
Interference and communications among
active network applications
Article

Accepted Version

Delgrossi, L., Di Fatta, G., Ferrari, D. and Lo Re, G. (1999)
Interference and communications among active network
applications. Lecture Notes in Computer Science (1653). pp.
97-108. ISSN 0302-9743 Available at
https://centaur.reading.ac.uk/6141/

It is advisable to refer to the publisher’s version if you intend to cite from the
work. See Guidance on citing .

Publisher: Springer

Publisher statement: The original publication is available at
www.springer.com/lncs

All outputs in CentAUR are protected by Intellectual Property Rights law,
including copyright law. Copyright and IPR is retained by the creators or other
copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement .

www.reading.ac.uk/centaur

CentAUR

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence

Central Archive at the University of Reading
Reading’s research outputs online

Interference and Communications among Active
Network Applications

Luca Delgrossi1, Giuseppe Di Fatta2,3, Domenico Ferrari1, Giuseppe Lo Re3

1 CRATOS, Universitá Cattolica del Sacro Cuore,
via Emilia Parmense 84, 29100 Piacenza, Italy

ldgrossi, dferrari@pc.unicatt.it
2 ICSI, International Computer Science Institute,

1947 Center Street, Suite 600, Berkeley, CA 94704-1198, USA
difatta@icsi.berkeley.edu

3 CERE, Centro di studio sulle Reti di Elaboratori, C.N.R.,
viale delle Scienze, 90128 Palermo, Italy

difatta, lore@cere.pa.cnr.it

Abstract. This paper focuses on active networks applications and in
particular on the possible interactions among these applications. Active
networking is a very promising research field which has been developed
recently, and which poses several interesting challenges to network de-
signers. A number of proposals for efficient active network architectures
are already to be found in the literature. However, how two or more
active network applications may interact has not being investigated so
far. In this work, we consider a number of applications that have been
designed to exploit the main features of active networks and we discuss
what are the main benefits that these applications may derive from them.
Then, we introduce some forms of interaction including interference and
communications among applications, and identify the components of an
active network architecture that are needed to support these forms of
interaction. We conclude by presenting a brief example of an active net-
work application exploiting the concept of interaction.

1 Introduction

The last few years have seen the growth of active networks as an innovative
technology in computer networking. Traditional computer networks allow their
users to share network bandwidth as a common resource. Active networks fo-
cus not only on bandwidth but also on other network resources, such as the
computing and storage capabilities at the end-systems and intermediate nodes.
It also provides the means to inject user code into these nodes, thus enabling
user customisation of network protocols and services. The first consequence of
active networks is that the entire network paradigm is destined to change. In this
new scenario, traditional network protocols look static, rigid, and barely suit-
able. A new base protocol is required that allows for an efficient management
of network resources and the delivery of user data and code. Traditional data
packets are to be replaced by active packets (also called capsules), which can

carry both user data and code. Intermediate nodes of an active network need
to have the means to load and execute user code in an appropriate execution
environment. This new network paradigm opens many interesting possibilities
and at the same time it poses a number of new challenges. Modularity and ex-
tensibility represent the more general properties of active networks. Users can
develop specific algorithms to be integrated in the network protocols, to achieve
application-oriented network functions. Such functions can be injected into the
network at run-time, based on specific needs. An extreme flexibility of the net-
work can be achieved because single packets can specify their own management
functions. Packets that do not contain code, as traditional ones, are forwarded
by the default network functions. Although active networks do not increase the
domain of deterministically solvable problems, they allow for technical solutions
that are particularly suitable for some distributed applications. In several cases,
this technology makes feasible network applications that would otherwise be not
efficiently realisable. The extreme flexibility of active networks has caused the
proliferation of many definitions for them, such as: programmable interface for
the network [9], programmable network [15], adaptive protocols [13], platform for
user-driven customisation of the infrastructure [12], network as a computational
engine [7], and so on. Active networks require strict homogeneity of the basic
software components in the network. Thus, an active network can be considered
as a global distributed system. Active network technology introduces serious se-
curity problems. As user code can be executed on intermediate systems, active
networks architecture should guarantee safety and security for user applications,
nodes (both end and intermediate systems), and the network as a whole. Dif-
ferent architectures have been proposed in a recent past, which propose partial
solutions to this problem [2], [5], [16]. The comprehension of the benefits that an
active network implementation can produce is a subject that deserves studying.
An efficiency measure has been proposed in [6]. The aim of this work is to focus
on the interactions among active network applications. This seems to be an inter-
esting potentiality of the active network paradigm, currently not explored in the
literature. We feel that an efficient active network architecture should provide
the means to allow applications to exploit the advantages that can be derived
from the desired forms of interaction, and the mechanisms to protect applica-
tions against undesired forms of interaction. In the rest of this paper, we discuss
a number of active networks applications and highlight the potential benefits
they can gain from active networking (Section 2); we present some basic forms
of interactions among applications including interference and communications
(Section 3), and discuss some issues related to the introduction of mechanisms
to support application interactions in an active network architecture (Section 4);
finally, we conclude by presenting an example of an application exploiting the
concept of interference (Section 5).

2 Active Networks Benefits

The evolution of computer networks towards the active network paradigm strongly
depends on the actual benefits that can be obtained by applications. We feel that
many of these benefits fall into the following categories:

– availability of information held by intermediate nodes,
– data processing capability along the path,
– adoption of distributed strategies,
– easy development of new network services.

Availability of Information Held by Intermediate Nodes - Mobile agents can be
encapsulated and transported in the active code of application capsules. They
can retrieve and extract pieces of information held by intermediate nodes in a
more effective way than through remote queries from the application itself. For
instance, an agent could make use of active code to look-up the routing tables
of an intermediate node and select some entries according to a given criterion.
It can either send such extracted information back to the application, or it can
use the information to take timely decisions autonomously from the application.
More examples can be found in network management issues, such as congestion
control, error management, traffic monitoring. A meaningful example is the one
related to the customisation of the routing function. A mobile agent could be
devoted to the evaluation of the path for the application’s data flow, according
to the user’s QoS specification. Each application could set up its own control
policy or exploit a common service (the default per-hop forward function).

Data Processing Capability along the Path - Application-specific functions in-
stalled into an intermediate node could access and modify transient data ad-
dressed to other nodes. Such modification could be due to the current state of
the network or to particular receiver needs. Data format translations, different
compression levels, document encryption/decryption are some of the examples.
Multicast transmission is an instance where the benefits appear more evident.
Functions, dynamically deployed in intermediate nodes, can manage the joining
of new users, or they can dynamically modify the multicast tree to optimise
bandwidth utilisation, or, again, adapt the data format to different user speci-
fications. Audio and video conferencing systems have been proposed in [4], [5],
in which agents are located in crucial nodes where the transformation of the
streams is needed. Each agent is in charge of the replication of the informa-
tion for different users. It can also adapt the data flow to different bandwidth
requirements and to the network load.

Adoption of Distributed Strategies - Active networks applications can easily im-
plement distributed strategies by spreading application mobile agents in the
network. Examples of this new potentiality are given by existing applications
such as web proxies [13], stock quotes and on line auction applications [15], dis-
tributed firewalls [13], and the distributed management of multicast trees [10].

A particular application proposed in [14] is an ad-hoc mobile firewall, whose aim
is to inhibit the annoying denial of service attack known as the SYN-Flooding
attack. The defender injects into the network a defence mobile agent that is
able to recognise the intruder packets and to stop them in intermediate nodes
closer and closer to the attacker’s node. A defence based on active networking is
inherently more powerful than a common attack strategy, and this case is inter-
esting because it shows a typical interference that makes of an active network
such a powerful tool that it becomes potentially dangerous. If no limitations
were provided to the interference among applications, the resulting chaos would
determine the biggest possible denial of service. From these considerations, we
see that the design of an active network architecture capable of providing mech-
anisms that allow applications to declare their own desired degree of interference
is essential.

Easy Development of New Network Services - The code injection technique is
the key of the flexibility of an active network, and makes the development of
new protocols, services, and other network applications straightforward. Tests
on new protocols can be quickly performed on the real network, and not just
simply simulated. The updating of network device software with complex de-
pendencies can be remotely accomplished. The need of a greater celerity for
delivering the software to network devices arises from the knowledge that the
difficulty in introducing several Internet enhancement attempts (RSVP, MBone,
IPv6) was also due to the impossibility of accomplishing the necessary actions on
the network devices. The IETF diffserv working group is proposing an architec-
ture [8] to support different services other than best-effort forwarding. Per-Hop
Behaviours (PHB) are the bricks with which these new services can be built.
Per-Hop Behaviours are dynamically allocated in the network nodes and the ac-
tive networks methodology could be very suitable for this aim. New services that
could be easily implemented in an active network are application-driven routing,
already discussed, and parallel routing, where the path of unicast transmission
is substituted by several parallel paths.

3 Active Networks Applications

As we pointed out in the previous sections, researchers have already been able
to identify a number of applications that can potentially take advantage of the
main active networking features to fulfil their tasks in an efficient manner. Here,
we try to sketch a rough classification of these applications, based on a num-
ber of relevant criteria. The goal is to identify the essential components of a
generic active networks architecture in which all type of applications fit well.
The adopted criteria comprise the type of execution environment present in the
intermediate nodes and the ability to share data among different applications.

3.1 Capsules

We start by describing what we feel is the simplest possible scenario. An ap-
plication generates an active packet containing user data and executable code
(capsule). The capsule is sent over a computer network and traverses a series
of nodes - some of which are active nodes - on its way to the final destination.
When the capsule reaches an active node, the software on the node identifies
the presence of executable code, loads it into memory and executes it in a suit-
able environment. The results of this execution are then stored back into the
capsule and the capsule is forwarded to the next hop towards its destination.
This behaviour may be replicated at each active node until the destination has
been reached. During the execution, it is possible to access critical information
stored in an active node. For instance, a capsule may need the current value of a
timestamp or detailed information on current traffic load, or on which routes are
currently available for data delivery. In a reservation-based system, information
on the amounts of resources still available and on the quality of service that
can be obtained under the current traffic conditions could be made available as
well. Thus, a scheme is needed that provides the means for a peer application
to extract critical information from the network in an effective way. Even if this
scenario looks simple, we can derive some conclusions from it. The problem of
defining an efficient way for capsules to deliver results to a peer application has
not been yet investigated. A first approach consists of letting the capsule reach
the peer application at the destination: the application may then read the re-
sults of the execution directly from the capsule. As an alternative, a capsule
may occasionally send back to the peer application at the sender side the re-
sults collected. If we push this idea a little forward, we can imagine applications
injecting capsules into the network that never really reach a final destination
but keep travelling and reporting results and collected data back to the sender
application. This last scenario calls for the definition of a communication proto-
col between the application and its capsules. Although it would be possible for
each application to define its own protocol, it would be convenient to define a
common protocol to be used by all applications, so that nodes in the network
can be used to improve the communications: for instance, an active node could
resend a packet generated by a capsule if it can detect that the packet has been
lost and the capsule has already left the node.

3.2 Interference among Applications

In a more sophisticated scenario, a capsule injects into an active node code able
to modify the node’s behaviour by the execution of one or more customised func-
tions. These functions could be designed to manage (forward, discard, filtering,
modify) the data packets that traverse the node. This can be accomplished either
by modifying the behaviour of a task run by the active node (the assumption is
that the active node provides the means to do this) or by creating a new task
running in the node. The latter case corresponds to the activation of a new agent,
e.g., a packet filter, on the node. This mechanism can be used by an application

to modify the router’s behaviour with respect to the data packets that will be
next sent by the application itself. For example, it may be used to discard pack-
ets logically belonging to a substream when delivering hierarchically encoded
digital video. Therefore, an application has the means to differentiate the ser-
vice it receives from the network on a per-packet basis and dynamically adjust
it. Although most of the proposed applications limit the agent actions to pack-
ets belonging to the same application which installed the agent, in some cases
the action might be executed on packets generated by other applications, that
may be unaware of it. We call this inter-application interference. Interference
among applications can be a very powerful way of exploiting the active network-
ing paradigm. However, it is necessary to provide a framework with strict rules
that regulate interference and prevent illegal use by unauthorised applications.
Also, appropriate mechanisms have to be built into the network to enforce these
rules. We feel that an active networks architecture should provide means to:

– uniquely identify applications and capsules within the network,
– associate a set of routines and a memory area in the active node with the

incoming capsule,
– allow for secure management of application interactions.

Some mechanisms have already been proposed in the literature. ANTS proposes
the introduction of fingerprints to authenticate the application and the packet
[16]. Such a mechanism is devoted to guarantee that capsules are associated
with the correct environment (functions and data) in the Java Virtual Machine.
This authentication procedure is aimed at the binding of the programming en-
vironment, and indirectly at security. Switchware provides a more general and
complex authentication scheme, where the main goal is security [2]. Even in this
case, no attention is paid to the regulation of interactions. In the example of the
defence against the SYN attack we can imagine that the defender agents present
some credentials to the intermediate nodes, whereas the attacker packets contain
spoofed addresses. Although applications should be protected against an unde-
sired interference, safe and reliable interactions remain a powerful tool to build
effective applications. A number of ”good” interactions could be set-up between
ISPs, which could collaborate by sharing their services. Forms of interaction can
be identified in the web proxies. In the stock quotes and on line auction ap-
plications, the fundamental requirement is that the user (client application) be
able to trust the intermediate agent (injected by the server application), i.e., a
mechanism of authentication is required. Any external action on an application
data flow should have been previously accepted or, even better, declared by the
application itself. Only such severe rules can allow the correct use of interfer-
ence as a useful network service. We propose three possible levels of interference.
They correspond to the degree of intervention that an application is willing to
accept:

– no interference: an application may require a high security level for its data,
and, consequently, it does not accept any interference on its packets;

– intra-application interference: applications using interference as a tool to
achieve their specific goals could require an authentication mechanism that
guarantees against intrusions from and by other applications;

– inter-application interference: this is the general case, where an application
could accept that other network entities access and modify its own pack-
ets. For instance, this is the case of some network services shared by more
applications, such as the traditional routing functions (able to access but
not to modify packets), policing functions (able to discard some packets),
encryption functions (able to access and modify packets), and so on.

An efficient active networks architecture should support all three kinds of inter-
ference among applications.

3.3 Communication among Applications

Communication between two or more active networks applications is determined
by a mutual will to exchange information. Two or more applications, running
on an active network, can establish real communication sessions, or more simply
they can exchange some messages between each other. An analogy with tradi-
tional communicating processes is possible. When two applications decide to ex-
change some information, they can send some messages to each other, by adopt-
ing a common format. Many authors describe active networks applications as
network protocols [1]. The communication between applications, in turn, should
be managed again by a protocol, which will appear as a communication proto-
col between some other protocols. Typically, each application provides for some
entry points, through which it can receive some information, or information re-
quests by other active applications. Differently from the interference case, in the
communication scheme a deterministic behaviour is entirely preserved and guar-
anteed. In this case, the provision and the management of possible interactions
is up to the application. Instances of applications emerging in communication
activities could be general-purpose utilities providing services on the network,
which can be used by means of well-known handles. As we did for interference,
we propose three different levels of communication:

– no communication: an application executes its code without requirements of
external data;

– intra-application communication: this is the case of a multitasking applica-
tion, where different components of the same application can exchange data
among them;

– inter-application communication: two separate applications agree upon the
exchange of data between them; to this end, they can use messages or they
can set some shared variable located on intermediate nodes of the active
network.

While communication appears as a mutual interaction, on the other hand inter-
ference involves a passive behaviour on the part of one of the subjects.

4 Architectural Issues

4.1 Intermediate Nodes

Several active networks architectures are currently under development in indus-
try and academia. Different directing principles are underlying these projects,
and as a result some of them present diametrically opposed characteristics of
design. In this section we will focus on the main characteristics of intermediate
system execution environments. Using some concepts derived from operating
system design principles, the architecture of an intermediate system, which pro-
vides processing capabilities for user code, should present a layered architecture
to guarantee different flexibility, security, performance, and usability levels. Only
few existing active network architectures have adopted such a criterion as their
design principle. Most of them provide only an execution environment obtained
on top of pre-existing architectures, and delegate the facing of security problems
to the language adopted for active codes. Another of the main topics, which
differentiate existing architectures, is the entity that should be considered as an
atomic object. Packets or streams can be adopted as the individual repositories
of the actions of active codes. This corresponds to two different interpretations
of the active networking concept:

– the first interpretation reconsiders the network protocol concept, by extend-
ing the control information contained in the packets with small pieces of
codes. The packet code will be executed at each node and will process the
packet data along the path towards the destination;

– the second approach considers the intermediate systems in the same way as
an end-system. Standard functions or codes previously installed at interme-
diate systems constitute pipelines for data flows.

To take advantage from all the capabilities, some architectures adopt both ap-
proaches. Switchware [2], for instance, provides active packets containing mobile
programs, and, at the same time, active extensions, providing services on the
network elements which can be dynamically loaded. The unresolved problems in
the design of an active intermediate system are still many. Nevertheless, most of
them are similar to the problems of designing a multitasking operating system.
Active technology transforms the intermediate systems from special purpose de-
vices to shared general purpose computing engines. This evolution coagulates
specific problems of network and operating system fields in a more complex sit-
uation to be faced. Problems such as active program naming [3], active node
resource management, protection of active applications, and system integrity
are common subjects of both research fields. Furthermore, the introduction of
interaction capabilities between active applications entails the classical problems
of inter-process communication. A language capable of providing the communi-
cation primitives must be adopted, and the system has to provide the necessary
abstractions to accomplish them. The programming language adopted for the
active codes is an other fundamental aspect of an active network architecture.

Its characteristics are, in some aspects, complementary to the active node oper-
ating system characteristics, because it makes up for the lack of operating system
with its capabilities. These can be summarised in a strong type control and in
the capability of static program verification before the capsules are injected into
the network.

4.2 Security

Security problems are closely related to interaction activities. Intrusion in a
private data flow is an undesired form of interference. An active network ar-
chitecture allowing for application interactions must provide strong protection
forms to guarantee correct and secure executions. Current active networks ar-
chitectures propose different and sometime complex solutions to the security
problems. Some of them adopt traditional authentication methods, to securely
identify packets or data flows, which are allowed to perform safe operations on
the intermediate nodes. Among the existing architectures, which significantly
take into account the security problems, the Secure Active Network Environ-
ment [3] presents the most effective solutions. More than the active network
architecture, such an environment (or a secure active network) should provide
severe rules for limiting the capabilities of an application for interaction with
another. As a consequence, a safe control of interactions imposes some differ-
entiation about who can act on whom. To this end, it is useful to operate a
distinction about the two different interaction schemes proposed in this paper.
The communication scheme redraws, in some aspects, a message-passing operat-
ing system architecture, which has been proposed as a useful model for network
and distributed operating systems, one that is able to encourage distribution
and, to some extent, security [11]. The different interference levels require a pol-
icy, which allows a stream to disclose itself to another one. A potential solution
is supplied by the definition of different levels of protection for an active ap-
plication. An active application may allow reading, writing and executing its
own capsules, to nobody (no-interference), only to itself (intra-application in-
terference), to some authenticated applications, or it can disable any protection
form (inter-application interference). Authentication protocols by means of pub-
lic and private keys, and digital signature algorithms can be used to guarantee
security and coherence of the communications. The impartiality of intermediate
node operating systems guarantees against unrecoverable actions such as the
complete malicious discarding of packets. A rigid per-packet or per-flow authen-
tication presents arduous scalability problems. The following different aspects of
the security problems should, as a consequence, be taken into account.

Active Node Security - This aspect regards the protection of an intermediate
node security from external dangerous actions. The means available to face these
concerns are:

1. the adoption of a programming language with reduced capabilities: a user
code cannot access directly node resources;

2. the layered organisation of the intermediate node operating system, which
is a precondition for its integrity, or an isolated user code execution environ-
ment like the sandbox of JVM in [16].

Active Network Security - In this case, security problems are related to the
network as a whole. If an active code generated and forwarded more copies
of a packet without any limitation, the network would be flooded in a short
time. Such a denial of service could be avoided by introducing some mechanism
like the TTL in standard IP packets. When a packet is duplicated, its copies
will share the original amount of TTL. Such a mechanism on one side protects
the network from flooding, on the other side it constrains the active networks
application capabilities.

Application Security - Active network applications must be guaranteed against
undesired interference performed unintentionally or maliciously by other appli-
cations. To this end, active networks architectures should adopt more restrictive
security mechanisms such as:

a) naming strategy (for the routines installed in an active node)
b) authentication and authorisation on a stream and packet basis.

5 The ”Counter” Application

In this section, we briefly describe an application designed to solve the problem
of counting the number of intermediate nodes present in a large network. If we
consider the Internet, the problem of determining how many routers are actu-
ally present does not lend itself to a simple answer: Internet addresses cannot
help solve this problem, because nothing in the address structure allows for an
intermediate router to be distinguished from an end-system. This information
could probably be obtained by means of a hypothetical agent located on a node
of the network which recursively interrogates all the adjacency detecting Inter-
net routers to be marked, explored, and counted. The active network philosophy
may as well offer advantageous tools with which to address this problem. No-
madic agents exploring the network could partition and explore the network
more efficiently than a fixed, static agent. The idea is that explorer agents are
capable of duplicating themselves whenever a switching point is encountered.
The creation of such an application raises a problem due to the growth of the
number of capsules. Safety and security aspects of the whole network require
that all the capsules injected into the network have a limited TTL, in order to
avoid uncontrolled flooding. The solution provided here adopts three different
types of active agents: Source, Base, and Scouts.

– the Source agent generates the whole application. It is in charge of creating
the initial Base agents, collecting the intermediate results, and co-ordinating
the node marking and cleaning process;

– the Base agents are responsible for the local actions carried out by the Scout
agents. They act as local collectors, and have some control over Scout actions;

– finally, the Scout agents, which are light voyager capsules, discover, count
and mark the routers in the neighbourhood of the generating Base.

Once a Base agent has been injected into an active node, it sends a Scout agent to
each adjacent node whose distance is bigger than the current one, distributing its
amount of TTL among them. It assigns to the Scouts a maximum exploration
distance. It then waits to collect the partial counters obtained by the Scout
agents. When a Base agent obtains the partial results from all of its Scouts,
it sends its collected value to the Source. The application should keep track of
the nodes that have been visited and those that have not been. To this end,
the visited nodes are marked, thereby necessitating a successive cleaning phase.
Each Scout agent injected into a node takes the following actions: if the node has
not been already visited, it marks the node as counted, decreases its exploration
distance value and generates as many capsules as there are adjacent nodes at a
greater distance from the Source. When the Scout has reached a limit node, it
will then install a new Base agent for the following expansion step, sending the
address of this border node to the Source. If the node has already been visited,
it returns to the parent node, it increases its parent node counter by its own
counter, and decreases the number of open paths. The TTL value determines
the dimension of the explored area. This area, which is explored by the Scout
agents generated by a single Base, is called a Zone. The above application, of
which we are building a first implementation, uses intra-application communi-
cation forms. Scout agents send the collected results to the Base agents, which
in turn communicate with the Source. The same application can be partitioned
in a spatial way. Different Autonomous Systems can agree on the possibility of
separately enumerating their own intermediate systems. Multiple instances of
the same application can exchange their final results to collect the global result.
This last case represents an inter-application communication example.

6 Conclusions

Active networks move the control of some network functions to applications
(end-to-end argument) and at the same time allow for the execution of some ap-
plication components in the network. Factors such as performance downgrading
and security may represent potential problems. The success of such a paradigm
may depend on the fast diffusion of new network services and protocols, and
on the development of new applications. Some characteristics of active networks
have been analysed, which can produce a more efficient implementation of tra-
ditional applications. We feel that an important way to exploit active network
features will be that of writing applications able to interact with each other. We
discussed two forms of interaction: interference and communication. The former
is a powerful tool, which requires ad-hoc security mechanisms. The latter does
not impose strong security controls, albeit no applications, which employ such a
concept, have been yet proposed. Finally, the active networks paradigm drives

the static concept of network protocol towards a network operating system, ca-
pable of guaranteeing basic efficient connectivity and adequate security levels,
and which makes the different network resources available to the applications.

References

1. Alexander, D.S., Arbaugh, W.A., Keromytis, A.D., Smith, J.M.: Safety and Secu-
rity of Programmable Network Infrastructures. IEEE Communications Magazine,
vol.36, n.10, October 1998, 84 - 92

2. Alexander, D.S., Arbaugh, W.A., Hicks, M.W., Kakkar, P., Keromytis A.D.,
Moore, J.T., Gunter, C.A., Nettles, S.M., Smith,J.M.: The SwitchWare Active
Network Architecture. IEEE Network Special Issue on Active and Controllable
Networks, vol. 12, n. 3, May-June 1998, 29 - 36

3. Alexander, D.S., Arbaugh, W.A, Keromyts, A.D., Smith, J.M.: A Secure Active
Network Architecture: Realization in SwitchWare. IEEE Network Special Issue on
Active and Controllable Networks, vol. 12, n. 3, May-June 1998, 37 - 45

4. Baldi, M., Picco, G., Risso, F.: Designing a Videoconference System for Active
Networks. Proceedings of the 2nd International Workshop on Mobile Agents,
Stuttgart, September 1998

5. Banchs, A., Effelsberg, W., Tschudin, C., Turau V.: Multicasting Multimedia
Streams with Active Networks. Technical Report TR-97-050, International Com-
puter Science Institute, Berkeley CA

6. Bhattacharjee, S., Calvert, K.L., Zegura, E.W.: Active Networking and End-to-End
Arguments. IEEE Network Special Issue on Active and Controllable Networks, vol.
12, n. 3, May-June 1998

7. Bhattacharjee, S., Calvert, K.L., Zegura, E.W.: On Active Networking and Con-
gestion. Technical Report GIT-CC-96-02, College of Computing, Georgia Tech.

8. Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z., Weiss, W.: An Architecture
for Differentiated Services. Internet RFC 2475, December 1998

9. Calvert, K.L., Bhattacharjee, S., Zegura, E.W., Sterbenz, J.: Directions in Active
Networks. IEEE Communications Magazine, vol.36, n.10, October 1998, 72 - 78

10. Li-wei, H.L., Garland, S.J., Tennenhouse, D.L.: Active Reliable Multicast. IEEE
INFOCOM’98 San Francisco, USA 1998

11. Nutt, G.J.: Centralized and Distributed Operating Systems. Prentice Hall Inter-
national, 1992

12. Tennenhouse, D. L., Smith, J.M., Sincoskie, W.D., Wetherall D.J., Minde, G.J.:
A Survey of Active Network Research. IEEE Communications Magazine, Vol. 35,
No. 1, January 1997, 80-86

13. Tennenhouse, D. L., Wetherall, D.J.: Towards an Active Network Architecture.
Computer Communication Review, Vol. 26, No. 2, April 1996

14. Van, V.: A Defense Against Address Spoofing Using Active Networks. MIT Mas-
ter’s thesis, May 1997

15. Wetherall, D.J., Legedza, U., Guttag, J.: Introducing New Internet Services: Why
and How. IEEE Network Magazine Special Issue on Active and Programmable
Networks, vol. 12, n. 3, May-June 1998

16. Wetherall, D.J., Guttag, J., Tennenhouse, D.L.: ANTS: A Toolkit for Building and
Dynamically Deploying Network Protocols. IEEE OPENARCH’98, San Francisco,
CA, April 1998

This article was processed using the LATEX macro package with LLNCS style

