was 8 grid lengths. An

example of the ensemble member positions, from one random

draw of the standard configuration, is given in Fig. 3.

0 50 100 150 200
0

50

100

150

Figure 3. Example of ensemble member rain blobs (grey circles, one per
member) positioned within a rain area (black square) for one random
draw of the standard idealised setup.

4.2. Agreement scale maps

An example map of S
A(mm)
ij from the standard ensemble

configuration at one time is shown in Fig. 4. Near the centre

of the rain area the scales are smallest, around 10 grid points.

This scale is representative of the average separation of the rain

blobs. Moving away from the precipitation area the S
A(mm)
ij

increases as the distance from the rain area dominates the

agreement scales. This is an important feature of the S
A(mm)
ij :

outside the rain area the scales are increasingly representative

of the distance from the precipitation. This makes sense

when considering the S
A(mm)
ij to be the scales over which

the precipitation fields should be evaluated: we are spatially

comparing the precipitation (not the dry regions). We should

emphasise that, as discussed in Section 3.1, the large values

of S
A(mm)
ij obtained at locations far from precipitation do

not indicate a poor forecast (forecast quality can be measured

through comparing S
A(mm)
ij and S

A(mo)
ij ; Sections 3.4 and 4.4).

For example, in the case of no rain anywhere in the domain for

both forecast and observations we obtain S
A(mm)
ij = S

A(mo)
ij =

Slim at every point in the domain indicating a perfect spatial

spread-skill relationship.
This article is protected by copyright. All rights reserved.
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Grid points from centre of neighbourhood

Figure 4. S
A(mm)
ij

from the idealised experiment standard configura-
tion at one time. All points in the idealised domain are included.

4.3. Different configurations

Maps of agreement scales are useful for understanding spatial

predictability differences across the domain. To compare

different configurations, histograms of all points from the

S
A(mm)
ij maps are considered. One important difference to

investigate is the effect of considering different blob radii. If

the S
A(mm)
ij are behaving as expected, then larger/smaller rain

blobs should have more/fewer locations with small S
A(mm)
ij

as they represent situations that are more/less spatially

predictable. The histogram for configurations with different

rain blob radii is given in Fig. 5, the other parameters were

unchanged from the standard configuration. From Fig. 5 it

can be seen that the S
A(mm)
ij are behaving as expected: the

experiment with a radius of 30 grid points has a minimum

spatial scale 18 times smaller than that seen for the experiment

with a radius of 1 (a single point). The experiments with larger

radii have more points at all scales below 65. Above 65 this

behaviour changes and the experiments with smaller radii have

more points. Note that, as all experiments have the same total

number of points, those experiments with more points at small

scales must have fewer points at the largest scales: the fact that

this crossover happens around 65 is due to the relative sizes of

the rain area and the domain.

Experiments with varying numbers of ensemble members

(from 4–20 members) gave very similar S
A(mm)
ij . This suggests

that, at least for this simple idealised setup in which
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Figure 5. Histogram of S
A(mm)
ij

for all points in the domain. Idealised

experiments are shown with different blob radii (r): grey solid line, r = 1;
black solid line, r = 8 (standard radius); black dashed line, r = 16;
grey dashed line, r = 30. Other parameters were unchanged from the
standard configuration.

the ensemble spread is predefined, the S
A(mm)
ij are not

overly sensitive to the number of ensemble members. The

investigation of the effect of ensemble size for real case studies

would require the consideration of a large number of cases and

weather regimes and is beyond the scope of this paper.

4.4. Different spatial spread-skill relationships

In this subsection the relationship between S
A(mm)
ij

(representing the believable scales, a measure of spatial

ensemble spread) and S
A(mo)
ij (representing the spatial

ensemble skill) is illustrated using the idealised setup. If

these measures are to provide useful information, they must

differentiate between ensembles that are spatially well spread,

over spread, and under spread. Here we use a general

meaning of the term “under spread”: ensembles are labelled

under spread when they fail to capture the observed event.

Hence, ensembles are under spread when there is not enough

variety in the ensemble member forecasts, and also when

all ensemble members forecast precipitation in the wrong

place. This is consistent with the use of the term in the

traditional spread-skill relationship (i.e. when comparing the

ensemble standard deviation with the RMSE of the ensemble

mean when comparing with observations). Of course, all

members forecasting precipitation at the wrong location,

and the lack of variety in ensemble member solutions, are
This article is protected by copyright. All rights reserved.
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Table 1. Idealised ensemble settings for ensembles with different
spread-skill relationships.

Spread-skill L Lo X, Y Xo, Yo

Well spread (‘close’) 50 50 60,60 60,60

Over spread (‘over’) 50 10 60,60 80,80

Under spread (‘under’) 50 90 60,60 40,40

Displaced precipitation

(‘Miss’)

50 50 60,60 110,60

two very different sources of poor ensemble performance.

Although it will highlight that the error is there, the spatial

spread-skill relationship obtained by comparing S
A(mm)
ij and

S
A(mo)
ij cannot distinguish between these two possible error

mechanisms.

The S
A(mm)
ij and S

A(mo)
ij are compared for idealised

ensembles with known spatial spread-skill properties: well

spread, over spread, under spread due to not enough variation

between members, and under spread due to wrongly-located

precipitation. To generate a spatially well spread ensemble

both members and radar were selected from the same area (i.e.

L = Lo and (X, Y ) = (Xo, Yo)). To generate an over/under

spread ensemble the radar rain area was defined to be

smaller/larger than the member rain area. An additional

case, where the ensemble was under spread due to a spatial

displacement between the ensemble and observations was also

considered with L = Lo but (X, Y ) 6= (Xo, Yo). The radar and

member rain areas for these different ensemble configurations

are shown in Fig. 6, and the settings for these idealised setups

are given in Table 1.

0 50 100 150 200
0

50

100

150

Figure 6. Positions of radar rain areas for cases with different spread-
skill: well spread (black solid), over spread (grey solid), under spread
(grey dotted) and under spread due to misplaced precipitation (grey
dashed). For all experiments the ensemble members were selected from
the black square.

4.5. Methods of comparing S
A(mm)
ij and S

A(mo)
ij

Although histograms of all points from the S
A(mm)
ij maps allow

the differences between configurations to be visualised (e.g

Fig. 5), in order to fully compare S
A(mm)
ij and S

A(mo)
ij it is

necessary to choose a method that enables a scale selective

comparison, whilst preserving the location-dependent point-

to-point relationship between the SA
ij fields. One way to do

this would be a simple scatter plot of the S
A(mo)
ij against the

S
A(mm)
ij . However, this would give a noisy result. To enable

simpler comparison, we bin the scatter plot based on the

S
A(mm)
ij value.

First, a bin is selected, say from 0 to 9 grid points. The

points for which the S
A(mm)
ij value lies within the bin are

then considered and the mean S
A(mm)
ij over such points is

calculated. By definition this mean value will lie within the

selected bin. Next, the S
A(mo)
ij mean value over the same

spatial points is considered. If the ensemble is well spread

this will equal the S
A(mm)
ij mean value; if the ensemble

is over/under spread then the S
A(mo)
ij mean value will be

smaller/larger than that of the S
A(mm)
ij . Hence, on the binned

scatter plot, a well spread ensemble should lie on the diagonal,

and under/over spread ensembles should lie above/below the

diagonal.

We have checked these interpretations using various ide-

alised ensembles with pre-defined spread-skill characteristics,

such as those specified in Fig. 6 and Table 1. For example,

binned scatter plots are shown in Fig. 7 for a bin size of

10 grid points. The ‘close’ experiment is shown in black and

lies on the diagonal as expected: the average of all S
A(mm)
ij

points within a given bin is equal to the S
A(mo)
ij averaged

over the same points. The two experiments with under spread

ensembles (‘under’ and ‘miss’) both lie above the diagonal,

with S
A(mo)
ij larger than S

A(mm)
ij for a given bin. Similarly,

as expected, the over spread case lies below the diagonal with

S
A(mo)
ij smaller than S

A(mm)
ij for a given bin. This confirms

that differences between S
A(mm)
ij and S

A(mo)
ij are reflecting

the different ensembles and provide useful information about

the spatial spread-skill. Notice that, for the ‘close’ experiment,

there is some departure from the diagonal at scales 10-18: the
This article is protected by copyright. All rights reserved.
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Figure 7. Binned scatter plot for idealised ensembles with different
spread-skill characteristics: over spread (black with circles), well spread
(black with no markers), under spread (black with squares), and, missed
precipitation (black with crosses). A bin size of 10 grid points was used.
Note that line markers are for illustration only and do not represent
specific plotted points.

average S
A(mo)
ij over these points is larger than the average

S
A(mm)
ij . This is due to our simple method of defining the

idealised ensemble: randomly selecting a modest number of

ensemble members within a given area results in a non-

uniform member distribution over that area, which would

for an ideal ensemble represent an uneven radar spatial

probability distribution across the area. However, the radar

distribution was assumed to be uniform. This interpretation

was confirmed by experiments in which the rain blobs for the

ensemble members were positioned not randomly but at fixed,

uniformly-distributed, locations.

The results from this section show that the S
A(mm)
ij and

S
A(mo)
ij can successfully be used to determine the spatial

spread-skill characteristics of an ensemble system, and that

the binned scatter plot provides a particularly clear method

of viewing these results. In section 5 these methods will be

applied to real convective cases.

5. Convective cases from MOGREPS-UK

5.1. Model set up

In this study forecasts are evaluated from the Met Office

Global and Regional Ensemble Prediction System UK

ensemble, MOGREPS-UK, which has been run operationally

Figure 8. Domains for the UK 2.2 km model (light grey), the area
of radar coverage (dotted), and the region used for forecast evaluation
(dark grey).

since June 2013 (Mylne 2013; Golding et al. 2014).

MOGREPS-UK runs with 12 members and a constant

resolution 2.2 km grid over the UK. MOGREPS-UK is one way

nested inside the global ensemble MOGREPS-G and, to reduce

the jump in resolution between the two models, the edges of the

MOGREPS-UK grid are stretched up to 4 km. The constant-

resolution part of the MOGREPS-UK domain is shown in

light grey in Fig. 8. To speed up processing times the analysis

was performed over a smaller domain covering south/central

England and Wales. This domain is shown in dark grey in Fig.

8. This study used radar-derived rain rates from the Radarnet

system which provides a rain rate composite at 1 km resolution

and includes calibration against rain gauge data (Golding

1998; Harrison et al. 2000, 2012). The region of radar coverage

is shown by the dotted area in Fig. 8 and fully includes the

analysis region. To make a fair comparison with the model, the

Radarnet radar-derived rain rates were interpolated onto the

2.2 km resolution MOGREPS-UK grid before any comparisons

were carried out.

At the time of writing, MOGREPS-UK members are

downscaled inside MOGREPS-G perturbations, generated

using an ensemble transform Kalman filter (ETKF), and then

added to the Met Office 4D-Var analysis as described by

Bowler et al. (2008, 2009). This perturbation strategy includes
This article is protected by copyright. All rights reserved.
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a stochastic kinetic energy backscatter scheme and localisation

in the ETKF. Model error is addressed in MOGREPS-G using

the random parameters scheme to account for sub-grid process

uncertainty. MOGREPS-G is run with 23 perturbed members

and an unperturbed control. The MOGREPS-UK ensemble is

started 3 hours after MOGREPS-G with initial and boundary

conditions taken directly from the control and 11 perturbed

members. The 0300 UTC start time was used for all cases

presented in this paper and allows the model time to spin up

before the times of interest for each case.

The version of the Met Office United Model (MetUM)

operational in summer 2013, version 8.2, was used for this

work. This version of the MetUM has a non-hydrostatic

dynamical core with semi-Lagrangian advection (Davies et al.

2005). A comprehensive set of parametrizations are used in

the MetUM including: surface exchange (Essery et al. 2001),

boundary layer mixing (Lock et al. 2000), radiation (Edwards

and Slingo 1996) and mixed phase cloud microphysics based

on Wilson and Ballard (1999).

5.2. Introduction to cases

Six cases were selected from summer 2013 during the period of

the Convective Orographic Precipitation Experiment (COPE

Blyth et al. 2015; Leon et al. 2015). The COPE field

campaign concentrated on the English southwest peninsula

(SW peninsula, 50.0◦N, 5.5◦W – 51.5◦N, 2.0◦W) to investigate

the processes controlling precipitation intensity. Five of

the cases used here are from the COPE IOPs (intensive

observing periods); the exception being Case A. The cases

were subjectively selected to represent a variety of convective

situations and differing predictability.

To illustrate the meteorology for each case, radar-derived

instantaneous rain rates are shown in Fig. 9 for all cases,

at selected times when convection occurred. The first three

cases (A-C; Fig. 9a-c) exhibit deep convection associated

with various features of the large scale flow. This is common

for convection over the UK, which can develop within a

variety of flow regimes (e.g. Browning and Roberts 1994,

1995; Morcrette et al. 2007; Russell et al. 2008, 2009).

The remaining three case studies (Cases D-F; Fig. 9d-f)

showed organisation of precipitation along the SW peninsula.

This is a common meteorological situation for this region,

particularly in southwesterly flow, and happens as a result of

topographically induced convergence (e.g. Burt 2005; Golding

et al. 2005; Leoncini et al. 2013; Warren et al. 2014).

Case A (17/07, Fig. 9a) occurred during an extended

period of high pressure over the UK and exhibits a line of

localised thunderstorms from 1600–1900 UTC. In Case B

(23/07) convection developed along two troughs that were

positioned over the UK, associated with a mature cyclone over

the Atlantic. Two bands of precipitation occurred throughout

the morning as shown in Fig. 9b at 0600 UTC. Case study C

(27/07) was affected by a Mesoscale Convective System (MCS)

which moved north from France throughout the day. The

widespread precipitation associated with the MCS is shown

at 2100 UTC in Fig. 9c. Although MCSs only occur twice a

year on average in the UK (Gray and Marshall 1998; Lewis

and Gray 2010), they are often high-impact events and so an

important situation for assessing spatial uncertainty. In Case D

(29/07) scattered convection was seen over England from 0800

UTC onwards with some organisation along the SW and South

Wales (51.5◦N, 5.0◦W – 53.0◦N, 2.0◦W) peninsulas as shown

in the radar data at 1500 UTC (Fig. 9d). This indicates that

peninsula convergence played a role in convective initiation

for this case but was not the dominating mechanism. Case E

(02/08) featured a line of precipitation along the north coast

of the SW peninsula extending north through Wales as shown

in Fig. 9e at 1800 UTC. This precipitation was aligned with

a cold front which extended southwest to northeast across the

UK, suggesting that both large-scale forcing and peninsula

convergence were important mechanisms for this case. Early

in Case E convection was also seen further east ahead of the

cold front. These deep convective storms resulted in heavy

precipitation and many lightning strikes. In contrast to the

other peninsula convergence cases (Cases D and E), convection

in Case F (03/08, Fig. 9f) was predominantly linked to a

convergence line along the SW peninsula.
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Figure 9. Instantaneous rain rates for the cases considered. For each case a time is shown that illustrates the main features of the rain on that
day. (a) Case A at 1700 UTC, (b) Case B at 0600 UTC, (c) Case C at 2100 UTC, (d) Case D at 1500 UTC, (e) Case E at 1800 UTC and (f) Case
F at 1500 UTC.

(a) (b) (c)

(d) (e) (f)

Figure 10. As Fig. 9, but showing the corresponding maps of member-member agreement scales S
A(mm)
ij

from the MOGREPS-UK ensemble.

5.3. Results: Spatial maps

To investigate the spatial agreement for these six cases we

examine the spatial difference between ensemble members. To

do this, S
A(mm)
ij were calculated hourly for each case using

instantaneous rain rates. Example S
A(mm)
ij maps are given in

This article is protected by copyright. All rights reserved.
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Fig. 10 at the same times as shown in Fig. 9 for the radar

rain rate data. Comparison of Figs. 9 and 10 shows that in

general the smaller S
A(mm)
ij tend to be linked to areas of

precipitation. This indicates that the method is behaving as

expected: in areas of precipitation, the spatial differences in

the placement of precipitation between members are smallest,

giving smaller S
A(mm)
ij . There are additional aspects of the

pattern of S
A(mm)
ij that are highly case dependent.

For the cases showing peninsula convergence (Cases D, E

and F, Fig. 10d-f) small scales are seen along the peninsula

where the precipitation is highly spatially predictable. In this

meteorological situation, the location of precipitation is tied

to the local topography providing a constraint on the possible

precipitation locations. Hence, higher spatial predictability

and higher spatial agreement are expected for these cases.

In contrast, in Case A (Fig. 10a) the precipitation has low

spatial agreement with a minimum S
A(mm)
ij of around 20

grid points. This is due to large spatial differences in the

placement of precipitation between ensemble members for

this case, possibly caused by subtle differences in the larger

scale forcing: small variations in the large scale led to large

variations in triggering locations for convection. For this case

the model consistently predicts localised thunderstorms, but

their location is uncertain. The S
A(mm)
ij allows this valuable

information to be easily extracted. The same conclusions can,

of course, be drawn from close inspection of the individual

member rain rate fields but that is a more cumbersome and

qualitative process.

A further example of precipitation with lower spatial

agreement is seen in Case E to the east of the domain (50.0◦N,

1.5◦W – 52.0◦N, 1.0◦E; Fig. 10e). Here the observations

show convective storms moving north from France (e.g Fig.

9e) throughout the day. Similar behaviour is captured by a

small number of ensemble members (the particular members,

and the number of members is time dependent). In this

region the S
A(mm)
ij vary from 30 to 60 grid points, suggesting

that precipitation could occur within a broad region. This

information, in conjunction with a single reference ensemble

member, or a deterministic forecast, would help assess the local

spatial uncertainty for heavy rain.

The two cases with the most widespread precipitation, Case

B and Case C (Figs 10b and 10c respectively), both have

S
A(mm)
ij of less than 20 grid points over the regions where

precipitation occurred. For these cases the spatial uncertainty

in the location of precipitation was much smaller than the size

of the precipitation area, and hence there was a high degree

of agreement and overlap between the individual member

forecasts.

The results from Fig. 10 provide a summary of the spatial

uncertainty within the ensemble for each case, in one single

picture. This is useful for model interpretation and evaluation,

and would be valuable in an operational forecasting context.

However, it is also important to consider whether these scales

are representative of the true spatial uncertainty for each case.

To assess the ‘spatial spread-skill relationship’ the S
A(mo)
ij was

also calculated hourly for all cases as described in Sections

3.2 and 4. Example S
A(mo)
ij maps for Case A at 1700 UTC

and Case D at 1500 UTC are given in Fig. 11a and 11b

respectively. Comparing Fig. 11a and 11b with Fig. 10a and

10d respectively, the S
A(mm)
ij and S

A(mo)
ij look qualitatively

similar. There are however some differences. In particular, the

S
A(mo)
ij have larger areas of both the smallest and largest

scales, and are more noisy. These differences will be quantified

in the following subsections. It is also interesting to compare

the S
A(mo)
ij with the radar observations for these cases,

shown in Fig. 9a and Fig. 9d respectively. Similarly to the

S
A(mm)
ij , the smallest S

A(mo)
ij are seen in areas of precipitation,

confirming that the method is behaving as expected. The

minimum S
A(mo)
ij values for Case A seen around 52.3◦N,

3.0◦W and 53.8◦N, 1.5◦W, are associated with low magnitude

precipitation which does not show in Fig. 9a.

5.4. Results: Domain average

To summarise the overall spatial agreement scales, spatial

spread-skill relationship, and time evolution of spatial

agreement, we now consider the domain average S
A(mm)
ij and

S
A(mo)
ij . The domain average value represents the scale that

we would use to characterise the forecasts at all points in the

domain if a single scale had to be chosen. Thus it is necessary

to include all points in the average (i.e. the scales at points
This article is protected by copyright. All rights reserved.
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(a)

(b)

Figure 11. Member-radar agreement scales S
A(mo)
ij

for the (a) Case A

at 1700 UTC and (b) Case D at 1500 UTC.

where precipitation is forecast/observed, and also at points

away from the precipitation).

The domain average S
A(mm)
ij and S

A(mo)
ij are shown in Fig.

12a for Cases A-C (top row of Figs 9 and 10) and Fig. 12b

for Cases D-F, (bottom row of Figs 9 and 10). The cases are

shown from 0900 UTC to 2200 UTC (forecast lead time 06

hrs to 19 hrs), a period which covers the convective events of

interest. Case A is only shown from 1400 UTC onwards when

convection occurred: before this time there was no simulated

precipitation over the domain and, additionally, problems with

the radar data.

Case A has the largest average spatial agreement scales with

a minimum domain average S
A(mm)
ij of around 50 grid points.

This agrees with the qualitative analysis of the agreement scale

maps (Figs 10a and 11a). The model has captured the spatial

uncertainty well on this day: the domain averaged S
A(mm)
ij and

S
A(mo)
ij are similar with the black and grey lines lying close
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Figure 12. Time series of domain averaged S
A(mm)
ij

(grey) and S
A(mo)
ij

(black). (a) Case A, dotted; Case B, dashed; Case C, solid; (b) Case D,
solid with crosses; Case E, solid with circles; Case F, solid with triangles.

to each other. This is perhaps unexpected given the large-

scale uncertainties seen in the location of precipitation that

day (shown by minimum S
A(mm)
ij and S

A(mo)
ij of around 20

grid points in Figs 10a and 11a).

The two cases with widespread precipitation, Cases B and

C, both have a domain-averaged S
A(mm)
ij and S

A(mo)
ij in the

range of 30-40 grid points. These cases have higher domain-

averaged spatial agreement than Case A, due to higher spatial

predictability (seen from the agreement scale maps for these

cases; Figs 10b and 10c) and larger areas of precipitation.

For Case C the domain averaged S
A(mo)
ij are larger than the

domain averaged S
A(mm)
ij from 1000 UTC to 1800 UTC: the

ensemble members are closer to each other than they are to

observations and the ensemble forecast of the MCS is spatially

under spread.
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Out of all the cases, Case D has the smallest domain-

averaged spatial agreement scales, with the domain average

S
A(mm)
ij and S

A(mo)
ij dropping below 20 grid points from 1200

UTC to 1800 UTC. Again, this agrees with the qualitative

analysis (Figs 10d and 11b). The other cases with peninsula

convergence (Cases E and F) behave similarly to the Case D

with domain average agreement scales below 30 grid points,

and similar values of S
A(mm)
ij and S

A(mo)
ij . In Case E, before

1500 UTC, the domain-average of the agreement scales is

dominated by the spatially unpredictable precipitation to the

east of the domain, and larger S
A(mm)
ij and S

A(mo)
ij are seen.

At these times the ensemble is, at least in a domain-averaged

sense, under spread with a difference of over 10 grid points

between the domain averaged S
A(mm)
ij and S

A(mo)
ij .

5.5. Results: location-dependent comparison

Although the domain average spatial agreement is a guide to

the overall spatial predictability for a given case, it is more

helpful to compare the S
A(mm)
ij and S

A(mo)
ij in a scale selective

manner that preserves the local information. For this purpose

the binned scatter plot is employed, as applied to the ideal

ensemble in Section 4. Results are shown for all cases except

the Case A at 0900 UTC and 1300 UTC (Fig. 13a,b) and for all

cases at 1700 UTC (Fig. 13c). A bin size of 10 grid points has

been used for these plots. This bin size was chosen as it allows

low agreement scales to be represented, whilst still considering

enough grid points in each bin to give robust results. Similar

conclusions are obtained from bin sizes in the range of 4 to 20

grid points, and are not presented here.

At 0900 UTC and 1300 UTC (Fig. 13a and b respectively)

the spatial spread-skill relationship is highly case and time

dependent. This can be related to the different physical

processes occurring for each case and time, and also to biases

between the forecast and observations. For Case B (dashed

line) S
A(mm)
ij and S

A(mo)
ij were similar at 0900 UTC and

the ensemble captured the spatial variability well. At 1300

UTC the small scale uncertainty was still captured well for

this case, but larger scales (S
A(mm)
ij above 40 grid points)

showed S
A(mo)
ij greater than S

A(mm)
ij . This is related to 8 out
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(c) 1700 UTC
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Figure 13. Binned scatter plot for the Cases B-F at (a) 0900 UTC,
(b) 1300 UTC, and for all cases at (c) 1700 UTC. Individual traces are
plotted for each case at the specified time: Case A, dotted; Case B,
dashed; Case C, solid; Case D, solid with crosses; Case E, solid with
circles; and, Case F, solid with triangles. Note that line markers are for
illustration only and do not represent specific plotted points.

of the 12 ensemble members showing precipitation in south-

central England at this time, although there was little observed
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precipitation in this region. For Case C (solid line) a timing

error at 0900 UTC results in all members predicting an MCS

over England whereas, in reality, the MCS was still over the

Channel. At this time the ensemble is over confident in the

location of the MCS. By 1300 UTC the model MCS was still

seen over southern England and the real MCS had ‘caught up’

due to a faster propagation speed. Hence, for Case C at 1300

UTC, there was a large overlap between the predicted and

observed precipitation fields and an improved spatial spread-

skill relationship. Note also that, at this time, both S
A(mm)
ij

and S
A(mo)
ij are less than 50 grid points at all points in the

domain (there is no trace on the binned scatter plot above

50 grid points): there is high spatial agreement between the

ensemble and observations at all points, because the rain is so

widespread.

In Case D (solid line with crosses) the ensemble was spatially

well spread at 0900 UTC for scales above 30 grid points, but

under spread below these scales. This was due to differences

in the placement of precipitation over north Wales resulting

in the smallest values of S
A(mm)
ij and S

A(mo)
ij occurring at

different locations. At 1300 UTC the ensemble members are

closer, on average, to observations than to each other and

S
A(mo)
ij less than S

A(mm)
ij . Case E (solid line with circles) is

spatially under spread at 0900 UTC but spatially over spread

by 1300 UTC. The spatial predictability for this case varied

throughout the day as discussed for the domain-averaged

values (Fig. 12). These results agree with those from the

domain average: the ensemble is under spread at 0900 UTC

suggesting that the uncertainty in the convection moving

in from France was difficult for the ensemble to capture.

This is possibly due to the convection initiating outside

the MOGREPS-UK domain and so relying on the global

model’s convective parametrisation. Later in the day, when

precipitation was mainly in an organised spatially-predictable

line over the SW peninsula (as discussed with reference to

Figs. 9 and 10), S
A(mo)
ij values were smaller than S

A(mm)
ij :

the radar fell within the ensemble distribution. This could

indicate that the ensemble was too pessimistic about spatial

accuracy at this time. In Case F (solid line with triangles)

the ensemble was spatially under spread at both 0900 UTC

and 1300 UTC with S
A(mo)
ij greater than S

A(mm)
ij . This is

particularly noticeable at the earlier time, and is related to

the ensemble members producing showers in a different area

of the domain to where they were seen in reality. Later in

the day both model and observations produced precipitation

associated with convergence lines from the SW and Welsh

peninsulas and the spread-skill relationship improved.

At 1700 UTC (Fig. 13c) the case-to-case differences in

spread-skill, seen at 0900 UTC and 1300 UTC, are much

reduced. By this time the values of S
A(mm)
ij and S

A(mo)
ij are

reflecting the fact that convection has developed and evolved

over the course of the day. Earlier in the day initiation errors

degrade the spatial spread-skill. However, as the precipitation

remains for a number of hours, once initiation has occurred

in both model and observations, there is a large degree of

overlap. This highlights the link between spatial and temporal

errors: a timing error will also result in a spatial error between

fields. Note, however, that this result may also be linked to the

choice of only a limited number of convective cases, in which

convection was reasonably captured by the model.

6. Discussion and conclusions

This paper has presented a new spatial method for the

characterisation and evaluation of the local spatial agreement

between members in convective-scale ensembles. Based on

a neighbourhood approach, the scales over which ensemble

members reach a specified level of agreement (S
A(mm)
ij )

were calculated, at each grid point in the domain, to give

a measure of location-dependent believable scales for an

ensemble forecast, i.e. the scales at which the ensemble

members become sufficiently similar so that the forecast

forms useful, trustworthy guidance. A method was also

presented to verify the S
A(mm)
ij by comparing with the

scales at which ensemble members reached a required level

of agreement with radar observations, denoted S
A(mo)
ij . The

interpretation assumes that differences between fields over

this neighbourhood represent the spatial uncertainties (or

errors) and local biases in the forecast. This assumption is

good for small neighbourhoods, but becomes less valid as the

neighbourhood size increases: events far apart in two different
This article is protected by copyright. All rights reserved.
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forecasts become more likely to represent different events

rather than large displacement errors. This should be kept in

mind when interpreting the S
A(mm)
ij and S

A(mo)
ij .

To calculate the S
A(mm)
ij and S

A(mo)
ij , ensemble members

were compared, either pairwise against each other, or

against observations. At each grid point in the domain,

the agreement scale between the fields was defined as the

minimum neighbourhood size over which the fields were

deemed to be acceptably similar. To decide whether the

forecasts were acceptably similar, a criterion was defined based

on two predetermined parameters. The first, α, controls the

acceptable fractional difference between the fields, and the

second, Slim, is a fixed maximum scale at which the forecasts

are always deemed to be sufficiently similar. For the examples

presented in this paper the values α = 0.5 and Slim = 80 were

used: other values could also be chosen to give a more, or less,

stringent criterion. Thus, the required level of agreement is not

fixed, and may be determined from the user’s requirements.

In formulating the agreement scales, S
A(mm)
ij and S

A(mo)
ij ,

the aim was to present a simple, generally applicable, method

of quantifying forecast differences. These measures are not

designed to distinguish between temporal, amplitude, and

structural components of forecast uncertainty and error. Other

methods (such as those discussed in Gilleland et al. (2009)) do

attempt to provide such information for the verification of high

resolution deterministic forecasts, and could be developed for

application to ensemble systems. This information would be

complementary to that obtained using the methods presented

in this paper.

A simple idealised system was created to investigate the

properties of the S
A(mm)
ij and S

A(mo)
ij . Each individual

ensemble member, and the observations, were represented by

a circular blob of rain, randomly positioned within a square

region. Using this simple setup, it was shown that the S
A(mm)
ij

successfully represent spatial differences with larger spatial

differences leading to larger S
A(mm)
ij . The method was found

to be robust to changes in the number of ensemble members

and to the position of the square rain region within the

domain. The idealised ensemble was further used to asses the

utility of comparing the S
A(mm)
ij and S

A(mo)
ij to investigate

the performance of the ensemble forecasts for these cases.

This comparison can be related to the traditional spread-skill

relationship for ensemble evaluation, with the S
A(mm)
ij and

S
A(mo)
ij representing the ensemble spread and ensemble skill

components respectively. Consistent with this, the comparison

of S
A(mm)
ij and S

A(mo)
ij was denoted as the the “spatial

spread-skill relationship”. Through comparing the S
A(mm)
ij

and S
A(mo)
ij it was possible to differentiate between pre-

determined scenarios in which the synthetic precipitation

is set up to be either well spread, over spread, or under

spread spatially. The spatial spread-skill relationship was

visualised through histograms of all agreement scale data, and

using binned scatter plots. It was found that binned scatter

plots provide a particularly useful method for assessing the

spatial spread-skill properties because the location-dependent

character of convective-scale uncertainty is respected.

To demonstrate the utility of these techniques as an

investigation tool for operational ensemble systems, the

S
A(mm)
ij and S

A(mo)
ij were calculated for hourly instantaneous

rain rates for six convective case studies run with the

2.2 km grid length, 12 member, operational MOGREPS-

UK ensemble. These cases were selected to represent UK

convection in a variety of regimes including: upper-level and

large-scale forcing, topographical convergence and scattered

convection. Maps of the S
A(mm)
ij depicted the different levels

of spatial agreement across the cases which was related to

different levels of spatial predictability. For example, cases

where precipitation was strongly linked to convergence along

the SW peninsula showed high levels of spatial predictability,

and high spatial agreement, with local S
A(mm)
ij of less than 10

grid points. This high spatial predictability is expected from

the topographic influence for these cases. In contrast, other

cases, such as Case E, showed that precipitation could also

be highly spatially unpredictable. It should be reiterated that,

independently, the S
A(mm)
ij and S

A(mo)
ij can not be used to

measure forecast quality.

Used in conjunction with a single ensemble member,

or deterministic forecast, the S
A(mm)
ij provide a useful

visualisation for forecasting. The rainfall structures themselves

can be viewed from an individual model run (perhaps the
This article is protected by copyright. All rights reserved.
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control) and the S

A(mm)
ij map can be used to view the

spatial uncertainty in that rainfall given by the ensemble.

This provides a method of quickly assessing the spatial

predictability obtained from the ensemble. It gives a more

physically meaningful view of ensemble-member differences

than using grid point measures, for example, the variance at

each grid point.

To demonstrate how the location-dependent agreement

scales can be used to diagnose ensemble performance, the

S
A(mm)
ij and S

A(mo)
ij were compared for the six summer

convective cases. Note that the aim was to provide concrete

examples of how these techniques can be applied and

interpreted, not to provide a statistical verification of the

operational ensemble system. It was found that, as well as

having different levels of spatial agreement, the different

cases showed different spatial spread-skill relationships. Poor

spatial spread-skill consistency, measured by larger differences

between the S
A(mm)
ij and S

A(mo)
ij , could be linked to

differences between the model and observations, such as

a timing error or precipitation incorrectly forecast by the

model. For these six convective cases, the spatial spread-skill

relationship improved in the afternoon, suggesting that it was

the spatial characteristics during precipitation initiation that

were most difficult for the model to handle in these instances.

Once established, precipitation occurred for a number of hours

and the spatial spread-skill improved. Through comparing

the S
A(mm)
ij and S

A(mo)
ij , these features of the ensemble

performance were easily identified. This suggests that the

agreement scales would provide a valuable diagnostic for

verifying the spatial ensemble performance. Future work

will conduct such an investigation for the MOGREPS-UK

ensemble. Additionally, these methods could be used to assess

the impact of changes to the forecasting system, for example

the use of stochastic increments to model systematic initiation

uncertainties (e.g. Leoncini et al. 2010).

This paper has focused on calculating the S
A(mm)
ij and

S
A(mo)
ij for forecasts of instantaneous rain rates. Rain rates

were selected for this study to avoid any temporal smoothing

from using precipitation accumulations, and hence to focus on

the spatial features. Of course, the methods presented here

could also be used to evaluate precipitation accumulations.

More generally, although precipitation forecasts are a key

application of these methods (due to their high spatial

uncertainty and the availability of radar observations for

verification), the comparison of S
A(mm)
ij and S

A(mo)
ij is equally

applicable to other positive meteorological fields where gridded

observations are available, for example from satellite imagery

or for comparison against analysis. Work by the authors has

found that the S
A(mm)
ij calculated for other fields, particularly

those with variability on small scales such as cloud fraction,

positive divergence and humidity, yields useful information. It

is also possible to calculate the S
A(mm)
ij at different vertical

levels in order to probe the vertical structure of horizontal

spatial differences. This is the subject of ongoing work.

It should be emphasised that for fields other than

precipitation, the link between the agreement scales and

spatial predictability may be lost. In particular, for fields which

vary on large scales, such as those with large scale gradients,

the agreement scales will reflect only the bias between the fields

over the area in question. The link between the agreement

scales and spatial predictability could be reestablished by

converting the field to binary (i.e setting points to one or

zero dependent on their position above/below a predefined

threshold) before calculating the agreement scales. Using a

threshold would remove any bias (or background gradient) and

hence only relate the agreement scales to positional differences

between the fields, but would also make the agreement scales

less general: a threshold must be selected and the bias between

fields is no longer considered. Additionally, a value of Slim

appropriate to the large scale differences between these fields

(i.e. larger than that used for precipitation) would have to be

selected.

There are some limitations to this study. In particular

it has been assumed here that the radar data is ‘truth’

and observational errors have been neglected. Although the

Radarnet radar data has been quality checked (Golding 1998;

Harrison et al. 2000, 2012) and the rain rate composite is used

operationally in the Met Office nowcasting (Bowler et al. 2006)

and latent heat nudging assimilation (Simonin et al. 2014)

systems, there are still likely to be unaccounted-for errors.
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Accounting for these errors in the S

A(mo)
ij is an important

avenue of future investigation.

Despite these limitations there are some important

conclusions from this work. A simple method has been

demonstrated to calculate the spatial differences between pairs

of ensemble members (S
A(mm)
ij ) and also between ensemble

members and observations (S
A(mo)
ij ). The method is easily

applied to other ensemble systems, and to fields other than

precipitation (e.g. satellite imagery). For idealised simulations,

and six case studies with an operational ensemble system,

these measures were found to give a location-dependent

and physically meaningful summary of information from the

ensemble. This suggests that these measures could be used to

better understand forecasting systems, and hence to highlight

areas needing improvement. Additionally, these methods could

be used in a forecasting context to visualise the spatial

uncertainty forecast by the ensemble.
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