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ABSTRACT5

The co-polar correlation coefficient (ρhv) has many applications, including hydrometeor clas-6

sification, ground clutter and melting layer identification, interpretation of ice microphysics7

and the retrieval of rain drop size distributions (DSDs). However, we currently lack the8

quantitative error estimates that are necessary if these applications are to be fully exploited.9

Previous error estimates of ρhv rely on knowledge of the unknown ‘true’ ρhv and implicitly10

assume a Gaussian probability distribution function of ρhv samples. We show that fre-11

quency distributions of ρhv estimates are in fact highly negatively skewed. A new variable:12

L = − log10(1 − ρhv) is defined, which does have Gaussian error statistics, and a standard13

deviation depending only on the number of independent radar pulses. This is verified using14

observations of spherical drizzle drops, allowing, for the first time, the construction of rigor-15

ous confidence intervals in estimates of ρhv. In addition, we demonstrate how the imperfect16

co-location of the horizontal and vertical polarisation sample volumes may be accounted for.17

The possibility of using L to estimate the dispersion parameter (µ) in the gamma drop18

size distribution is investigated. We find that including drop oscillations is essential for19

this application, otherwise there could be biases in retrieved µ of up to ≈ 8. Preliminary20

results in rainfall are presented. In a convective rain case study, our estimates show µ to21

be substantially larger than 0 (an exponential DSD). In this particular rain event, rain rate22

would be overestimated by up to 50% if a simple exponential DSD is assumed.23
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1. Introduction24

The co-polar correlation coefficient, ρhv, between horizontal (H) and vertical (V ) polari-25

sation radar signals is a measure of the variety of hydrometeor shapes in a pulse volume. It is26

therefore useful for applications such as identifying the melting layer (Caylor and Illingworth27

1989; Brandes and Ikeda 2004; Tabary et al. 2006; Giangrande et al. 2008), ground clutter28

(e.g. Tang et al. 2014), rain-hail mixtures (Balakrishnan and Zrnic 1990) and interpreting29

polarimetric signatures in ice (e.g. Andrić et al. 2013), and potentially the retrieval of30

the drop size distribution (DSD). The standard deviations of differential reflectivity (ZDR)31

and differential phase shift (φdp) are both functions of ρhv (Bringi and Chandrasekar 2001).32

Therefore, ρhv dictates both the quality of dual polarisation measurements and their weight-33

ing in hydrometeor classification schemes (Park et al. 2009). In rainfall, ρhv is typically34

0.98—1. Giangrande et al. (2008) use data where ρhv < 0.97 to identify the melting layer.35

For hail, ρhv can be much lower due to the effects of Mie scattering. At present, quantita-36

tive use of ρhv is hampered by a lack of rigorous confidence intervals accompanying the ρhv37

estimates. Error estimates are available adopting an empirical approach (Illingworth and38

Caylor 1991) or a linear perturbation technique (Liu et al. 1994; Torlaschi and Gingras 2003),39

both of which implicitly assume a Gaussian probability distribution for the ρhv samples. We40

will show that the distribution of ρhv samples is in fact non-Gaussian and highly negatively41

skewed.42

Natural rain drop size distributions can be described by a gamma distribution (Ulbrich43

1983):44

N(D) = N0D
µ exp

[
−(3.67 + µ)

D0

D

]
(1)

where D is the equivalent spherical drop diameter, N0 is the intercept parameter, D0 is the45

median volume drop diameter and µ is the dispersion parameter (a measure of the drop size46

spectrum shape). If µ = 0, by exploiting the relationship between drop diameter and drop47
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axis ratio, D0 can be estimated using ZDR (Seliga and Bringi 1976). Higher µ correspond48

to more monodisperse drop size distributions. Since ρhv is sensitive to variations in drop49

shape, it can in principle be used to estimate µ (Jameson 1987), knowledge of which could50

improve dual polarisation and dual frequency (e.g. the Global Precipitation Measurement51

satellite) rain rate estimates. Figure 1 shows rain rate (R) per unit radar reflectivity (Z) as52

a function of ZDR for simulated Gamma distributions with µ = -1, 0, 2, 4, 8, 12 and 16. The53

rain rate is sensitive to variability in the shape of the drop size spectrum; uncertainty in µ54

alone could introduce an error in the retrieved rain rate of up to 2.5 dB (almost a factor of55

2) for a given pair of Z and ZDR observations.56

It is difficult to obtain reliable estimates of µ from observations. Disdrometers suffer from57

undersampling of large drops, which cause µ values that are derived from the 3rd, 4th and 6th
58

moments of the drop size distribution to be biased high (Johnson et al. 2014). Furthermore,59

disdrometers also undercount the number of drops < 0.5 mm (Tokay et al. 2001), which can60

also introduce a bias in estimates of µ. Estimating DSD parameters using radar is therefore61

preferable, due to the very large number of drops being sampled. Wilson et al. (1997)62

made radar observations dwelling in rain at elevation angles above 20◦ and report that the63

difference in the mean Doppler velocity at H and V polarisations provides an estimate of µ,64

which were in the range of 1 to 11, and, once ZDR exceeded 0.5 dB, all the values were above65

4. Doppler spectra of rain at vertical incidence with multiple wavelength radars, including66

wind profiler frequencies that respond to the clear air motion have been utilised to estimate67

µ (Williams 2002; Schafer et al. 2002). These experiments find µ ranges between 0 and 18,68

but is typically 0—6. Unal (2015) fits observed Doppler spectra to theoretical drop spectra69

at S-band, and retrieves µ in the range of -1—5. The disadvantage of these techniques is that70

they use high elevation angles; for operational monitoring of surface rainfall, measurements71

at low elevation angles are preferable. This motivates the use of ρhv to derive µ in rainfall.72

Illingworth and Caylor (1991) and Thurai et al. (2008) inferred µ from the decrease in73

ρhv as ZDR increases. The difficulty here is that any mis-matches in the H and V beams74
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will introduce an uncorrelated noise component, so that even for perfectly spherical drizzle75

droplets, where the “true” ρhv is unity, the radar will always detect a value less than one (we76

will call this maximum obtainable level of ρhv “fmaxhv ”, see Section 5). From measurements in77

rain at short range, Illingworth and Caylor (1991) inferred µ values, which if corrected with78

an estimate of fmaxhv were in the range 0—2, but even for long dwells the estimated errors79

in µ were quite large. Thurai et al. (2008) analysed ρhv measurements from an operational80

radar and obtained estimates of µ in the range of 1—3, however their approach relies on81

empirically derived relationships between ρhv and DSD widths from 2 dimensional video82

disdrometer (2DVD) measurements. Furthermore, the technique is only valid for intense83

rain (ZDR ≥ 2 dB and ρhv < 0.98 ).84

The aim of this paper is to define a new variable, L = − log10(1−ρhv), that has Gaussian85

error statistics with a width predictable from the number of independent radar pulses. This86

can be readily estimated by using the observed Doppler spectral width (σv). We will then87

present measurements of L in rainfall as a function of ZDR, and retrieve estimates of µ by88

comparing these with predicted L and ZDR for various three-parameter gamma distributions.89

The possibility of using this technique to retrieve µ using operational radars is then discussed.90

2. The Co-Polar Correlation Coefficient (ρhv)91

ρhv is defined as (Doviak and Zrnic 2006):92

ρhv =
〈SV V S∗

HH〉√
〈|SHH |2〉〈|SV V |2〉

(2)

where 〈SHH〉 and 〈SV V 〉 are the co-polar elements of the backscattering matrix averaged93

over an ensemble of scatterers for the H and V polarisations respectively, and ∗ indicates the94

complex conjugate. It can be estimated by correlating successive power or complex (I and95

Q) measurements. Examples of power time-series in (a) drizzle and (b) heavier rainfall from96
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the 3 GHz Chilbolton Advanced Meteorological Radar (CAMRa) are shown in figure 2. The97

radar is a coherent-on-receive magnetron system, transmitting and receiving alternate H and98

V polarised pulses with a pulse repetition frequency (PRF) of 610 Hz. A cubic polynomial99

interpolation is used to estimate the H power at the V pulse timing and the V power at the100

H pulse timing. Its narrow one-way half power beamwidth (0.28◦) makes it capable of very101

high resolution measurements. The full capabilities of this radar are discussed in Goddard102

et al. (1994). The observed fluctuating signals in Figure 2 are caused by the superposition103

of the backscattered waves from each drop in the sample volume; the rate of fluctuation104

is determined by the Doppler spectral width. For drizzle, since the drops are spherical,105

ZDR = 0 dB, and the H and V signals are almost perfectly correlated: ρhv = 0.995. For106

heavier rainfall, a systematically lower V power is received (ZDR = 1.1 dB), and the signals107

are visibly less correlated (ρhv = 0.987), due to the broader axis ratio distributions in the108

sample volume.109

These estimates of ρhv are derived from a finite number of reshufflings, and therefore110

there is some uncertainty in them. In what follows, we quantify this uncertainty.111

3. Theoretical Measurement Error in Estimated Corre-112

lation of Time-Series113

Figure 3a shows the distribution of estimates of the correlation coefficient, ρ̂hv (calculated114

from a finite length time-series), as distinct from the “true” co-polar correlation coefficient,115

ρhv (that would be measured for a time-series of infinite length). The data was collected116

during a 1.5◦ elevation dwell in drizzle (ZDR < 0.1 dB), with very high SNR (> 40 dB) on117

6 February 2014. Each ρ̂hv is calculated from 64 H and V pulse pairs (0.21s dwell) from a118

single 75 m range gate with σv = 1.1 ± 0.1 ms −1. The distribution of ρ̂hv has a peak that is119

close to ρhv (which is < 1, see Section 5d), but exhibits a very long tail at lower ρ̂hv, while120

there are no data with ρ̂hv > 1. Clearly, this distribution is not Gaussian and the negative121
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skewness will negatively bias the mean of many ρ̂hv samples compared to the true value of122

ρhv.123

Fisher (1915) states that sample correlation coefficients (ρ̂) of a “true” correlation coef-124

ficient (ρ) calculated from a finite number of Gaussian random variables are skewed for ρ 6=125

0. However, the variable:126

F̂ =
1

2
ln

(
1 + ρ̂

1− ρ̂

)
(3)

is Gaussian, with a mean of:127

F̄ =
1

2
ln

(
1 + ρ

1− ρ

)
(4)

and standard error of:128

σF =
1√

N − 3
(5)

where N is the number of independent samples used to calculate ρ̂.129

This is directly applicable to estimates of the radar co-polar correlation coefficient, by130

realising that the I and Q samples that are used to estimate ρhv are Gaussian random131

variables (Doviak and Zrnic 2006). Noting that ρ̂hv in meteorological targets is always close132

to unity so that fractional changes in (1 − ρ̂hv) are always much greater than (1 + ρ̂hv),133

Equation 3 can be written as:134

F̂ ≈ 1

2
ln 2− ln 10

2
log10(1− ρ̂hv) (6)

Since F̂ is normally distributed, the quantity:135

L̂ = − log10(1− ρ̂hv) (7)

is also normally distributed, with a mean:136
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L̄ = − log10(1− ρhv) (8)

and standard deviation of:137

σL =
2

ln 10
× 1√

NIQ − 3
(9)

for NIQ � 3, where NIQ is the number of independent I and Q samples used to calculate138

ρ̂hv. Despite having similar characteristics, L is preferred over the use of F as it has the139

convenient property that ρhv = 0.9, 0.99 and 0.999 correspond to L = 1, 2 and 3 respectively140

and therefore is more intuitive. Illingworth and Caylor (1991) plotted their ρ̂hv data as141

log10(1− ρ̂hv) and their histograms also appear Gaussian in shape. Figure 3b illustrates the142

effect of the transform L̂ = − log10(1− ρ̂hv) on the distribution in Figure 3a. The histogram143

is now symmetrical, and bell shaped. A Gaussian curve with an equal mean and standard144

deviation to the L̂ PDF is overplotted and is an excellent fit to the data, showing that the145

distributions are indeed Gaussian (and Quantile - Quantile plots, not shown here for brevity,146

confirm this).147

To determine the number of independent I and Q samples, NIQ, we consider the auto-148

correlation function for I and Q samples given by Doviak and Zrnic (2006):149

RIQ(nTs) = exp

−8

(
πσvnTs
λ

)2
 (10)

where Ts is the time spacing between pulses of the same polarisation and nTs is the total150

time lag. Following the definition of Papoulis (1965), the time to independence for I and Q151

samples for large NIQ can be shown to be:152

τIQ =
λ

2
√

2πσv
(11)

where λ is the radar wavelength and σv is the Doppler spectral width. This is a factor of
√

2153

smaller than the more often used time to independence for reflectivity samples. The number154
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of independent I and Q pulses per ρhv sample can therefore be estimated by:155

NIQ =
Tdwell
τIQ

=
2
√

2πσvTdwell
λ

(12)

where Tdwell is the dwell time.156

The result (Equation 9) is significant as it shows that a confidence interval for any157

measurement of ρhv can be calculated solely in terms of the number of independent I and158

Q samples used to estimate it, which in turn can be readily estimated using the observed159

Doppler spectral width and Equation 12. Furthermore, when multiple samples of L̂ are160

averaged, no bias is introduced to estimates of ρ̂hv because of the non-linear transform. We161

expand this point in Section 4.162

To estimate confidence intervals for measurements of ρ̂hv, one must:163

• Apply the transform L̂ = − log10(1− ρ̂hv)164

• Calculate the standard deviation of L̂ using Equation 9.165

• Apply the inverse transform 1−10−(L̂±σL) to obtain upper and lower confidence intervals166

(where σL will contain the true value 68% of the time and 2σL 98%).167

More conveniently, one can simply transform ρ̂hv data to L̂ and use this for any subsequent168

analysis, with confidence intervals of L̂ ± σL. This is the approach we follow in the rest169

of this paper. Although we are focusing on data with very high signal-to-noise (SNR) in170

this paper, the theory above should also be valid for weak SNR data, providing that noise171

introduced is also Gaussian in the I and Q samples.172

This theoretical prediction was tested by comparing estimates of σL using data collected173

in homogeneous drizzle (ZDR < 0.1 dB) with very good signal-to-noise (SNR > 40 dB).174

In drizzle, L is constant since the drops are spherical, and therefore any variation σL is175

due to the finite NIQ. Pulse-to-pulse H and V powers were recorded, and time series of176

various lengths between 0.2—30 s were constructed from these data and used to compute177
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the corresponding NIQ and L values. Data was binned by NIQ, and the standard deviation,178

σL, were computed for each bin. Figure 4 shows how σL decreases as NIQ is increased over179

more than two orders of magnitude. σL is slightly overestimated for NIQ ≈ 10, and the data180

is in excellent agreement to that predicted by Equation 9 for NIQ > 30.181

4. Comparison with Existing Error Statistics182

We now compare these new error statistics with existing methods in the literature. From183

observations of ρhv in rain, the bright-band and ice, Illingworth and Caylor (1991) derived184

empirically the relationship between their mean ρ̂hv estimates and their standard deviation:185

σICρhv '
1.25(1− ρ̂hv)√

n
(13)

where n is the number of 0.2 s time-series they used to estimate the mean ρhv. Using a linear186

perturbation technique, Torlaschi and Gingras (2003) derive the following equation for the187

standard deviation on a ρhv measurement:188

σTGρhv =
1− ρ̄hv2√

2NI

(14)

where NI is the number of independent radar reflectivity samples used in its estimation. Note189

that ρhv in Equation 14 is the “true” correlation coefficient one is attempting to measure190

(rather than the measured value, ρ̂hv). This equation represents the standard deviation191

for infinite SNR conditions, and is valid for simultaneous or accurately interpolated H and192

V sampling. Neither of these techniques are ideal, relying on either knowing a-priori the193

true correlation coefficient one is attempting to measure (Torlaschi and Gingras 2003), or a194

number of time-series (Illingworth and Caylor 1991), not the number of independent pulses.195

It is not possible to compare the method of Illingworth and Caylor (1991) with our proposed196

method as σv for their data is unknown, and therefore the number of independent pulses in197

their time-series cannot be quantified. Figure 5a shows the errors on ρ̂hv calculated using our198
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new method compared to those calculated using the linear perturbation method of Torlaschi199

and Gingras (2003) as a function of NIQ in rain (ρhv = 0.98). The magnitudes of the upper200

confidence bounds are largely similar, however, for all NIQ the lower confidence interval is201

higher for Torlaschi and Gingras (2003) (i.e smaller deviations from ρhv are predicted), due202

to the asymmetric nature of the new confidence intervals on ρ̂hv. The largest difference is for203

small NIQ. As NIQ increases, both the upper and lower confidence intervals for each method204

converge. Although Figure 5a serves as a useful illustration of the difference between the205

methods, they are not strictly comparable in practice: the error calculation of Torlaschi and206

Gingras (2003) relies on knowledge of ρhv which in reality is unknown. Conversely, the new207

method requires no a-priori knowledge of ρhv, and so is of much greater practical use.208

Figure 5b illustrates the theoretical bias introduced by averaging many short samples of209

ρ̂hv, rather than L̂, in rain (ρhv = 0.98). This bias is significant for small NIQ. For example,210

when NIQ = 10, the bias on L̂ is 0.1, which is significant for the purpose of estimating µ in211

rainfall; this bias in L could lead to an underestimate of µ of ≈ 8 at ZDR = 2 dB (see figure212

8). It is not important whether spatial or temporal averaging is used to increase the number213

of independent I and Q samples, as long as ρhv does not vary substantially over the scales214

considered.215

In summary, confidence intervals that rely on the linear perturbation method overestimate216

the precision of ρhv measurements, and require knowledge of the “true” ρhv one is attempting217

to measure. Fundamentally, failure to use the transform L when averaging short time-218

series will lead to significant biases in correlation coefficient estimates. This is particularly219

important for operational ρhv applications that typically use very short dwell times (discussed220

in Section 8a), and would lead to a significant bias in retrievals of µ in rain.221
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5. Practical measurement of ρhv222

To fully exploit our new error estimates, and retrieve rain DSDs, some practical consid-223

erations for the measurement of ρhv must first be considered.224

a. Effect of alternate sampling225

When estimating the correlation coefficient, the non-simultaneous transmission and re-226

ception of H and V pulses must be accounted for. Assuming a Gaussian autocorrelation227

function to correct for this staggered sampling (Sachidananda and Zrnic 1989) can lead to228

unphysical samples where ρ̂hv > 1 (Illingworth and Caylor 1991). In our analysis, we employ229

a cubic polynomial interpolation to obtain H and V power estimates at the intermediate230

sampling intervals (Caylor 1989), which is very effective. We find that the interpolation231

scheme works well: for drizzle with L = 2.4, we observe that average values of L̂, binned232

by σv, are constant to within ±0.02 as σv varies between 0.1—2 ms−1. This is evidence233

of successful interpolation, since there is no systematic trend to lower L values at higher234

spectral widths.235

b. Signal-to-noise ratio236

The addition of noise to the received signals acts to reduce the correlation between H237

and V time-series. The reduction factor, f , has been shown (Bringi et al. 1983) to vary238

predictably as:239

f =
1(

1 + 1
SNRH

) 1
2
(

1 + 1
SNRV

) 1
2

(15)

for simultaneous (or accurately interpolated) H and V sampling, where SNRH and SNRV240

are the signal-to-noise ratios for the H and V polarisations respectively. This was verified by241
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Illingworth and Caylor (1991) with measurements of ρhv in drizzle. Whilst it is in principle242

possible to correct for the presence of noise using this equation, due to the high degree of243

precision required in this work, only data with SNR > 34 dB are included in our analysis,244

which corresponds to a maximum achievable ρhv measurement of 0.9996. However, instru-245

mental effects (described in Section d below) will have the same effect of adding uncorrelated246

noise, and so in practice this maximum value is never reached.247

c. Effect of phase error248

To avoid a bias in ρ̂hv due to random phase error from our magnetron system (Liu et al.249

1994), we cross correlate the power of the received echoes as opposed to the complex I and250

Q signals, and take the square root, following Illingworth and Caylor (1991).251

d. Instrumental effects252

Even in drizzle with very high SNR, antenna imperfections and other effects such as253

irregular magnetron pulse timing and pulse shape reproducibility will cause measured ρhv to254

always be < 1 (Illingworth and Caylor 1991; Liu et al. 1994) as effectively they cause the H255

and V pulses to sample slightly different volumes. Here, we propose a method to quantify256

and account for this bias, analogous to the SNR factor (Equation 15) suggested by Bringi257

et al. (1983). We consider the H and V echoes to consist of two parts: a common sample258

volume, and parts of each sample volume which are unique to a particular polarisation. By259

treating the former as “signal” and the latter as unwanted “noise”, we obtain an equation260

similar to Equation 15. Full details are provided in the appendix. The practical upshot261

is that the measured ρhv is the “true” ρhv multiplied by some dimensionless factor, fmaxhv ,262

relating to how well matched the H and V sample volumes are. For spherical drops, ρhv263

should be unity. The estimates of ρhv for all such data should therefore be equal to fmaxhv .264

When comparing observations with simulated ρhv, we multiply each of the predicted values265
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by fmaxhv so that they are directly comparable to the observations. ρhv has been measured266

in drizzle (ZDR < 0.1 dB) for a large number of samples on several days. Typically, fmaxhv is267

≈ 0.996, but varies by ± 0.001 from day to day, which we suggest is the result of slightly268

irregular magnetron pulse timing and shape reproducibility for the CAMRa system, which269

may be temperature dependent. For this reason, fmaxhv has been determined individually for270

each case.271

6. Using L and ZDR to Estimate µ in Rainfall272

We now attempt to use our high-precision measurements of L to retrieve µ estimates273

in rainfall. The independence of (D0, µ) and (L, ZDR) on the drop number concentration274

means that a single L and ZDR observation pair corresponds to a unique D0 and µ value. In275

order to forward model L and ZDR for various gamma distributions, we must first assume276

an appropriate drop shape model.277

a. Mean Drop Shapes278

There are numerous drop shape parameterisations in the literature. Here, we examine279

drop axis ratios and diameters from the recent experiments of Thurai and Bringi (2005),280

Szakáll et al. (2008) and the 4th order polynomial fit to many experiments given by Brandes281

et al. (2002). Figure 6a shows the mean axis ratio as a function of drop diameter, for each282

of these models. The Thurai and Bringi (2005) data suggests that mean drop shapes are283

slightly prolate for D < 1 mm, although it is in the margin of measurement error that the284

drops are spherical (Beard et al. 2010). Since it is known that drops become spherical as285

their diameter tends to 0 mm due to surface tension, our fit to the data is adapted so that286

drops < 1 mm are precisely spherical.287

To choose the best mean drop shape model, a 5 hour dwell was made with CAMRa at a288

1.5◦ elevation angle over a nearby Joss-Waldvogel RD-80 impact disdrometer (approximately289
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7 km away) in a frontal rain band on 25 April 2014. The disdrometer measures drop sizes in290

127 size bins from 0.3 to 5.0 mm. The instrument is regularly calibrated by the manufacturer291

and rain rate estimated with this instrument agrees very well with that from a co-located292

rain gauge. Radar measurements of ZDR are calibrated regularly (to within ±0.1 dB) by293

making observations of drizzle (low Z), which we know to have a ZDR value of 0 dB. The294

range resolution of the radar measurements is 75 m, and averaged to 30 s to match the295

integration time used by the disdrometer to estimate the DSD parameters. At this elevation296

angle, the radar was sampling rain at a height of 183m above the disdrometer. Figures297

6b—d show the observed radar measurement from the closest gate to the disdrometer, and298

the corresponding disdrometer ZDR values calculated using the Thurai and Bringi (2005),299

Szakáll et al. (2008) and Brandes et al. (2002) drop shape models respectively. The Szakáll300

et al. (2008) axis ratios are systematically smaller compared to both of the other models for301

almost all D. Using this model makes the disdrometer estimates of ZDR always larger than302

the radar estimates. Thurai and Bringi (2005) and Brandes et al. (2002) agree for D = 2—7303

mm, after which the axis ratios of Thurai and Bringi (2005) are closer to those of Szakáll304

et al. (2008). Therefore, radar and disdrometer ZDR for the Thurai and Bringi (2005) and305

Brandes et al. (2002) models largely agree, apart from ZDR . 0.4 dB. The largest differences306

between these models occurs for D < 2 mm. Here, Szakáll et al. (2008) and Brandes et al.307

(2002) predict more oblate drops than Thurai and Bringi (2005).308

The Szakáll et al. (2008) model produces the largest radar-disdrometer overall bias of309

≈ 0.23 dB. The biases from Brandes et al. (2002) for ZDR bins of 0.2, 0.4 and 0.6 dB (±310

0.1 dB bin width) are 0.09, 0.16 and 0.13 dB respectively. For Thurai and Bringi (2005),311

they are only 0.04, 0.08 and 0.09 dB respectively, and are very similar to Brandes et al.312

(2002) at higher ZDR. These reduced biases at low ZDR suggest that the experimental313

results of Thurai and Bringi (2005) best represent natural raindrop shapes. We therefore314

chose this model in our analysis. It is unclear why the very small residual difference between315

radar and disdrometer estimates of ZDR using the Thurai and Bringi (2005) shape model is316
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observed. Some possible explanations are that the radar calibration is slightly out causing a317

systematic underestimation, the small sampling volume of the disdrometer could be biasing318

ZDR, or there could be residual error in the mean drop shape model. However, this very319

small difference is unimportant for retrievals that follow.320

b. Drop Oscillations321

Drop oscillations increase the variety of shapes within a radar pulse volume at any given322

time. This means that the L we are attempting to estimate will be lower than that predicted323

by modelling only the mean drop axis ratios for drops of a given size. In order to account324

for this, we must parameterise these drop oscillations. In the Thurai and Bringi (2005)325

experiment, artificial rain drops were created from a hose and allowed to fall 80 m from326

a bridge before drop axis ratio and counts were measured with a 2D video disdrometer327

(2DVD) on the valley floor. This fall distance is more than sufficient to allow the drops to328

achieve steady state oscillations, and so the standard deviations of axis ratios measured in329

this experiment are interpreted as drop oscillation amplitudes. However, the large standard330

deviations of the axis ratios for D < 2 mm are likely artificial, caused by the finite resolution331

of the 2DVD instrument (Beard et al. 2010). Since drop oscillations are thought to originate332

from vortex shedding (Beard et al. 2010) which increases as a function of drop size, the333

magnitude of oscillations should decrease eventually to zero as the drop diameter tends to334

0 mm. Beard and Kubesh (1991) suggest that resonant drop oscillations occur for drop335

sizes between 1.1 and 1.6 mm, however more recent measurements from the Mainz wind336

tunnel show that amplitudes of the axis ratios for these drop sizes were less than 0.025337

(Szakáll et al. 2010). For this reason, the polynomial fit to oscillation amplitude data from338

the Mainz wind tunnel (Szakáll et al. 2010) is used for D < 2 mm, which has the desired339

reduction in oscillation amplitude for small drops 1. For D > 2 mm, we revert to the more340

1Equation 1 in Szakáll et al. (2010) does not agree with the fit in Figure 3 (black line). By digitising the

Mainz wind tunnel data, we calculate that Equation 1 should in fact be 1.8×10−3D0
2 + 1.07× 10−2D0
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statistically robust drop oscillations from Thurai and Bringi (2005). Since the oscillations341

are aerodynamically induced, with an amplitude only a function of the drop size, they should342

not vary with environmental conditions. In our analysis, the oscillations were included by343

integrating over Gaussian PDFs of axis ratios (Thurai and Bringi 2005) in our Gans theory344

computations. Figure 7 shows the effect of oscillations on computed L and ZDR for values345

of µ = -1 (black lines), µ = 16 (grey lines). Including drop oscillations for the purpose of346

estimating µ becomes increasingly important with increasing ZDR; the difference between L347

at µ = 16 computed with and without oscillations is as large as an equivalent change in µ of348

≈ 8. We find that the modification of the oscillation magnitudes for drop diameters < 2 mm349

has a relatively small impact (< 0.01) on predicted L for ZDR larger than 0.8 dB where we350

attempt retrievals of µ. However, we find that the use of Szakáll et al. (2010) oscillations for351

all drop diameters has a large impact on predicted L values (for µ = -1, L is ≈ 0.1 lower).352

This is potentially important for retrievals of µ.353

Comparatively large amplitude (but short lived, lasting less than ≈ 0.4 s) collision in-354

duced oscillations can also occur (Szakáll et al. 2014). Rogers (1989) estimate that the355

collision rate for an average rain drop in a 55 dBZ rain column is ≈ 1 min−1. This would356

imply that rain drops (even in very heavy rainfall) spend an almost negligible fraction of357

time (≈ 0.5%) affected by collision-induced oscillations . Rain drop clustering increases the358

likelihood of these collisions (Jameson and Kostinski 1998). For rain rates of around 10359

mm hr−1 (comparable to those presented in the following case studies), McFarquhar (2004)360

estimate the collision rate to be ≈ 5 min−1, implying drops are affected only 3% of the time.361

For very large rain rates (100 mm hr−1), this fraction increases to 6% as the collision rate362

approximately doubles to 10 min−1. Consequently, their impact on L measurements is likely363

to be small and can be ignored, other than for exceptional rain rates (Thurai et al. 2013).364

Figure 8 shows how L varies as a function of ZDR for gamma distributions with µ = -1,365

0, 2, 4, 8, 12 and 16 computed using Gans theory with the drop shape and oscillation model366

discussed above. Note that lines of constant µ diverge with increasing ZDR. For ZDR &367
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0.5 dB, it becomes possible to distinguish µ, given the typical error on an L measurement368

(shown in Figure 9).369

7. µ Retrieval Case Studies370

We now estimate µ using measurements of L and ZDR for stratiform rain case studies on371

31 January, 25 April and 25 November 2014, and a convective case study on 22 May 2014.372

Typical rain rates for each of these case studies can be found in Table 1. Dwells were made373

at an elevation angle of 1.5◦. Strict data quality filters were applied: SNR > 34 dB, linear374

depolarisation ratio (LDR) < −27 dB (close to the limit of cross-polar isolation) to ensure375

no melting particle contamination or ground clutter and range > 5 km to avoid near-field376

effects. Theoretical L and ZDR were computed using Gans theory using the drop shape and377

oscillation model discussed in Section 6 (see Figure 8). Observations were averaged from378

10 to 30 s and from range gates of 75 to 300 m to increase the measurement precision of379

L. At each gate, the most likely pair of µ and D0 given the observed L and ZDR values380

was obtained by selecting the closest point in a look-up table of Gamma DSD calculations.381

Figure 9a shows the observed L binned every 0.02 and ZDR binned every 0.05 dB for the382

example of 25 November 2015. Overlayed are lines of constant µ = -1, 0, 2, 4, 8, 12 and383

16. Figure 9b is the same distribution normalised to sum to 1 for each ZDR bin. The fmaxhv384

on this day was calculated to be 0.9963 (see Section 5d). The observations of L and ZDR385

are generally well contained within the expected range. The median error on L̂ is σL ≈386

0.025, and is shown as a representative error bar in Figure 9. A comparison of these data387

with disdrometer measurements from Williams et al. (2014) is included. In this experiment,388

the mass spectrum mean diameter (Dm) and mass spectrum standard deviation (σm) were389

measured using a 2DVD. A σm − Dm fit was derived from 18969 1-minute drop spectra390

(which can readily be converted to a µ−D0 fit). This was in turn used to predict a L−ZDR391

relationship, shown by the grey dashed line. L and ZDR were also predicted using the392
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proposed µ− Λ relationship of Cao et al. (2008), also derived from a 2DVD, where:393

Λ =
3.67 + µ

D0

(16)

This is shown by the black dashed line.394

The median and inter-quartile range of retrieved µ per ZDR bin for this day is shown in395

Figure 10. The median retrieved µ is 5 at ZDR = 0.8 dB, increasing to 8 for ZDR = 1.6 dB.396

There is significant spread in retrieved µ values, containing contributions from measurement397

uncertainty on L, as well as “true ” microphysical variability. The impact of changes in L398

on retrieved µ is non-linearly related to µ; σL contributes more to retrieved µ variability399

for more monodosperse (higher µ) DSDs, compared to more polydisperse (lower µ) DSDs.400

Conversely, the contribution of σL to retrieved µ variability decreases as ZDR increases, as401

the dual polarisation signature is larger and µ is more easily distinguishable (see Figure 8).402

To estimate the contribution that the uncertainty on L measurements makes to this observed403

variability, µ was retrieved using the median L ± the representative uncertainty depicted404

in Figure 9. This was then compared to the inter-quartile range of the retrieved µ for each405

ZDR bin. For ZDR bins of 0.8, 1, 1.2, 1.4 and 1.6 dB, we estimate that 88%, 66% 32%, 31%406

and 27% of the variability respectively can be attributed to σL. For ZDR > 1 dB, most of407

the variability seen in Figure 10 can be attributed to “true” microphysical variability.408

Figure 11 shows a comparison with retrieved µ for all of the case studies collected. Each409

of the dwells in January, April and November were made in stratiform rain, whereas the410

May case study contains dwells from convective rain. Overlayed are predicted mean µ values411

(solid grey) and upper and lower bounds that contain 55% of the measurements (dashed412

grey) of Williams et al. (2014) as a function of ZDR from the disdrometer measurements.413

The solid black line shows the predicted µ− ZDR using the µ− Λ relationship of Cao et al.414

(2008). There is a large spread in the radar retrieved median µ values from case to case.415

Each median µ estimate is from a very large number of retrieved µ estimates, such that the416

standard error is smaller than the markers themselves, and so is not shown. The values of417
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retrieved µ in January are ≈ 0, close to an exponential DSD for all ZDR smaller than 1.1 dB.418

This is below that predicted by Williams et al. (2014), but agrees well with µ predicted by419

Cao et al. (2008). Interestingly, the case studies of April and November show µ increasing420

with ZDR between 0.5 dB and 1.5 dB, compared to the trend seen by Williams et al. (2014)421

and Cao et al. (2008) towards an exponential DSD. The retrieved median µ values from422

the May case study, although agreeing with the decreasing trend with ZDR, are significantly423

above the Cao et al. (2008) predictions and the upper bound of µ from Williams et al. (2014).424

Our retrieval suggests that in this case, the rain rate would be overestimated by almost 2425

dB if an exponential DSD or the fit of Cao et al. (2008) is assumed. Whereas the µ values426

are not outside the full range of data measured by Williams et al. (2014), the use of the427

proposed µ−Dm relationship would cause an overestimate of ≈ 1 dB (see Figure 1).428

8. Discussion429

Our retrievals of µ made using ρhv and ZDR are typically larger than the radar estimates430

of µ of between 1—3 by Thurai et al. (2008) and 0—2 of Illingworth and Caylor (1991).431

Perhaps this is not surprising, given that the imperfect co-location of the H and V sample432

volumes was unaccounted for, and their ρ̂hv would have been biased low due to averaging ρhv433

rather than L, both of which are accounted for in our data . Furthermore, Illingworth and434

Caylor (1991) do not include drop oscillations in their retrievals, which will have led to a435

significant underestimate of µ. Whereas there is some agreement of the magnitudes of µ for436

ZDR < 1 dB with predicted Williams et al. (2014) and Cao et al. (2008) values, the apparent437

opposite trend towards more monodisperse distributions is consistent among 3 of the 4 case438

studies. For the retrieved µ to agree with the trend predicted by Williams et al. (2014) or439

Cao et al. (2008), a reduction in the drop oscillation amplitudes for smaller drops would be440

required so that predicted L values are higher. However, this would not explain the difference441

between the May retrieval results and the predicted µ from disdrometer measurements; we442
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estimate that it would require oscillations that are at least an order of magnitude larger443

to bring these median µ estimates into agreement with Williams et al. (2014) or Cao et al.444

(2008). An incorrect parameterisation of the drop oscillations alone is unlikely to be able to445

account for the disagreement with Williams et al. (2014) and Cao et al. (2008), however, to446

better establish the accuracy of the technique, a better quantification of raindrop oscillations447

is desirable.448

µ estimates derived using radar are sensitive to higher moments of the DSD, whereas449

disdrometer estimates tend to use lower moments of the DSD (Cao and Zhang 2009). This450

could be partly responsible for the differences between the radar and disdrometer estimated451

µ values. If the DSD shape is not perfectly described by Equation 1, the “effective ” µ which452

is derived may be different even if the underlying DSD shape is the same. It is also possible453

that what we have captured is simply natural variability of the DSD in different types of454

rainfall (i.e convective and stratiform), and there is not a universal µ−D0 relationship. More455

case studies are needed to gather a statistical understanding of the behaviour of µ using this456

retrieval method.457

a. Implications for Operational Use of L458

Operational radar networks favour the use of rapid scan rates to maximise sample fre-459

quency and total sample volume. For UK Met Office radars observing rain with 1 ms−1
460

Doppler spectral width, each gate contains NIQ ≈ 11 (σL ≈ 0.3). Clearly, many more461

NIQ are needed than are available for individual gate estimates of µ. Greater measurement462

precision can be achieved by averaging (with the confidence interval computed using the463

aggregated number of independent I and Q samples), and assuming µ is spatially conserved464

over the chosen averaging area. To obtain a µ estimate over approximately 1 km2, for ex-465

ample, would require the averaging of 2 rays and 10 gates (at a range from the radar of 30466

km); this L estimate would be calculated using NIQ = 220 (σL ≈ 0.058). Whereas this may467

not be sufficient to distinguish µ to as high a resolution as our retrieval (which uses long468
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dwells and NIQ > 1000), this will at least be able to decipher whether µ is ‘high’ or ‘low’.469

Practically, as illustrated in Figure 1, this may be all that is necessary to offer improved rain470

rate estimates; it is relatively unimportant whether µ is 8 or 16, but it is very important to471

know if it is 0 or 4. Therefore, this method could (with sufficient care to ensure only rain472

echoes and good SNR) allow for improved rain rates using Z, ZDR and L compared to only473

Z and ZDR.474

For the typical σL used in these calculations, we can approximate the error on the re-475

trieved rain rate by considering the contribution of σL to the uncertainty in µ. For a ‘typical’476

µ of 6, the range of retrieved µ is ≈ ± 4. By referring to Figure 1, we can see that this477

corresponds to a difference in rain rate of ± 0.5 dB, or ± 12.5%. The impact of uncertainty478

in µ on rain rate is almost constant for all ZDR (each of the µ lines are approximately parallel479

in Figure 1 for ZDR & 0.5 dB). Therefore, this error will decrease for higher rain rates as the480

contribution of σL to uncertainty in µ decreases as a function of ZDR.481

9. Conclusions482

In this paper, a new variable L = − log10(1− ρhv) is defined that is Gaussian distributed483

with a width predictable by the number of independent I and Q samples, which in turn484

can be estimated using the Doppler spectral width. This allows, for the first time, the485

construction of rigorous confidence intervals on each ρhv measurement. The predicted errors486

using this new method were verified using high quality measurements in drizzle from the487

Chilbolton Advanced Meteorological Radar.488

Importantly, the proposed method is of much greater practical use than the linear per-489

turbation error estimation method, as it does not require knowledge of the unknown “true”490

ρhv that one is trying to estimate. The method works for both simultaneous or accurately491

interpolated alternate sampling. However, it does not work for alternate estimators which492

rely on the Gaussian autocorrelation function to estimate the zero-lag correlation between493
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H and V pulses (Sachidananda and Zrnic 1989), where ρhv estimates can be > 1.494

A new technique to account for the imperfect co-location of H and V sampling vol-495

umes on ρhv measurements is presented. The impact of drop oscillations on the observed L496

measurements was shown to be significant; omitting oscillations from our Gans simulations497

leads to an underestimate of retrieved µ of ≈ 8. We further show that failure to use L over498

ρhv measurements when averaging can lead to a significant bias low in ρhv estimates (and499

consequently µ), particularly for very short dwell times such as those used operationally.500

High-precision measurements of L and ZDR in rainfall are then used to estimate µ in501

the gamma DSD for four case studies. We find that our estimates of µ in stratiform rain502

somewhat agree in magnitude with those from disdrometer studies for small ZDR, but there503

appears to be a tendency to more monodisperse DSDs between ZDR = 0.8 and 1.5 dB, unlike504

the trend towards an exponential distribution suggested by disdrometer measurements. The505

convective case study does display this trend toward lower µ as ZDR increases, but the506

magnitude of µ remains much larger than predicted by disdrometer measurements. If true,507

this would lead to overestimates of retrieved rain rate by ≈ 1 dB if the µ−Dm relationship of508

Williams et al. (2014) is used, or 2 dB if an exponential distribution or the µ−Λ relationship509

of Cao et al. (2008) is used. We find that the µ retrieval exhibits sensitivity to the choice of510

drop oscillation model. A better understanding of raindrop oscillations would be useful to511

fully establish the accuracy of our retrieval technique.512

The variability in our radar retrieved µ could simply be natural variability of the DSD513

between convective and stratiform rainfall; there may not be a universal µ−D0 relationship.514

More case studies are desirable to investigate this further.515

The µ retrieval technique employed here offers improvements over the radar estimates516

of Illingworth and Caylor (1991) and Thurai et al. (2008). Illingworth and Caylor (1991)517

did not take into account the imperfect co-location of the H and V sample volumes on518

measurements of ρhv, the effect of drop oscillations, or the fact their ρhv estimates would519

be biased low by averaging short time-series. Each of these effects would cause µ to be520
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underestimated. The same is true of Thurai et al. (2008), however drop shapes measured by521

2DVD measurements include oscillations, and so are included in their µ estimates.522

The new error statistics of ρhv presented here could aid operational applications that523

require uncertainty on ρ̂hv to be quantified, or use averages of ρ̂hv. The use of L operationally524

to retrieve µ is limited by use of rapid scan rates and the corresponding few independent525

I and Q samples. However, assuming that µ is a smoothly varying parameter, averaging526

L could help improve rain rate retrievals; the uncertainty on operationally retrieved rain527

rates using the retrieval technique presented here is estimated to be approximately ± 12.5%.528

Practically, retrieved rain rates are less affected by changes in higher values of µ compared529

to changes in lower values. Therefore, operationally, simply being able to distinguish regions530

of ‘high’ and ‘low’ µ with L could be sufficient to provide an improvement over existing531

Z − ZDR retrieval techniques.532

APPENDIX533

The effect of imperfectly co-located H and V samples on ρhv534

Consider two measurements of the (complex) amplitudes at horizontal and vertical polar-535

isation AH and AV . If the two polarisations do not have perfectly matched sample volumes,536

then each amplitude is the sum of (i) a component which is common to both polarisations537

CH , CV , (ii) a component which is different for each polarisation DH , DV :538

AH = CH +DH (A1)

(and similarly AV = CV +DV ). The co-polar correlation coefficient is:539

ρhv =

∑
AHA

∗
V√∑

|AH |2
∑
|AV |2

(A2)

where the sums
∑

are taken over many reshufflings of the raindrops. Substituting in the540

expressions for AH and AV leads to:541
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ρhv =

∑
CHC

∗
V +

∑
DHC

∗
V +

∑
CHD

∗
V +

∑
DHD

∗
V√∑

|CH +DH |2
∑
|CV +DV |2

(A3)

The first term in the numerator dominates as the number of pulses is increased. This is542

because DH , DV , are uncorrelated ith CV , CH (because the reshuffling of particles in the543

different sample volumes is not connected or organised in any way), while CH and CV are544

highly correlated (because the true ρhv is close to 1). The final term is small because DH ,545

DV , are not correlated (by the same argument), and this term is small in any case since546

|D| � |C|)547

This leaves us with:548

ρhv =

∑
CHC

∗
V√∑

|CH +DH |2
∑
|CV +DV |2

(A4)

In the case of a perfect radar with perfect co-location of the H and V samples, then DH , DV549

are zero and we get a correlation coefficient which is the true ρhv which we are trying to550

obtain (ie setting A = C in equation A2).551

In general, for an imperfect radar, we have DH , DV > 0 and from the results above we552

see that:553

ρhv = ρtruehv × fmaxhv (A5)

where554

fmaxhv =

( ∑
|CH |2∑

|CH +DH |2
×

∑
|CV |2∑

|CV +DV |2

)1/2

(A6)

This result is directly analogous to the results of Bringi et al. (1983) on ρhv in the presence555

of noise. If we identify C as our “signal” and D as our “noise” this equation is identical to556

Equation A1.557

Crucially, the relationship between the true ρhv (ρtruehv ) and the one which is actually558

observed is determined simply by how much power (on average over many pulses) comes559
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from the particles which are different for the H and V sample volumes, relative to how much560

power comes from the particles which are common to the H and V sample volumes, and that561

this factor should be constant for different microphysical situations. Thus if we can measure562

ρhv in drizzle where we know ρtruehv = 1, then the measured ρhv is simply equal to fmaxhv . This563

scaling factor can then be applied to data from all other situations.564
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Szakáll, M., S. Kessler, K. Diehl, S. K. Mitra, and S. Borrmann, 2014: A wind tunnel study647

of the effects of collision processes on the shape and oscillation for moderate-size raindrops.648

Atmospheric Research, 142, 67–78.649
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Thurai, M., M. Szakáll, V. N. Bringi, and S. K. Mitra, 2013: Collision-induced drop oscilla-664

tions from wind-tunnel experiments. Proc. 36th Conference on Radar Meteorology.665

Tokay, A., A. Kruger, and W. F. Krajewski, 2001: Comparison of drop size distribution mea-666

surements by impact and optical disdrometers. Journal of Applied Meteorology, 40 (11),667

2083–2097.668

Torlaschi, E., and Y. Gingras, 2003: Standard deviation of the co-polar correlation coefficient669

for simultaneous transmission and reception of vertical and horizontal polarized weather670

radar signals. Journal of Atmospheric and Oceanic Technology, 20 (5), 760–766.671

Ulbrich, C. W., 1983: Natural variations in the analytical form of the raindrop size distri-672

bution. Journal of Climate and Applied Meteorology, 22 (10), 1764–1775.673

Unal, C., 2015: High resolution raindrop size distribution retrieval based on the doppler spec-674

trum in the case of slant profiling radar. Journal of Atmospheric and Oceanic Technology,675

(2015).676

Williams, C. R., 2002: Simultaneous ambient air motion and raindrop size distributions677

retrieved from UHF vertical incident profiler observations. Radio Science, 37 (2), 8–1.678

Williams, C. R., and Coauthors, 2014: Describing the shape of raindrop size distributions679

using uncorrelated raindrop mass spectrum parameters. Journal of Applied Meteorology680

and Climatology, 53 (5), 1282–1296.681

Wilson, D. R., A. J. Illingworth, and T. M. Blackman, 1997: Differential doppler velocity:682

A radar parameter for characterizing hydrometeor size distributions. Journal of Applied683

Meteorology, 36 (6), 649–663.684

30



List of Tables685

1 Typical rain rates (R) for each of the case studies, calculated from disdrometer686

measurements (April) and radar retrieved N0, D0 and µ values (January, May687

and November) 32688

31



Table 1. Typical rain rates (R) for each of the case studies, calculated from disdrometer
measurements (April) and radar retrievedN0, D0 and µ values (January, May and November)

Month Typical R (mm hr−1) Peak R (mm hr−1)
31 January 2014 1−3 8

25 April 2014 2−3 7
22 May 2014 2−7 >30

25 November 2014 2−5 10
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Fig. 1. Rain rate (in dB referenced to 1 mm hr−1) per unit radar reflectivity as a function
of ZDR computed using Gans theory for gamma distributions of µ = -1, 0, 2, 4, 8, 12 and
16. The rain rate can vary by as much as 2.5 dB for a given pair of Z and ZDR observations
as a result of drop spectrum shape variability.
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Fig. 2. Example time-series (0.5 s) for single 75 m gates from 1.5◦ elevation dwells in (a)
drizzle (ZDR = 0 dB) at 1203 UTC on 6 February 2014, and (b) heavier rainfall (ZDR = 1.1
dB) at 1706 UTC on 31 January 2014. For both examples, SNR > 40 dB. For drizzle, the
H and V echo time-series vary in unison as the drops are all spherical. In heavier rainfall,
the broader axis ratio distribution causes the H and V time-series to be less correlated. The
rate of fluctuation of the signals is determined by the Doppler spectral width.
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Fig. 3. The frequency distribution of (a) ρ̂hv calculated from 1159 time-series (0.21 s, 75
m gates) in drizzle (ZDR < 0.1 dB) and (b) L̂ = − log10(1-ρ̂hv). The data was collected at
1203 UTC on 6 February 2014 during a 1.5◦ elevation dwell and has very high SNR (> 40
dB). σv for these data ranges between 0.9—1.3 ms−1. Overplotted on L̂ is a Gaussian curve
with same mean and standard deviation as the measured distribution.
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ρ̂hv and not L̂ for small NIQ can lead to a large bias.
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Fig. 6. (a) Comparison of mean drop axis ratios as a function of equivalent drop diameter
(D) from recent experiments of Thurai and Bringi (2005), Szakáll et al. (2008) and the 4th

order polynomial fit of older experimental data constructed by Brandes et al. (2002). The
model of Thurai and Bringi (2005) has been adapted so that drops are spherical for D < 1
mm. Panels (b)—(d) show radar and disdrometer ZDR comparisons calculated using Thurai
and Bringi (2005), Szakáll et al. (2008) and Brandes et al. (2002) from a 5 hour dwell over a
nearby Joss-Waldvogel RD-80 impact disdrometer (approximately 7 km away) in a frontal
rain band on 25 April 2014. The time resolution of the radar measurements was decreased
to 30 s to match the integration time of the disdrometer. At a 1.5◦ elevation angle, the radar
was sampling rain at a height of ≈ 183 m above the disdrometer. The dashed line is a 1:1
line. The smallest biases are achieved with the Thurai and Bringi (2005) model, especially
for smaller ZDR, suggesting that these shapes best represent those of natural rain drops.
Therefore, this model is chosen for the analysis.
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Fig. 8. Theoretical L and ZDR computed using Gans theory for gamma distributions with
µ = -1, 0, 2, 4, 8, 12 and 16, using Thurai and Bringi (2005) mean drop axis ratios and
oscillation model described in Section 6b. The precision of L required to estimate µ decreases
as ZDR increases. The fmaxhv is assumed to be 0.9963 to match the case study in Section 7.
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Fig. 9. (a) 2D PDF of L and ZDR observations, and (b) normalised 2D PDF such that
the distribution equals 1 for each ZDR bin for observations of L and ZDR collected from
dwells on 25 November 2014. L is binned ever 0.02, and ZDR every 0.05 dB. Overplotted
are theoretical L and ZDR computed using Gans theory for gamma distributions of µ = -1,
0, 2, 4, 8, 12 and 16. Typical errors on L and ZDR are shown as error bars; the error on
ZDR is very small. The grey dashed line is the predicted L and ZDR observations using DSD
parameters from the power-law fit to disdrometer measurements in Williams et al. (2014).
The black dashed line is the predicted L and ZDR observations using the µ−Λ relationship
of Cao et al. (2008). The fmaxhv for this day is measured to be 0.9963.
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Fig. 10. Box plot of retrieved µ as a function of ZDR for ZDR bins of 0.2 dB on 25 November
2014, showing the median and inter-quartile range of the data.
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Fig. 11. Median retrieved µ as a function of ZDR for ZDR bins of 0.1 dB for case studies
of 31 January, 25 April, 22 May and 25 November 2014. The solid line is the predicted µ
as a function of ZDR from the power law fit to disdrometer measurements of Williams et al.
(2014), and σµ corresponds to the upper and lower bounds that contain 55% of the data.
The solid black line shows the predicted µ− ZDR using the µ− Λ relationship of Cao et al.
(2008).
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